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described by a normalizable state vector. An example
of a calculation using non-normalizable state vectors
which violates the above theorem is the work of Sachs
and Foldy. v These authors calculate the cross section
for the scattering of gamma rays from nucleons using
nonrelativistic, no-recoil, weak coupling, pseudoscalar
meson theory. The state vector representing the
nucleon ground state in their calculation is not nor-
malizable in the meson variables. Because of this lack
of normalizability, their calculated transition amplitude
contains a term Lthe e u&&u' term in Eq. (20) of
reference 47, which results from scattering through
excited states of the nucleon, and which is independent

' R. G. Sachs and L. L. Foldy, Phys. Rev. 80, 824 (1950).

of photon energy in the low-energy limit. Therefore,
this term violates the above stated theorem. In the
following paper, the procedure of Sachs and Foldy is
modified in a manner which insures that the state
vectors are normalizable, and the cross section is recal-
culated. The transition amplitude calculated by this
procedure no longer contains this energy-independent
term.
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Some electromagnetic properties of nucleons are investigated under the assumption that the nucleon
consists of a spin one-half core particle in interaction with the pion 6eld through a gauge-invariant, non-
relativistic, pseudoscalar, finite source interaction. Recoil of the nucleon core is neglected and the weak
coupling approximation is used. A method is presented for making the finite source interaction between two
particle fields gauge-invariant by introducing 6laments of current in the region of the source function. The
theoretical contributions of interaction currents to the magnetic moments of the proton and neutron are
calculated and found to be small compared to the observed anomalous moments and of the opposite sign.
The model is used to calculate, in the limit of zero source size, the total and differential cross sections for
scattering of gamma rays from nucleons. The results, which are presented graphically, are found to be in
accord with the conditions imposed on a 6nite theory in the preceding paper. They are compared to the
results obtained by Sachs and Foldy on the basis of a point-source theory.

I. INTRODUCTION

HE recent discoveries' of heavy mesons and
hyperons indicate that it is entirely possible that

the nucleon core which emits and absorbs pions, instead
of being simple, may be structured, i.e., composed of
two or more of the "new" particles, one or more of
which may carry the source of the pion field. A complete
theory of the nucleon would have to incorporate the
details of the structured core and would then depend
on the nature of the particles which compose this
structure.

However, in many processes involving low-energy
pions and photons, the complicated details of the source
may not be important and therefore it may be possible
to account for the important sects of the core structure

*Supported in part by the U. S. Atomic Energy Commission,
and in part by the Wisconsin Alumni Research Foundation.

t National Science Foundation Predoctoral Fellow.
f Now at Vanderbilt University, Nashville, Tennessee.
'For up-to-date reviews of these matters see: L. Leprince-

Ringuet, Ann. Rev. Nuc. Sci. 3, 39 (1953); Many authors, Proc.
Roy. Soc. (London) A221, 277—420, (1954); Proceedings of the
Fourth Rochester Conference (University of Rochester Press,
Rochester, 1954).

by introducing a smooth source function into the inter-
action between the pion field and its source. This
means that the annihilation and creation of pions are
not limited to a mathematical point in space, but can
occur over a small but 6nite region, the size of which
is determined by the dimensions of the source function.

The notion of the extended source has already been
introduced, ' not for the physical reasons just stated,
but for the formal advantage that the extended source
possesses in regard to circumventing the well-known
divergence de.culties that are encountered in the point
source theory. An important result of the introduction
of the extended source is that high-momentum pions
are quenched, so that the state vector of the pion-
nucleon system, which was not normalizable in the
point-source theory, can now be normalized. The
advantage of working with normalizable state vectors
has been emphasized in the preceding paper, in which

many of the results depend on this property.

'W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942).
W. Pauli, Meson Theory of Nnctear Forces (Interscience Pub-
lishers, Inc. , New York, 1946).
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It is clear, then, that certain advantages accrue with
the advent of the extended source, but on the other
hand, the extended source theory raises new problems
of its own. As generally applied, this theory is not
Lorentz-covariant. But this fact causes no great
concern here since the point of view is taken that the
extended source theory is not supposed to be a funda-
mentally rigorous theory but a way to avoid the com-
plicated details of the nucleon core, a procedure which,
it is hoped, has validity at least in low-energy processes.

Furthermore, there is the question of making the
theory gauge-invariant when the interaction of the
pion-nucleon system with photons is considered. As
pointed out by Blair et al. , the essential difficulty lies
in the fact that in the present form of the extended
source theory, the pion is created or absorbed at some
particular point inside the source, whereas the entire
spread-out nucleon changes from a neutron to a proton
or vice versa, a process which violates the continuity
equation of charge and current density. One of the
important features of the present paper is the delinea-
tion of the manner in which an extended source, pion-
nucleon interaction may be made gauge-invariant. The
procedure involves the introduction of filaments of
current within the source so that the continuity equa-
tion is satisfied everywhere. These filaments of current
are not to be construed as accurately representing the
physical situation inside the source, but merely as some
sort of approximation to the actual currents that pre-
sumably exist there. Nevertheless, some physical conse-
quences of these "pseudocurrents" are presented. Con-
sideration is given to a peculiar effect that arises from
the virtual photons generated by these currents. The
contribution of these currents to the nucleon magnetic
moments is deduced and found to be zero for the
simplest possible kind of filaments, namely, straight
lines of current emanating radially from the origin.
However, a contribution to the magnetic moment4

remains from the interaction current that arises in the
gradient-type coupling. This effect is found to be small
and in the opposite direction to the observed anomalies.

Attention is then given to the implications of the
static, gradient-type, extended-source interaction for
the diGerential and total cross sections for the scat-
tering of p rays by protons and neutrons. The point
source in the pion-nucleon interaction employed in the
calculation of this process by Sachs and Foldy' is

replaced by a Gnite source and the cross sections recal-
culated. The SF result for the low-energy expression of
the transition amplitude contains a spin-dependent
term which is independent of the photon frequency.

'Blair, Chew, Friedman, and Salzman (privately circulated
report, 1952).

4No consideration is given in this paper to the magnetic
moments that derive from the conventional pion convection
currents.

s R. G. Sachs and L. L. Foldy, Phys. Rev. 80, 824 (1950).
Hereinafter, this paper will be referred to by the symbol SF.
Numbered equations in SF will be referred to as Kq. (SF-1), etc.

This violates the theorem of Sec. V of the preceding
paper, a result which depends on the fact that the
point-source theory of SF leads to non-normalizable
state vectors. The violation is found not to occur in the
normalizable, extended-source theory, even in the limit
as the source size is allowed to approach zero. The
numerical results given here are obtained in this limiting
case, so that the Gnite source is used here only as a
convergence procedure. It does not represent a physical
smearing out of the core particle.

Two other modifications of the procedure used in SF
are made. First, the absorptive part of the scattering,
omitted by SF, is included. Second, the pion-nucleon
coupling constant is obtained from experiments per-
forrned since the publication of SF. The discussion of
the y-ray scattering problem in the present paper is an
amplification of some remarks published previously. '

II. GAUGE IÃVARIANCE OF THE INTERACTION

The Hamiltonian of a static pion field interacting
with an infinitely heavy source can be separated into
two parts:

H=IIg+H',

where Hy is the total energy of the free pion field, ' and
H' is the interaction energy between the pions and the
source. For pseudoscalar pions interacting in a charge
symmetric way with an extended, , spin -„ isotopic spin
—,
' source, a rather commonly used' expression for H' is

II'= (4w) &(gc/ls), d'r f(r) r+rr V'q (r)+h.c., (1)

where g is the coupling constant in units of electric
charge, p, the reciprocal pion Compton wavelength, f(r)
the spherically symmetric source function normalized
so that 1"f(r)d'r=1, q (r) a component of the charged
pion field which creates a negative or absorbs a positive
pion, and r+= , (vr+irs) is —an isotopic spin operator
which converts a neutral into a positively charged
source. Only charged pions have been included in H',
since the major concern here is the behavior of the
system in the presence of an electromagnetic field, with
which neutral pions presumably have no direct inter-
action.

The importance of introducing an electromagnetic
field into the Hamiltonian in such a way as to satisfy
the condition of gauge invariance has been emphasized
in the preceding paper. If II(A) designates the matter
Hamiltonian modified to take into account the inter-
action of matter with photons, the gauge condition of
the preceding paper becomes, for the particular Hamil-
tonian under consideration,

e~ &(A)e ' =er~(&y(A)+gp(A)fe ~

=Hr(A+grad G)+II'(A+grad G), (2)

' R. H. Capps and R. G. Sachs, Phys. Rev. 96, 540 (1954).
7 For the form of Hy, see Wentzel, Qguetum Theory of Fields

(Interscience Publishers, Inc., New York, 1949), p. 49.
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in which G(r) is a guage function which may be any
electromagnetic field operator that commutes with A.
The expression for D is

D= (1/Ac) I [p (r)+s (1+rs)e8(r)]G(r)dsr, (3)

exp a (ie/Ac) A,ds,
0

(4)

the argument of the exponential being a line integral
of the vector potential from the origin to the point in
the source where the pions are created or absorbed. The
proper modification of B' in the presence of an elec-
tromagnetic field then is

where p (r) is the charge density operator for the pion
field. The second term in Kq. (3) is concerned with the
charge on the source.

It is of interest to determine the form of H(A) satis-
fying Eq. (2). The Hr part can be made gauge-invariant
by the well-known prescription, 8 of replacing each
grad q and grad q* by [grad —(se/Ac)A]&p and [grad
+(ie/hc)A]io*, respectively. However, because of the
presence of the extended source, II' modified only in
this way does not satisfy the gauge condition, but
requires an additional factor which' can assume the
form

more simple current distribution, which nevertheless
keeps the continuity equation of charge and current
density satisfied. Indeed, the physical effect of this
added factor is best seen through an examination of the
current distribution that it produces.

Since the small currents produced by external fields
are of no interest, the part of the current independent
of the electromagnetic field is desired. When Hi'(A),
the term in H'(A) linear in A, is cast into the form

H, '(A) = —c—' j;„, Ad'r,

the relevant current density can be identified as the
quantity which is denoted by j;„& in the expression.

The current defined in this way satisfies Maxwell's
equations, and is referred to as the interaction current,
since it arises from the special form of the interaction
H' To obt.ain the part of H'(A) linear in A, the exponen-
tial in Eq. (5) is expanded and the linear terms are
found to be

Hi'(A) =—(4m) & (sge/lib) dsr f(r)

+(r+a Aq rrr A—q*) .. (9)

H'(A) = (47r) l(gc/li) d'r f(r) r~
Now the arbitrary line integral from the origin to the

point r may be rewritten in the form,

yexp (—ie/Ac) A,ds o

6p

I'

A,ds= I ds "dsr'A(r')3(r' —s),
6p

(10)

[V—(ie/hc)A]qr +h.c. (5)

The fact that this expression for H'(A) satisfies Kq.
(2) with D given by Eq. (3) follows from the statements

e' r~e ' =r~ exp[(Hie/Ac)G(0)], (6)
' e{ne.[ V(ie/kc)A]y}e 'n=exp[( ie/Ac)G—(r)]

)&e [V—(ie/Ac) (A+grad G)]io(r). (7)

Just as the extended source is a phenomenological
device to make a complex system susceptible to cal-
culations yielding finite results, so the exponential of
the vector potential in H'(A) is a convenient means of
preserving the gauge invariance of the theory, i.e., the
e6ect of the exponential is to replace the presumably
complicated current distribution inside the source by a

' See reference 7, p. 66.
9 This form was suggested to the authors by R. G. Sachs. Com-

pare R. G. Sachs, Phys. Rev. 74, 433 (1948). Factors of this kind
were a)so considered by Peierls and Chretien with regard to
nonlocal interactions in field theory, R. Peierls and M. Chretien,
Proc. Roy. Soc. (London) A233, 468 (1954). See also C. Bloch,
K81. Danske Videnskab Selskab, Mat;fys Medd. 27, 8 (1952).

~Jp
dsb(r' —s) [r+e V p(r) ro"Vq*(r)]—

Comparison with Eq. (g) shows that the current is

QQ p

ds5(r' —s)

y[r~rr Vq(r) —r o Vio*(r)]

where s represents a vector to the point on the line and
ds is an infinitesimal vector tangent to the line at the
endpoint of the vector s.

Then

Hi'(A) = —(4~)&(ige/pA) ~dsr'~ A(r') d'r f(r)
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This is just the current that comes from H'(A), no
consideration having been given to current that arises
from Hy(A). The first part of the expression, Eq. (12),
derives from the exponential term in Eq. (5) and can be
interpreted as a line of current" Rowing between the
origin and the point in the source where the pions are
created or destroyed. Once again the phenomenological
nature of this current should be pointed out. It doubtless
does not correctly represent the current distribution
within the source and has been inserted for the sake of
keeping inviolate the law of conservation of electric
charge within the source. The second term in Eq. (12)
is the well-known current given previously by Pauli
and Dancoff. '

along a straight line. Then

pr p1
o"T A,ds=o 7' ' dn[r. A(nr)]J,

whereupon

H'(A) = —(4m) &(gc/p) t d'r o (r/r) (df/dr)

H', n ——(4~)l(gc/p) I d'rF(r)r+p(r)o r+h c , (.13.)

but H',
&& can be obtained from H' by an integration by

parts of the latter expression, which shows that
H'=H', ig if

F(r) = (1/r) (df/dr).

In the presence of an electromagnetic field, however,
H', ii(A), which has the gauge invariant form,

H', ~t(A) = (4s.)'(gc/p) d'r F(r)r+p(r)o" r

Xexp (—ie/hc) A,ds +h.c., (14)

is not equivalent to H'(A). This can be seen by an
integration by parts of H'(A), which gives

H'(A) = —(47r)'(gc/p, ) d'r r+ p(r)o (r/r)(df/dr)

+(ie/Ac)f(r)1 A—grad
~

A,ds
1

&p )

Xexp (—ie/Ac) A,ds +h.c. (15)
40

For purposes of simplification, the line integral is taken

'0 A filament of current of a very similar nature has been intro-
duced by Adams in connection with nuclear exchange currents.
K. N. Adams II, Phys. Rev. 81, 1 (1951).See also R. K. Osborn
and L. L. Foldy, Phys. Rev. 79, 795 (1950).

III. UNIQUENESS OF THE ELECTROMAGNETIC
INTERACTION

In the absence of an electromagnetic field, the form
of a linear, charge-symmetric, static interaction of
pseudoscalar pions with an infinitely heavy, extended,
spin —,', isotopic spin —,

' source is given uniquely by Eq.
(1).An alternative expression' is

—(ie/Ac) f(r) rXcurlA(nr)dn exp (—ie/hc)
p

X A(nr) rdn r+p(r) +h.c. (17)
0

The nonequivalence of H'(A) and H' &&(A) then resides
in the presence of the term in H'(A) containing curlA.
Whether or not such a term exists must be decided by
experiment.

Any linear combination of H'(A) and H', &t, (A) will

satisfy the conditions of gauge invariance. This is a
manifestation of the fact that any term of the form
H(curlA) that satisfies the condition fp, H(curlA) j=0,
where p is the charge density operator for the matter
system, may be added to a gauge-invariant Hamiltonian
without destroying gauge invariance.

IV. VIRTUAL PHOTONS

Assuming for the moment that H'(A) does give a
correct account of the current distribution within the
source, let us investigate some of its electromagnetic
consequences. First we consider the effects of virtual
photons produced by the vector potential in the ex-
ponential factor of H'(A). Usually such photons, arising
from the interaction of charged particles with the elec-
tromagnetic field, cause self-energy divergences such as
that encountered, for instance, in the A'q' term of the
gauge invariant form of Hf.

In contrast to this relatively simple A' dependence,
arbitrarily high powers of A are present in the exponen-
tial under study, so that the divergence arises here in a
quite complicated manner. If all virtual photons are
included in a calculation, every matrix element of
H'(A) will include a factor of e ", which will cause the
matrix elements to vanish. " This can be seen in the
following way. Suppose, for the sake of simplicity, that
the line integral is taken along a straight line; then an
expansion of the vector potential into plane waves

"This point has been observed by Heitler and communicated
to us by W. Thirring. See also R. Peierls and M. Chretien, Proc.
Roy. Soc. (London) A223, 468 (1954).
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yields

p1

exp (&ie/Ac)r A (nr)dn
0

=exp (&is/Ptc)(i'tc2sr/V)' g (A„, +A* „„)

Xco '*u r exp(ioi nr)dn, (18)
40

exp~ (—e'/ 4ksrc) dk (1—x')
4

F00

p(2/p&)'

in which u is the photon polarization, a is its wave
vector, A and A~ are photon creation and annihilation
operators, and V is the volume of an enclosure used for
normalization of the photon waves. The e6ect of the
virtual photons can be isolated by arranging the terms
in Eq. (18) in such a way that the annihilation operators
act first. To accomplish this, use is made of the theorem"
for two operators, a and b, whose commutator is a
c-number,

exp(a+b) = (expa) (exp-', P,a]) (exp'). (19)

If u is identified with the A* part and b with the A
part of the expression, Kq. (18), this expression may be
written in the form of the right side of Kq. (19).If the
sum over the two directions of polarization is carried
out, the terms corresponding to exp(-,'[b,a]) may be
written in the following form,

Application of this condition limits the integration
over p in the expression, Eq. (20) to the range 0 g p ~ 1,
and Eq. (20) now becomes exp( —e'/6s-Ptc). This ex-
pression is very nearly unity and the vanishing of H'(A)
no longer occurs. It is concluded that the formally
gauge invariant expression Eq. (5) for H'(A) can be
employed in a perturbation calculation of electromag-
netic processes for which the condition Eq. (21) is
satisfied.

M, (int) =-', c '~t dr'Lr'X j;„&(r')j„ (22)

where j;„t,(r') is the interaction current density. The
insertion of Eq. (12) for the current density yields

M, (int) = (&riage/tie) d'r'd'r f(r)i,
J

/

r'X
pI

dsb(r' —s)
0

Xt r+a V vs(r) ro" Vio*(r) j—

V. MAGNETIC MOMENTS

Having given consideration to the effect of virtual
photons, we now investigate some of the implications of
H'(A) with regard to real photon processes. Attention
will first be given to the contribution of H'(A) to the
static nucleon magnetic moments. The moment will be
calculated to lowest order in g, i.e., to order g'. The
magnetic moment operator is defined by

+nb(r' —r)[r+q (r) —r q*(r)j ~, (23)

cur ~1. (21)

's Harold T. Davis, The Theory of LirMr OPerators (Principia
Press, Inc. , Bloomington, 1936), p, 198.

where p=cor. The integral over p in this expression
diverges logarithmically at infinity causing H'(A) to
vanish.

Of course, one way to circumvent this predicament in
calculations involving real photon processes is to ignore
the eGect of virtual photons altogether, i.e., replace the
expression, Eq. (20) by one. Perhaps a more physically
meaningful approach to the removal of the divergence
under study is to note that, for extremely short wave-
lengths, the details of the structure of the source would

become important. The consideration of such details
would not be consistent with the notion that the com-
plexities of the source could be replaced by the smooth
source function f(r). Therefore, the photon wavelengths
should be smaller that the dimensions of the source
and thus should be limited by the condition

where i, denotes a unit vector in the positive z direction.
Note that M, (int) changes sign under the mirror

operation in charge space, the operation which rejects
the i-spin space through a plane containing the z axis,
i.e., M, (int)~ —M, (int) when r+~r , y+-+io* an-d
7.,~—7-,. But under the assumption that the inter-
action between mesons and nucleons is charge sym-
metric, this operation changes a neutron state to a
proton state and vice versa. Consequently, the expec-
tation value (M, (int)) is equal in magnitude but
opposite in sign for the proton as compared to the
neutron. Thus, the mirror theorem of Sachs,"concern-

ing the sum of neutron and proton moments, is not
aGected by any contribution from these interaction
currents.

To obtain an idea of the size of (M, (int)), we consider
the simplest form of M, (int), which corresponds to
choosing the path of the line integral to be a straight.

'e R. G. Sachs, Phys. Rev. 87, 1100 (1952).
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line. Then,

M, (int) = (irr*'ge/IJA) ~d'r'd'r f(r) i,

(,
~

I
r'X r b(r' o—.r)dn

X[r+e V'q(r) —r (r V'q*(r)j

Because of the factor b(r' —~«r), r' and r are always
parallel and r'Xr vanishes. This result is simply a
manifestation of our particular choice of the path of
integration, which constrains the line current to Row
radially, whereas a circulating current is required to
produce a magnetic moment. Thus, the contribution to
the magnetic moment of the phenomenological line
current has been made zero, so that

f(r) T.hen,

(M, (int))=(C IM, IC)

dkf'(k) —
I I, (29)

g'e " d ( k'

3~bc@' ~'o dk Ep'+k')

the negative sign referring to the proton and the
positive to the neutron. The fact that the integral is
always positive for any real function f(k) leads to the
conclusion that (M, (int)) gives a magnetic moment
anomaly opposite to that observed. '4

The magnitude of the anomaly depends on the par-
ticular form of f(k) For t.he choice

f(k)=1, k~K,
=0, k)E,

then

(M (int)) = W (g'e/3rrkcp')K'(p'+K2) ' (31)

If the cut-oG momentum is large, i.e.,

M, (int) = (im ~ge/pA) then
E2 ))p2) (32)

X d'r r rX~. ~+p —7- q*, 25

which is the result that would be obtained' even if the
line currents or the exponential factor had not been
introduced.

To find (M,) to order g', the ground-state eigenfunc-
tion of II to order g is needed. This eigenfunction for a
nucleon with spin up is, to the required order

C =C {0}+C{1}=C {0,o-, =1, r, =&1}

(M, (int)) = W (2g'/3vrhc) (MK/p2) (e/2M), (33)

where M is the reciprocal nucleon Compton wavelength.
Now (M, (int)) may be expressed in terms of the prob-
ability I'&' that a charged pion is present in the nucleon.
This quantity is given by

~. =(~(1)l~(1)),
where C (1) is given by Eq. (26). Then,

I' '= (g'/7rhcp') ~ dk[f'(k)k'(p'+k') 'j (35)

k, spin,
isotopic spin

(C'{k o*,"}IH'IC'{0 ~*=1 r =1})
XC {k,o.r,}

(26)
and if the conditions Eqs. (30) and (32) are used) ) )

—Ac(p'+k') & &i'= (g'/&c) (1/2~) (K'/~') (36)
whence

where C{0,o,=1, r, =&1}is the functional describing
the state with no pions present, namely, just the core
of the nucleon, with 7-,=&1 referring to the positive
and neutral cores respectively. Similarly, C (k,o.r,)
represents the core surrounded by one pion in a state
of momentum Ak. Since the calculation is carried out
in momentum space, we record the operators H' and
M, (int) in that representation

H'=i(gc/IJ, )(2rrA/cU)&g«{ f(k)e k(y'+k') i

X[(o"«+b «*)r++(~ «*+b«)r j}, (27)

M, (int) =—(ge/p) (m/2hcV) ~ P«{(k 'df/dk)—
X(p'+k') 1(i. eXk)

X[(o«+b «*)r+—(o «*+b«)r j}, (28)

where a~ and a~* are the annihilation and creation
operator's for positive mesons and the b's refer similarly
to negative mesons. The function f(k) is the Fourier
transform of the spherically symmetric source function

(M,)= wI' i'(4M/3K), (37)

in units of the nuclear magneton. In order to obtain
specific numbers, suppose K= M and" Pi' 10%, then——
(M,)=%0.13 nuclear magnetons, where again the W
refers to the proton or neutron, respectively. This
number is rather small compared with the observed
anomalies of 1.78 nuclear magnetons for the proton and
—1.91 for the neutron.

Under the same assumptions that have characterized
this calculation based on H'(A), the interaction H', ii(A)
would give no contribution to the magnetic moment.
Furthermore, in view of the smallness of the e8ect
derived from H'(A) and in view of the fact that the sign
is given incorrectly, the magnetic moment data provide
little evidence which can be used to make a choice
between different linear combinations of H'(A) and
H'. i, (A).

'4 This conclusion is drawn by Blair et al. ) in reference 3.
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In the presence of an electromagnetic field, II' was
modified by replacing the gradient operator by the
operator LV—(ie/Ac)Aj. Therefore, H'(A) satisfied the
condition of gauge invariance, Eq. (2). However, the
state vectors derived from Eq. (38) were not nor-
malizable; hence, it is not surprising that the theorem
of the preceding paper does not apply to the cross
section derived in this manner.

In the present paper, the form of the interaction
between the core particle and pions has been modified
in such a way as to insure that the state vectors are
normalizable. The delta function in the interaction, Eq.
(38), has been replaced by a source function with a
finite range. The source function f(r) is required to be
spherically symmetric and to satisfy the following two
additional requirements:

f(r)dPr= 1,

rf(r) nonsingular.

(39a)

(39b)

The method of approximate stationary states is then
used to study the low-energy behavior of the spin-
dependent term in the transition amplitude. The ap-
proximate stationary states calculated from the modi-
fied interaction are normalizable.

In the presence of an electromagnetic field, the inter-
action term in the Hamiltonian is assumed to have the
form of Eq. (5). In this calculation, as in the calculation
of SF, the only contribution to the spin-dependent term
in the transition amplitude arises in the second order
of the perturbation theory, through the intermediate
states of the type denoted in SF by P and y. A P state
is a state whose zero-order term corresponds to one

VI. SCATTERING OF LOW-ENERGY PHOTONS
BY NUCLEONS

Sachs and Foldy' have given an expression for the
cross section for the scattering of gamma rays from
nucleons, calculated on the basis of nonrelativistic,
no-recoil, point-source theory. The spin-dependent term
in their final expression for the transition amplitude is
independent of frequency at low frequency. This is a
direct contradiction of the theorem in Sec. V of the
preceding paper, namely that the transition amplitude
should contain no constant term arising from excitation
of the nucleon.

The reason for this contradiction can best be seen

by examining the method of approximate stationary
states used in SF and described in Appendix I of that
paper. The approximate stationary states of the nucleon
were derived from weak-coupling pseudoscalar meson
theory, with neglect of recoil, by use of the following
interaction between the nucleon core particle and the
pion field.

H'= (4m) '(gc/p) t d'r[5(r) r+c Vp(r) j+h.c. (38)

free meson in addition to the core particle, while the
zero-order term of a y state represents two free mesons
and the core.

There are now three terms in the Hamiltonian which
are linear in the vector potential, and hence can make
a second-order contribution to the transition amplitude:

H„= i(4—~)'(eg/hp) d'rPr~f(r)e Aq j+h c , (. 4.0b)

H'„= —i(4~)'(eg/hp) ' d'r r~f(r)
~

A,ds
~

t' p'

Xa Vpp +h.c. (40c)

4ie'g'
(e u'Xu) dk

p'Vkc(v 0

p~ (4 k4

(
——f'(k)

.kp' —pp' E3 kpP

k' 2 k' df)
f'(k) ——f(k)———

kp 3 kp dk~

tt 1 co k—fP(k)
~

~p E3 kp' —pp' kp' )
where V is the volume of an enclosure introduced for
purposes of normalization, the unit vectors u and u'

denote the polarization directions of the initial and final

photon, the symbol m represents the magnitude of the
wave vector of the incident or final photon, and k0 is
defined by the relation kp'= p,'+k'. The function f(k)
is the Fourier transform of the source function f(r),

The interactions H, and B„are analogous to the inter-
actions H, and H„of SF. The interaction B'„arises
from the exponential term expL —(ie/Ac) Jp'A, dsj in
Eq. (5). Although H'„ is zero if f(r) is replaced by a
delta function, its inhuence on the transition amplitude
will not vanish in the limit as f(r) collapses to a delta
function.

The only spin dependent terms in the transition am-
plitude which are independent of energy at low energy
arise in the long-wavelength electric-dipole approxi-
mation, so we shall confine our attention to these
terms here. In the electric dipole approximation, the
transition amplitude does not depend on the choice of
the path of integration in the line integral, Jp'A, ds.
This follows from the facts that in this approximation,
the function u exp(ipp r) is replaced by u, and the
integral Jp'N, ds=u r is independent of the 'path of
integration.

In the electric-dipole approximation, the spin de-

pendent terms in the transition amplitude may be
written as a series of integrals:
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which is spherically symmetric in both r space and
k space, i.e.,

f(k) = (2/s. ) '*k ' rf(r) sinkrdr.

The first integral in Eq. (41) results from a sum over
intermediate states of type P, while the second integral
results from a sum over y states. The term containing
f(k)df/dk involves the two interactions, H„and H'„.
No other term of Eq. (41) involves H'„.

When the source function satis6es the requirement
of Eq. (39b), its Fourier transform f(k) must decrease
at least as fast as k ' as k approaches in6nity. Thus,
both integrals of Eq. (41) are convergent.

Since we are interested in the energy independent
portion of these integrals, we expand in powers of
(to'/ks') and retain only the constant term. Then the
frequency independent term in the transition amplitude
can be written in the form

4ie'g' p" d 1 k'
(e u'Xu) I dk ————f&(k) .

p'Ukc 4p dk 3 kp
(43)

Each of these integrals is divergent, but in order that
a 6nite result be obtained, the sum of the integrals was
replaced by the integral of the sum of the integrands.
The resulting integral is convergent, but leads to a
result which does not vanish at zero energy.

One might have expected that the 6nite source
procedure, in the limit as the range of the source func-
tion becomes zero, would lead to the same results as the
point source procedure. But this is not the case. In this
limit, the terms in Eq. (41) involving f (k) do lead to
the point source results obtained in SF, but the term
involving f(df/dk), which resulted from the inclusion
of the exponential exp[ —(ie/Ac) J's'A, dsj in H'(A),
leads to a finite result of proper magnitude and sign to
cancel the result of SF at zero energy. Thus the condi-

'~ This result can also be deduced from Kq. (SF-B), by setting
m=0 in such combinations as k—u and carrying out the angular
part of the integrals in the spin dependent term.

The function (k'/kss) f' vanishes at both limits, hence
it is clear that this term, Eq. (43), vanishes. Thus the
use of the 6nite source has removed the term of SF
which contradicted the theorem of the previous paper.

It is interesting to compare Eq. (41) with the corre-
sponding equation which occurs in SF in order to see
how the disparity arises. The SF equation can be
deduced easily from Eq. (41) by setting f'(k) equal to
one. The result is'5

4ie'g' r" 1 (4 k4 k')
(e u'Xu) —

i

———idk
p'Vhc & s ks' —tos E3 ks' ks)

k4

dk . (44)
3 ~ s (ks' —cs')ks'

dition of gauge invariance in the 6nite source plays a
direct role in the cancellation, even in the limit as the
source range approaches zero.

VIL CROSS SECTION AS A FUNCTION OF ENERGY

If the meson-nucleon interaction used in SF is
replaced by an interaction of the form given by Eq. (5),
the transition amplitude for the scattering of gamma
rays from nucleons may be recalculated. If the incident
and scattered gamma rays have wavelengths long
compared with the range of the source function in the
meson-nucleon interaction, the calculated transition
amplitude should not be sensitive to the form of the
source function. In the present calculation, the transi-
tion amplitude and the cross section will be evaluated
in the limit as the range of the source function ap-
proaches zero; hence they will be completely inde-
pendent of the form of the source function. Thus, the
finite source is used here only as a device for insuring
that the wave function be normalizable, and that the
integrals occurring in the transition amplitude con-
verge. As in SF, the transition amplitude is calculated
here only to lowest order in e'/Ac. The integrals in the ex-
pression for the transition amplitude have been evaluated
by expanding the angular dependent denominators in
the integrands in powers of the parameter ri=2csk/
(k'+p'+cos). The results are computed to order rp in
this expansion.

It has been found that at all energies, the transition
amplitude calculated using the 6nite source procedure
divers from the corresponding quantity in SF by only
one additive, energy-independent term. The proof of
this statement and the explicit expression for the
transition amplitude are given in Appendix A.

In addition to including this constant term, a further
correction to the transition amplitude obtained by SF
must be made for energies above pion production
threshold. Because of the possibility of pion production,
the transition amplitude at these energies contains an
absorptive part, in addition to the dispersive part which
is present at all energies. In SF, the absorptive part was
omitted, but it is included in the present calculation.
The correction involves only those integrals of the
transition amplitude whose integrands contain poles,
and it is to be made by integrating each such integral
along a path beneath the pole, rather than by replacing
the integral by its principal part, as was done in SF.

The correction has a profound eGect on the energy
dependence of the cross section, as can be seen by
comparing the calculated cross section for scattering
from neutrons, Fig. 1, with the corresponding cross
section shown in Figs. SF-2. The neutron cross section
of SF rises to a peak at meson production threshold,
then decreases again while the corrected cross section
continues to increase.

The proton cross section consists of three terms, an
energy independent term resulting from Thomson
scattering from the proton as a whole, a term propor-
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tional to g resulting from Rayleigh scattering from the
meson cloud and a g' term from the interference between
Thomson and mesonic scattering. The neutron cross
section is equal to the g' term in the proton cross
section.

In order to obtain numerical results, one may assign
a value to g' by comparing some experimental result to
the corresponding prediction of weak coupling, pseudo-
scalar meson theory. In SF, the experimental result
used for this purpose was the nearly zero binding energy
to the 'S state of the deuteron. Since the publication
of SF, the low-energy cross section for the photopro-
duction of positive pions from protons has been
measured. ' '~ Since photomeson production is a phe-
nomenon closely related to the scattering of gamma
rays, the positive pion production cross section will be
used here to fix g'. The value of (gs/Ac) is taken to be
0.&~6.~8

With this choice of g' the mesonic scattering term
and the interference term in the proton cross sections
are of the order of magnitude of the Thomson cross
section, at energies in the range 100—200 Mev. Because
of this fact, the total cross section and angular dis-
tribution for the proton are sensitive to a change in the
coupling constant. For example, at a center-of-mass
energy of 139 Mev the differential cross section is
greater at 180' than at 0' by a factor of 1.8. However,
if the coupling constant were multiplied by a factor of
1.7, the cross section would be nearly the same as 0'
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Pre. 1. Calculated total cross sections, in units of the Thomson
cross section ITO, for scattering of gamma rays from neutrons and
protons. The quantity co/p is the photon energy in units of the
pion mass.

' G. Bernardini and E. L. Goldwasser, Phys. Rev. 95, 857
(1954).

'r G. S. Janes and W. L. Kraushaar, Phys. Rev. 95, 900 (1954);
Jenkins, Luckey, Palfrey, and Wilson, Phys. Rev. 95, 179 (1954).' This value was taken from an analysis of low-energy photo-
meson production data by G. Bernardini and E. L. Goldwasser
(private communication). The constant f' in the work is related
to gs by (gs/Itc) = 2fs. After the numerical work presented here had
been completed, Bernardini and Goldwasser, refernce 7, revised
their estimate of f' to the value 0.066.
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as at 180', and at still higher values of the coupling
constant, forward scattering would predominate.

At present there are no experimental data available
concerning the cross section for the scattering of gamma
rays from hydrogen. It seems likely that when experi-
ments are performed in the energy range 100—150 Mev,
the results will reveal deviations from the Thomson
cross section which will serve to check the present
model. A reasonable procedure would be to 6t the
coupling constant g' to the observed total cross section,
and use the observed angular distribution and energy
dependence to check the model. If the measured cross
section were signi6cantly smaller than the Thomson
cross section, the results presented here would not be
meaningful, since recoil terms and terms of higher order
in (gs/Ac) would then be important.

Up to this point, it has been assumed that the meson
currents are responsible for the anomalous magnetic
moments. If one assumes that the anomalous moment
is to be associated with the core, the effect of the
anomalous moment on the proton cross section can be
approximated by introducing into the Hamiltonian an
interaction of the form

—(Xeh/2pc) (e curlA),

where X is the anomalous moment measured in nuclear
magnetons. This leads to an additional term in the
transition amplitude which has the form

(Xsme'hs/Msc'V) [io (v')&u') g (v&&u)), (46)

where v= (ro/~) and v'= (es'/&s'). Although this is a
term of the same order as recoil sects, it makes an
appreciable contribution to the cross section because
of the large value of the anomalous moment. The con-
tribution to the angular distribution is shown, at the
energy (te/p) = 1, in Fig. 2.

The results, when the anomalous moment contribu-
tion is not included, are presented in Figs. 1, 3, and 4.
Figure 1 shows the total cross section for the proton
and neutron as a function of energy. The cusps which
appear in these curves at the threshold energy for

0 gd 40 SO 80 gN QO IQo I80 IO

ANGLE Of PHOTOht SCATTERING+

FIG. 2. Calculated differential cross section at 140 Mev center-
of-mass energy for the scattering of gamma rays from protons,
showing the eGect of scattering from the proton anomalous
moment.
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photopion production are discussed in Appendix B.The
angular distribution of the scattering from protons is
shown for each of five values of the energy in Fig. 3,
and the corresponding curves for scattering from neu-
trons are given in Fig. 4.

VIII. CONCLUSION

The principal purpose of this work has been to
investigate the consequences of using an extended
meson source as a convergence procedure for the treat-
ment of the electromagnetic interactions of nucleons.
To establish the gauge invariance of the extended source
theory, it has been necessary to introduce filaments of
current within the source. Some physical consequences
resulting from the presence of these currents have been
deduced.

The nucleon magnetic moments are not affected
when a simple choice is made for the form of the current
filaments. However, the eGect of the currents on the
p-ray scattering by nucleons is more profound. The
anomalous term (which violates the gauge-invariance
theorem of the preceding paper) found by Sachs and
Foldy in their point-source theory does not occur in
this calculation. In fact, the only effect of using the
finite-source procedure of Sec. VI, where the source
size is taken to be arbitrarily small, is the cancellation
of this one anomalous term, a very interesting point in
view of the many divergent integrals that appeared in
the SF calculation. Furthermore, the results of Sec. VI
do not depend on the choice of the path of integration
in the line integral Jp'A, ds. Thus, this particular
method of obtaining gauge invariant results introduces
no spurious sects.

Although the cross section for the scattering of y rays
by nucleons has been considered here only in the weak-
coupling approximation, the usefulness of the concept
of a pion-nucleon interaction of finite range is not
limited to weak coupling calculations. In any calcu-
lation where a 6nite source interaction is used, the
exponential term provides a convenient method of
preserving gauge invariance. Furthermore, if the
results of any calculation are finite in the limit as the
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FIG, 3. Calculated differential cross sections for scattering of
gamma rays from protons. The quantity co/p is the photon energy
in units of the pion mass.
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FIG. 4. Calculated differential cross sections for scattering
of gamma rays from neutrons.

H'„,= —(4~)l(e'g/2')) d'r r+f(r)e'7g(r)

xi
~Jo

2

A.ds
i

+h.c. (A2)

The transition amplitude T for the scattering of
electromagnetic radiation from protons may then be
written in the following form, correct to order (g'/Ac)

source size approaches zero, they should not differ
appreciably from the results corresponding to a fixed
source size, provided this fixed distance is small com-
pared to the wavelength of the radiation under con-
sideration.

The calculation of the gamma-ray scattering was
performed by direct use of the detailed tables of their
work kindly provided by Professor Sachs and Professor
Foldy. Many valuable discussions were had with
Professor Sachs concerning the material of this article.

APPENDIX A. CALCULATION OF THE
TRANSITION AMPLITUDE

The form of the transition amplitude for the scat-
tering of gamma rays by nucleons has been calculated,
assuming that the interaction between the core particle
and the meson field is given by Eq. (5). If this inter-
action is used there are three terms in the internal
Hamiltonian of the nucleon which are linear in the
vector potential, and three terms quadratic in the
vector potential. The linear terms are enumerated in
Eq. (40). In addition to the term H„of Eq. (SF 4), -
there are two quadratic terms involving the integral
Jp'A, ds. They are:

H„,= —(47r)l(e'g/Ap)~"d'r r+f(r)o A(r) p(r)

A,ds
i +h.c., (A1)

( t"
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(p/3f), but not including terms of order (g'/kc) X (p/M).

T—T~+ TQ)

r ( (u. u')(k —oo'). (k—~)
T.= (2orhe'/MecoV) (u u')+ (e'g'/oretc(uVp') d'k

I

(k—oo) p'(k —oo') p'

(u k)(u' k)(k —~) (k—oo') (u'. k)u (k—(a') (u k)u' (k—oo)
——2 —2 + (u. u')

kp' —(u' (k —oo) p'(k —~') p' (k—oo') p' (k—~)p'

i~ (u k)(u' k)n. (k—oo')X(k —~) (u' k)n (k—oo')Xu (u k)n (k—oo)Xu'—2 +2
, kp(koo —(v') (k —~)p'(k —oo') p' (k—oo') p' (k —~)p'

2ia& I (u' k)(n uXk) I (u k)(n u'Xk)
xf(lk —~ I)f(lk- ~'I)+

kp' (k—oo') p [kp+ (k—~') p]'—oo' (k—s)) p [kp+ (k—oo) p]' —(u'

(u' k)(u k)n (k—op')X(k —oo) I 1
Xf(k)f(lk —oo—~'I)+4uo

kp[(k —oo)p (k oo )o ] - (k—oo)o ~ —[ko+ (k—oo')o]

+0''u Xu

(A3)

(k —~')o'

1

, f(lk —~I)f(lk —~'I)
I (A4)

(k—oo') o' ~'—[ko+ (k—~') o]'

(k u') f(k)ri (k—oo') (k u) f(k)g„~ (k —~) k'f(k)g'(k)
Tp (e'g'/vrAc——(uVp') d'k ~

kp kp' kp'

(u' k)(k' —k ~')f(lk —~'l)~--(k) (u k)(k' —k ~)f(lk —~l)n=" (k)
2 +2

kp M (k —~) p'

—(u' k) f(lk —oo'I)q „„(k)—(u k) f(lk —ool)g „(k)+k'g „„(k)g „(k)
(u' k)(n oo'xk)f(lk —~'I)g „„(k) (u k)(n ooXk)f(lk —~l)rj „.„.(k)—2 +2

kp(koo —co') . (k —oo') o' (k—cs)p'

+2&v (u' k) (e ~'Xk) f(k)g„„(oo'—k)—(n «'Xk)f(lk —oo'l)g ..(k) —(n kXu) f(lk —~l)g .. (k)
~ kp' (k—oo') p{[kp+ (k —~') p]'—oo'}

(u k) (n. ~Xk)f(k)g„„(s)—k)

(k. oo) p {[kp+ (k—~)p]'—oo'} . (AS)

The transition amplitude for the scattering from
neutrons divers from the above expression only in that
the first term of T, is absent.

The corresponding result obtained by SF is given in
Eq. (SF-8). The symbol T, denotes that part of T
which does not involve the line integral Jo'A, ds, while

T~ denotes the part of T which does involve this integral.
The functions g„(k) and q'(k) are related to Jo'A, ds;
if the path of integration in this integral is taken to be
a straight line, q and q' are the Fourier transforms of
the functions

1

g„„(r)= if(r)(u r))f exp(—ioo nr)dn,
0

1

q'(r)= f(r)(u r)(u—' r) ~r exp(ioo nr)dn
0

1

t exp(i~' n'r)dn' .

It can be shown that f(k), q„„(k), and g'(k) are all
real functions. The symbol (k—~)p in Eqs. (A4) and
(A5) denotes [p'+ (k—~)']'*.

If the integration over k space in Eq. (A4) is carried
out, and then the range of the source function is allowed
to approach zero, the resulting expression for T, will
become equal to the transition amplitude of SF, Eq.
(SF-8). It will now be shown that if this procedure is
carried out for Eq. (A-5), the resulting expression will

reduce to one energy-independent term, the term
mentioned in Sec. VI.

In the following argument, use is made of several
properties of the source function. To satisfy the con-
dition Eq. (39a), we write f(r) in the form f(r)
=R 'g(r/R), where I' represents the range of the
source function. The Fourier transform of f(r) is then
a function of the product (kR), i.e., f(k)=po(kR).
Since f(r) has the property, Eq. (39b), q(kE) must
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vanish at least as fast as (kR) ' as (kR) approaches
infinity. Hence, all derivatives of q (kR) with respect
to (kR) must also vanish at least as fast as (kR) '.

It is convenient to expand the exponential in the
functions ti„„(r) and ri'(r) in power series, i.e.,

f
(u. r) ~ exp(i&n nr)d&r= (u r)+i(u r)(es r)+ ~

(A6)

By making use of this expansion, ti'„„(r) and ti'(r) may
be written as sums of terms, each term depending on r
to the first or higher power. Hence, ti„„(k) may be
written as a sum of terms in the form

G„(u,k)R(R&d)" 'y&" & (kR), (A7)

where G is some function independent of E and co, the
exponent e is a positive integer and y("& represents the
Nth derivative of the source function p(kR) with

respect to (kR). Similarly, ti'(k) may be written as a
sum of terms of the form,

G„(u,u', k)Rs(R&e)&
—

sq7&&& (kR). (Ag)

Thus, Tb may be written as a sum over e and n' of
terms of the following form

R" d'k[F„„.(ks,k, es, &r,u, u') p&"i (k'R) q &"'(k"R), (A9)

must have the proper magnitude and angular depend-
ence to cancel the co' and co ' terms in T . In Sec. VI,
this was demonstrated for the oP terms. The co

' terms
have been calculated for an arbitrary value of E and
the result is in agreement with the theorem, namely the
co ' terms of Tb cancel against the co ' terms of T,. In
the limit as R approaches zero, the co

' terms of T, and
Tb separately vanish.

A simple dimensional argument may now be used to
demonstrate that all terms in Eq. (A11) corresponding
to m~ 1 will vanish as 8 approaches zero. The com-
bination cu R"Jx"&JkF„„(k,&r,u, u') must be dimen-
sionless. Hence, F„„must be of the form F„„

'Q (o,u,u'), since k is the only dimensional
variable in F. Thus Eq. (A11) may be written in the
form

&e"R"Q„„(u,u, u') dk[k"- -'q &"& (kR) p&"'& (kR) $.
J (A12)

E~~~ination of Eqs. (AS), (A7), and (Ag) reveals that
m~v —3 or v —m —1~2. Since q&") vanishes at least
as fast as k ' as k approaches infinity, the integral in
Eq. (A12) is therefore always convergent for finite R.
If the integral is written in the form of an integral over
the variable (kR), then it can be seen that the resulting
combination,

where the new symbols have the following meanings:
The function F„„ is bounded in k and independent of

R; the symbols e and n' represent non-negative integers,
and the exponent a=++I' is a positive integer. The
variable k', or the variable k", represents some one of
the following five quantities, in each of the various
terms to be considered: k, ~k+es~, (k+es'[.

It is convenient to express the integral over all k-space
in Eq. (A9) as a sum of integrals over two regions, i.e.,

R"
i

d'kF, q
&"&

q
&"'&+ ' d'kF„p&"& p&"'& i. (A10)

~x

(~e Jx
The first includes the region in k-space inside a sphere
of arbitrary radius E; the second region includes the
space outside this sphere.

Since v is greater than zero, it is clear that the first
integral in Eq. (A10) does not contribute to the transi-

tion amplitude, as E. approaches zero. Thus, we need
consider only the second integral. If E is chosen very
large compared with p and co, ko may be set equal to k,
and all terms may be expanded in powers of (&e/k). The
angular integrations may then be carried out, and thus

T& may be written as a sum (over e, I', and rN) of terms
of the following nature:

R"&e~ ~ dk[F „.„(k,&r,u, u')p&"&(kR)&e&"'(kR)]. (A11)

Examination of Eq. (A5) leads to the conclusion that
m ~ —1. The theorem in Sec. V of the preceding paper
tells us that the terms of Tb with m=0 and m= —1

R" d(kR) [y&"'(kR) p&"'& (kR) (kR)" '], (A13)

vanishes in the limit as R approaches zero if the integer
m is positive. This completes the proof that T divers
from the T of SF by only one term. This term was dis-
cussed in Section VI, and found to be equal to
—(Sie' 'g/3i' iVhc) (&r u'&&u)

J
X dk[(k'/ks') f(k)d f/dk j

= (4ie'g'/3p'VAc) (o",u'&&u). (A14)

This result does not depend on the choice of the path
of integration in the line integral Jp'A, ds because in the
limit as the source size E approaches zero, the only
nonvanishing terms of Tb are terms which would arise
in the electric dipole approximation and, as discussed
in Sec. VI, in the electric dipole approximation the
integral is independent of the path of integration for
any value of R.

APPENDIX B. CUSPS IN THE TOTAL
CROSS SECTIONS

The discontinuity in the energy derivative of the
total scattering cross section at photopion production
threshold is a very general phenomenon; similar discon-
tinuities occur in many cross sections. The appearance
of such cusps in nuclear cross sections has been discussed

by Wigner. "
"E.P. Wigner, Phys. Rev. 73, 1002 (1948).The fact that cusps

probably would appear in the present work was first suggested
to the authors by Professor Wigner.
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The existence of discontinuities of this type will be
demonstrated for a general class of scattering problems.
We consider the collision of two particles denoted by
A and 8, at such an energy that only two reaction
channels are open, corresponding to elastic scattering,
and to the production of two other particles, C and D,
which have a greater total rest mass than the particles
A and B.One of the incident particles may be a photon.
It is assumed that the particles C+D may be produced
in an S state, so that the cross section near threshold
for this process has the (E—E&)«energy dependence
characteristic of an S state. For simplicity it is also
assumed that the particles are all spinless, though this
assumption is not necessary for the validity of the con-
clusions.

The elastic scattering cross section is related to the
cross section for production of the particles C+D by
the condition that the scattering matrix U be unitary.
That part of the U matrix corresponding to zero
angular momentum is a two-by-two matrix; the two
elements of the first row may be written as

Usa, gg= e' (1—r') l; Usa, ca= ire", (81)

where r, 5, and p are real functions of energy. The sum
of the absolute squares of the two elements has been
set equal to one to satisfy the requirement of unitarity.
If the matrix V is defined to be the matrix equation
U —1=—it', the two S-wave cross sections are related
to the corresponding matrix elements of V" by the
equation o,r= (m./k, s) I9",yI' where i and f refer to the
initial and final states, respectively, and k, is the relative
momentum in the initial state. If the quantity r of Eq.
(81) is small, V'QQ, QQ may be expanded in powers of r'
and written in the form,

f@Jr,ps= —(sin8) (1—sr + )
+iI (cos8) (1——,'r'+ )—1]. (82a)

At an energy slightly above the threshold for the pro-
duction of the state C+D, o~s, oD ——(s/k~~')r' is pro-
portional to ~', where ~=E—E&, E~ being the threshold

energy. Thus, r' will be small near threshold and will

be given by r = u'u'* where a' is a positive constant. Then
it can be seen from Eq. (82a) that, in general, both
the real and imaginary parts of V'&@&& contain terms
of order ~'.

It has been shown by Eden" that, for a very general
class of scattering problems, the elastic scattering
U-matrix element is an analytic function of energy
which has a branch point at E=E», and that the as-
sumption that the particles interact through their
retarded fields may be used to specify the proper path
of analytic continuation around the branch point. In
the case considered here the continuation must be in
the region corresponding to a positive imaginary part
of E. Thus from the form of E~@~~ above threshold,
Eq. (82a), we may deduce that its form just below

~ R. J. Eden, Proc. Roy. Soc. (London) A210, 388 (1952).

Go+0 j Vp~ p~= 5 pic Go~) (84a)

ro(0; V'~~, ~~= —5+ sra'I re
I
«. (84b)

Hence, Eqs. (83a) and (83b) become, to order e4

N~O; O~N, ~N=C 6,
ro (0; o'~~, ~~=Cs(5s —8as

I
co

I
«).

(85a)

(85b)

Thus, in this case, there is no term in. or~~, ~~ propor-
tional to

I
&o

I

' above threshold, but there is such a term

below threshold. By making use of the tables prepared

by Sachs and Foldy, the cross sections calculated in

Sec. VII have been expanded in powers of IroI «, for

energies just below pion production threshold. The
results to order IooI are, for the proton case o/os ——0.40
—0.89

I co/p I

'+ 5.4
I co/p I, and for the neutron case,

&/oo=0 71—3 1I~/pI'+6. 9Iro/pI, where o'o is the
Thomson cross section, and p is the rest energy of the

pion.
' The function 8 cannot contain a part proportional to a half-

odd-integral power of
~
cv

~

. This follows from the requirement that
the U matrix be unitary below threshold, together with fact that
Uzz, zz is analytic with a branch point at threshold.

threshold must be given by"

~~a» = —»»+ s (cos8) ~
I
~

I

'

+iLcos5 —1+-'(sin8)u'I ro
I
«j. (82b)

Hence, to order r'=u'co:, the zero angular momentum
part of the total scattering cross section may be written,
in the neighborhood of threshold,

o)&0;
0»,»—C'[2—2cos 8—a'oo'*+ (cos5)u'co«1, (83a)

co(0;
o»,»——C'[2—2 cosh —(sin8)a'IroI «j. (83b)

where C' is a positive constant. Therefore, the energy
derivative of the elastic scattering cross section will,
in general, become infinite as the energy approaches
threshold from both above and below.

The discussion of the preceding paragraphs may be
applied to the cross sections calculated in Sec, VII if
particle A is identified with a gamma ray, particles B
and C with nucleons, and D with a charged pion.
Although this case is slightly complicated by the spins
of the particles, the argument is fundamentally the
same. Since pions may be photoproduced into S states,
the unitarity of the U matrix implies that part of the
elastic scattering cross section (that part which results
from the scattering of a photon wave of odd parity
and angular momentum rs) may be written in the form
of Eqs. (83a) and (83b) at energies close to photo-
pion threshold.

In Sec. VII only the term of lowest order in the
electric charge was calculated, If the quantities u' and

8, corresponding to the gamma-ray nucleon-pion prob-
lem are expanded in powers of e', the lowest order term
of each will be proportional to t.', i.e. , a' ~ e'; 8 ~ e'.
To order e' Eqs. (82a) and (82b) may then be written


