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Multiple-scattering corrections to the impulse approximation are calculated for the scattering of ~+
mesons by deuterons. These corrections are model-dependent since the scattered wave propagates off the
energy shell between the 6rst and last scatterings whereas experimental scattering phase shifts are available
only for elastic scattering. Various assumptions are made concerning the off-the-energy-shell behavior of
the scattering amplitudes and the double-scattering approximation is analyzed for meson energies of 45
Mev and 169 Mev. The results are tabulated and are found to be sensitive to the different scattering models.
The cross sections at 169 Mev were calculated with both the Fermi and Bethe solutions for the meson-
nucleon scattering phase shifts and are in close agreement. It thus does not seem to be feasible to use m+ —D
scattering as a means of distinguishing between these two solutions.

I. INTRODUCTION

'HE impulse approximation provides a straight-
forward phenomenological approach to the analy-

sis of the scattering of x mesons by deuterons or heavier
nuclei. In this approximation the nucleons are con-
sidered to scatter as free particles which have the same
momentum distribution as the initially bound nucleons.
It is thus possible to characterize the scattering purely
in terms of the experimentally observed phase shifts
for m-nucleon scattering and in terms of the nuclear
momentum distribution. Corrections to the impulse
approximation arise due to the effect of the binding
force during the scattering, the diminution in amplitude
of the incident wave in crossing the nucleus, and the
multiple-scattering effects, as discussed by Chew, Wick,
Ashkin, and Goldberger. ' '

This note considers the multiple-scattering corrections
to the impulse approximation in the calculation of the
scattering cross sections of x+ mesons by deuterons.
In consequence of the small deuteron binding energy
and of the fact that the deuteron consists of but two
nucleons, it is expected that multiple-scattering correc-
tions will be the only ones of importance for incident
x mesons of kinetic energies greater than =50 Mev.

The motivation of this work derives from the experi-
mental feasibility of measuring m.+ deuteron scattering
cross sections, and. from the theoretical interest in
testing the accuracy of the impulse approximation and
in finding the dominant features of the multiple-
scattering correction.

To a certain extent this correction is model-dependent
since the scattered wave propagates off the energy shell
between the 6rst and last scatterings, whereas experi-
mental scattering phase shifts are available only for
elastic scattering (on the energy shell). Various assump-
tions concerning the off-energy-shell behavior of the
scattering amplitude are made in order to test the
sensitivity of the results to specific models. In par-
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' G. Chew and G. Wick, Phys. Rev. 85, 636 (1952).' J. Ashkin and G. Wick, Phys. Rev. 86, 686 (1952).' G. Chew and M. Goldberger, Phys. Rev. 87, 778 (1952).

ticular, a point-scattering model has been discussed
earlier by Chew and Wick' and by Brueckner4 and will
be considered within the framework of our results.

II. OUTLINE AND RESULTS

We describe here the approximation and results of
these calculations.

Firstly, we neglect the binding and motions of the
sources during the scattering, and use the Hulthen
wave function to describe the deuteron. Secondly, we
neglect the possibility of absorption of the meson by
the deuteron. Thirdly, we treat only the double-scatter-
ing corrections. In principle it is possible to retain the
higher-order scattering corrections with more compli-
cated algebra to take into account the different scatter-
ing phase shifts for various isotopic spin and angular
momentum states. However, we expect that the main
multiple-scattering corrections arise from the double
scattering so that this procedure should yield the
qualitative features of these corrections. Fourthly, we
consider scattering of the meson by a nucleon to occur
only in the six states (S;, P*„and I';; isotopic spin= —,

'
and ae) which have been used in the analysis of or-

hydrogen cross sections.
Now the experiments on x-nucleon scattering furnish

information on the elastic scattering in the form of a
scattering amplitude,

f{1,1,) k '(~=+p-l 1, e~.~ I—&&1), (1)

where ko and lr are respectively the momenta of the
ingoing and outgoing particles, with k = ko, e is the
2& 2 Pauli spin matrix for the nucleon; and we write

n=g, Pk'=st +2rt+, yk'=st —st+, (2)

where p, p+, and p, refer respectively to the angular
momentum states S, I';, and I';. Further, the q's are
operators in isotopic space expressing scattering in
states of isotopic spin ~ and —,'. They appear in the
general form for the u, pP, yk', of the type

rt=rt'+t ~rt", (3)
4 K. Brueckner, Phys. Rev. 89, 834 (1953);Phys. Rev. 90' 715

(1953}.
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where ~ is the isotopic spin of the nucleon and t that of
the meson.

In treating the multiple-scattering problem we must
go beyond the experimentally available q's given previ-
ously and construct specific models to describe the scat-
tering of the meson which propagates (virtually) off the
energy shell after scattering by the first nucleon and
prior to scattering by the second one. That is, we must
assume a form for the scattering amplitude for a meson
which is scattered by one nucleon off the energy shell

from an initial state ko to an intermediate state of
momentum q, with q@ko, before the second nucleon
scatters it back to a final state k, with k= ko.

We may assume that the form of Eq. (I), with n, P,
and y dependent upon the momenta of the incident
pion only, is valid even for scattering o8 the energy
shell. This case, studied by Brueckner' for point sources,
corresponds to the use of a singular propagator for the
intermediate meson wave of the form go

——exp(ikR)/kR,
with R= ri —rs the distance between the two scattering
sources, It predicts large scattering amplitudes for
scatterings far off the energy shell which lead to virtual
intermediate mesons of high momentum. Thereby it
attaches great importance to the region of quite small

separation between the nucleons where the above
approximations may be poor.

To get around this difficulty we can suppose that the
scattering amplitude smoothes out for large momenta.
This would result physically for scattering by sources of
6nite extent. It is possible to achieve this effect by con-

sidering scattering from a separable potential such as
studied by Wentzel, ' Blatt, ' Goldberger, ' and Yama-
guchi. ' In this method we approximate the Schrodinger
equation describing the scattering of a particle by a po-
tential, by replacing the wave function which appears in

the interaction term by its average over the potential.
With this approximation the scattering problem reduces

to quadratures. For each nucleon we choose the potential
to be a square well of fixed radius, with the depths for
S and I' states so adjusted as to reproduce the experi-
mental results for the pion-nucleon scattering. With
these assumptions we find that when the sources don' t
overlap, the intermediate wave propagates the same

way as for point sources, i.e., go ——exp(ikR)/kR. When
the sources overlap, however, the propagation factor
depends on the well parameters, but remains finite. Its
detailed variation has but a very slight effect on the
cross sections averaged over the Hulthen function.

A third possible model of the momentum variation
of the scattering amplitude considers only scattering on
the energy shell in the intermediate state. In this

approximation the intermediate wave propagates as

go ——i sin(kR)/kR. Since this form of the propagator is

5 A. Wentzel, Helv. Phys. Acta 15, 111 (1942).
6 J. M. Blatt, Phys. Rev. 72, 466 (1947).
7 M. Goldberger, Phys. Rev. 84, 929 (1951).
o S. Yarnaguchi, Phys. Rev. 95, 1628 (1954).

finite and smooth for kE(1, it doesn't matter whether
the sources are assumed to be of zero or of finite extent.

The aforementioned three models give vastly differ-
ent momentum dependences for the o8-the-energy-shell
scattering amplitudes and provide a comparison basis
for an understanding of the significance of our results.
We discuss the predictions of these models for 5-wave
scattering from two spinless sources in the following
paragraph. Our aims are to exhibit the method of
obtaining the cross sections with a minimum of algebra,
to compare the predictions of the different models, and
to analyze the double-scattering approximation. Nu-
merical calculations are presented in paragraph IV, for
the actual case of x+—D scattering at energies of 45
and 169 Mev.

To summarize in brief our results: at 45 Mev the
double-scattering correction to the elastic cross section
7r++D —+ D+7r+, is of the order of 10 percent or less
and is model-dependent. At 169 Mev the same correc-
tion for forward scattering depends on the model, but
for backward scattering, it is fairly independent of
the assumptions made and leads to a 30 percent re-
duction of the cross sections. For the total cross sections
(elastic, inelastic, and absorption) as deduced from the
imaginary part of the scattering amplitude in the for-
ward direction, the correction is of the order of 10
percent or less and is quite model-dependent.

Finally, we have considered the possibility of using
the s-++D ~D+w+ reaction as a means of selecting
between the various sets of phase shifts for the ~-
nucleon cross sections as proposed by Fermi and by
Bethe. In view of the uncertainties involved in this
calculation, no such distinction can be drawn.

III. 8-WAVE SCATTERING BY TWO IDENTICAL
SOURCES

Before discussing the physical pion-deuteron scatter-
ing problem, we analyze in this section the 5-wave
scattering by two spinless identical sources. We aim
thus to illustrate the methods of this work with a
minimum of algebraic complications, to compare the
predictions of the various models discussed in the
previous paragraph, and to analyze the double-scatter-

ing approximation.
Chew and Goldberger' have explicitly written the

double-sca, ttering term in Eq. (29a) of their paper. It
is simply rederived in Appendix A. For two identical
sources' separated by a distance E., we have the follow-

ing expression for the elastic (single plus double)

scattering of a meson wave with initial wave number

ko and final wave number k:

4x p d'k
f(k, ko) =fi(k, ko)+fo(k, ko)+

(2s.)' q' —k' —ie

X(fi(k, q)fs(q, ko)+fs(k, q)fi(q, ko)), (4)

The limitation to identical sources is not necessary.
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f2(k q) =e"" ""f~(k q) (5)

where f;(k,q) represents the scattering amplitude for
scattering by the ith source from q to k and

according to this assumption,

f (k k ) ] e
—i(kp —k) R/2+. ei(kp —k).R/2

n(

Equation (4) exhibits explicitly the sum over the inter-
mediate "oIIf-the-energy-shell" momenta in the doubl-
scattering sum. If we assume for 5 scattering that
f) (k, q) is a function of the incident energy only and is
independent. of q, i.e., f) n(k)——/k, then, using Eq. (5),
we have directly:

f (k k ) ] e
—i(kp —k) R/2+ei(kp —k) R/2

kI

~ikB
~

~
(ei(ko+k) R/2+e —i(ko+k).R/2)

[ (6)
kZ

With this model of the scattering amplitude and with
the approximation of only single and double scattering,
the region of close coincidence of the two scattering
sources is falsiYied badly, since the scattering amplitude
diverges as R —+ 0. Actually, we have for R=O scatter-
ing from a source of double the strength of the individual
scattering sources. The effect on the scattering ampli-
tude of doubling the source strength is, of course,
model-dependent except in the limit where the Born
approximation is valid, and the scattering amplitude is
also doubled. We can avoid this divergence as R —+0
by summing up directly all of the triple and higher-
order scattering effects. As shown, in Appendix A, it is
possible to effect this sum for constant f)(q,k), with the
result that the scattering amplitude becomes

(~yk2)y(r) =XU(r)g, (10)

where P= J'f(r)U(r)d'r, with U(r) normalized to unit
volume, denotes the wave function averaged over the
potential. The solution of this equation corresponding
to outgoing scattered waves reads

X / expik~ r—r'~
P(r) =e"o'——P U (r') d'r'.

i sin&A
~

~+n (ei(kP+k) R/2+e i(—kP+k) .R/2)
) (8)

M

The intermediate propagator go i(——sinkR)/kR is non-
singular according to this model and yields a reasonable
scattering amplitude in the E.~ 0 limit. Thus we see
by Eq. (8) that in this limit of doubled source strength,
the scattering amplitude becomes 2Ln (k)/k jL1+in (k) $.
With this assumption of no scattering oG the energy
shell, one can also sum up the multiple-scattering effects,
obtaining in analogy with Eq. (7),

fAr n(k, ko) = $1+n (»nkR/kR)'j 'frr(k, ko). (9)

A less extreme model based on the assumption of a
separable potential also admits exact multiple-scattering
solutions. According to this model, the Schrodinger
equation for the scattering of a wave by a spherical
potential 'AU is replaced by the inhomogeneous equation

fAi r(k, ko) =L1—n'(e'"~/kR)'j 'fr(k&ko), (7) Averaging over the source, we obtain:

as deduced by Chew and Wick' and Brueckner. 4 We
see here that the interference among the multiple-
scattered waves leads to the prediction that the scatter-
ing amplitude decreases linearly with E, vanishing as
E—+0. This again falsifies badly the region of close
coincidence of the two sources as discussed above.
Equations (6) and (7) indicate the dangers concomitant
with the assumption of constant off-the-energy-shell
scattering amplitudes as applied to any problem for
which the region kE&1 is of importance. That this
region is of importance in the analysis of the multiple-
scattering corrections for x+—D scattering is seen in
Fig. 3 and Table II of reference 4. The main multiple-
scattering correction there comes from the region M(1.

We discuss now alternate models which predict
widely different behaviors for the scattering amplitude
due to two sources near one another. As an extreme
assumption we might postulate in Eq. (4) that the
individual amplitudes f, (k,q) vanish for scattering off
the energy shell. We then have, since the principal
value contribution to the sum in Eq. (4) is omitted

0=&( (kp))A. —l K,
with the defining relations

r

(( (kp))A,
—— exp(ikp r) U(r)dor,

I
expik~r —r'~

G= (4pr) ' U(r) U(r')/iord'r'.
k/ r—r'/

The scattering amplitude is, accordingly,

f2(k, k()) = —(x/4pr)P(( (—k))A, ———(x/4pr) (1+KG)—'

X (pp(kp))A (pp( —k))A —=n/k, (11)

Extending this development to two sources, we re-
place Eq. (10) by

(~+k')W(r) =~(U~4'(~)+U24(2))
with

P(;)= ~P(r) U;(r)d'r.
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The corresponding scattering solution reads

I
expiklr —r'l

&(r) =e'k"—
i

(UilI'(t)+ Us4'(s))
4~J

I
r—r'I

Averaging over the two sources individually, we obtain
coupled equations for g(i) and f(p) which can be solved
directly to give the scattering amplitude due to two
identical sources. The result of this calculation is

where
/ /exp(iklr r—'l)

J J Ui (r) Us (r') d'rd'r'
kl r —r'I

l(t . , lt't
,

~" exp(iko r)Ui(r)d'r II I' exp( —ik r)Ut(r)d'r
EJ &J

f (k k ) ((r/k) (1 &2W2)—i(&—((kp—k) R/2+&((kp —k) .R/2+&W(&/(kp+k) R/2+& /(kp+—k) R/2)) (12)

(13)

and (r is as in Eq. (11).The factor (1—(r'W') in the de-
nominator represents all the multiple scattering con-
tributions beyond single and double scattering. For
spherical potentials U, (r) of arbitrary radial profile,
Eq. (13) integrates directly to

differential elastic scattering cross section,

2

a.(k, k()) = O'Rgg)*(R) f(/r) (k,k())P/)(R), (16)

W= e'"R/kR (14) and for the total cross section

in the case that the separation, R, between the sources
is su%ciently large so that they have no common
region of overlap. Equation (14) is valid for all values
of R in the limit of point sources, in which case Eq. (12)
reduces to the previously discussed case of Brueckner.
If we assume a square well of radius a for the potentials
U, (r), Eq. (14) is valid for R &2a. For R (2a, the value
of W is dependent on the assumed shape of U, (r) and
can be readily calculated. In the approximation ka(I,
9" reduces simply for R=O to

W= 6/5ak+i+O(ak). (»)
The results of the separable potential model expressed
by Eqs. (12)—(15) can be readily applied for various
assumed well radii in order to provide a quantitative
study of the approach to the point-scattering behavior
of Eq. (7).

The physically interesting case corresponds to an
average of the above scattering amplitudes over the
relative space distribution of the two particles in a
bound system. In particular, we may consider the deu-
teron case. The quantities of interest are thus, for the

I.6—

I.2

I.O

0.4

0.2

3
/l r

FIG. t. The deuteron radial distribution, rp~pn(r) ~p, according to
the Hu1then function, in arbitrary units.

~T.p ——(4~/k)

&&™I ' d'RID*(R)f(R)(kp, kp)4n(R) I. (17)

For the deuteron wave function fo(R) we use the
Hulthen function. As illustrated in Fig. 1, the radial
density (R'IPD(R) I') cuts down contributions from the
pR( —,

' region. Thus, for" k//p& 2 (pr-meson kinetic
energies &300 Mev, we expect the multiple-scattering
corrections to the impulse approximation to be small,
and the presence or absence of the singularity in the
intermediate-wave propagator to be unimportant in
the discussion of the forward elastic scattering or of the
total cross section. However, backward elastic scatter-
ing will be quite sensitive to the small-distance be-
havior (or large-momentum components) of both the
propagators and of the wave function. This is readily
understood since backward scattering results in a large
transfer of momentum to the deuteron. This large
transfer can be effected only when the two nucleons are
in close coincidence in the case that the deuteron re-
mains bound. Thus the probability of finding the two
nucleons near one another as well as the behavior of the
intermediate-wave propagator for small distances are
of decisive importance. In this case, we expect important
multiple-scattering corrections to the impulse approxi-
mation as well as considerable dependence on the
specific form used for the intermediate-wave propagator.

On the other hand, for k/tu&1, the entire range of
pR values is sensitive to the choice of wave propagator,
and we may expect results to be sensitive to the model
employed. We also anticipate appreciable multiple-
scattering corrections to the impulse approximation in
this case for large scattering phase shifts.

'Op, =1.4&(10 '3 cm is the meson Compton wave1ength in
units of A=c= i.
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The validity of the foregoing remarks has been con-
firmed in a series of calculations designed primarily to
test the reliability of using the double-scattering term
alone as a measure of the multiple-scattering correc-
tions. For the three different models discussed previ-
ously, we have computed total and differential elastic
cross sections according to Eqs. (16) and (17) for two
identical S-wave scattering sources with a relative spa-
tial distribution given by the Hulthen wave function
for the deuteron:

(u+p~ ( up
4D(R) =

I
(e aB e

—P—R)/R
Eu —Pj 42m(u+P))

with P/u=6. 35 and u=2.31X10'"' cm ', and have
considered incident meson wave numbers of k/p = 1 and
2.2, and individual scattering phase shifts of 5=30
and 45'; u= exp(ib) sinb. The pertinent results of this
study are:

(1) The multiple-scattering corrections are acutely
model-dependent when they are at all important.

(2) The double-scattering approximation fails to re-
produce the multiple-scattering results only when

applied to Model I $Eqs. (6) and (7)$ with the singular

propagator. In this case, the presence of the singularity
in Eq. (6) at R=O introduces a large specious contribu-
tion from the region of close coincidence of the scatter-
ing sources, kR &1.

We fix these statements with a set of numbers: for
backward elastic scattering with k/@=2.2 and 5=45',
Model I LEq. (7)j gives a decrease from the impulse
approximation by a factor of four; Model II [Eq. (9)7,
by a factor of two; and Model III LEqs. (12) and (13)$
by a factor of three for source radii a= 1/2y. The results
for Models II and III are unchanged in the double-

scattering approximation, whereas the reduction factor
for model I changes from four to two.

Finally, we note from the equations obtained in this
section:

(1) In general there may be appreciable multiple-

scattering corrections to the impulse approximation for
large individual-particle scattering phase shifts in the
case where the magnitude of the scattering length

~u/k~ is comparable with a mean or average spacing
R between scattering sources; i.e., ~

u/k
~

must be small

compared with the mean spacing between the scatterers
if multiple scattering is to be safely neglected. This
condition reduces to the requirement of small phase
shifts, ~uj (1, for large-angle elastic scattering since
two nucleons must be within a distance (1/k)(R of
each other in order to accept a momentum transfer of
order k.

(2) The double (as well as all even) scattering con-

tributions are most important for scattering in the
backward direction because the double-scattered waves

are in phase whatever the relative orientation of the
two sources.

IV. CALCULATION OF THE CROSS SECTIONS

We consider now ~+-deuteron scattering, using the
experimentally observed phase shifts for pion-proton
scattering together with the assumption of charge
independence. We consider only the double-scattering
corrections since the algebra of the spin and isotopic
spin matrices becomes rather complicated. The double-
scattering calculations which we have carried through
for the S-wave scattering cases discussed above indicate
the qualitative reliability for usch an approximation.

For this calculation we introduce Eqs. (1) and (5)
into Eq. (4), obtaining

kf('k, kp)=$e ' ' " ' (ux+pyk kp —iya&a koXk)
+e ""+"R"(uo+ipok vz+vouo vzxk)
X (ui+ipiko vz+viui koX va) go(kR)$
+(same expression with 1~2, and R~ —R).

Different forms can be introduced for the propagator
go(kR) corresponding to the various models discussed
previously. If we introduce Eq. (3) and project onto
the isotopic spin singlet state which represents the
deuteron, we have, for example,

(~~,D~2u'+u"(~g+so) t~x+,D)=2u'.

Finally, after averaging over the orientations of R we
obtain the general formula for the scattering amplitude.
As it is very voluminous, we shall write it in the
Appendix, along with the particular cases f(R; k; 0)
and f(R; k;7r/2). We present here the formula for

f(R; k; ~) which is the simplest one:

f(R; k; s) = (2/k) (u' —P'k') sin(kR)/kR

k'
+ (u"—2u'") go(kR) ——(P"—2P'")go(kR)

3

k4
—-(7"—27'") (u~Xko) (uoXko)go(kR)

3

—=a +(b /k')(egXkp) (uoXkp). (20)

The cross section follows then when we project f onto
the deuteron triplet spin state and take its absolute
square:

(R;k;m-)= ia i'+(4/3)(b ['+-'o(a b *+a *b ).

Explicit numerical calculations have been carried
through for energies of the impinging pion: Ei,b= 45 Mev
corresponding to k=0.75@, and E~,b ——169 Mev corre-
sponding to k=1.46@. The corresponding pion-nucleon
phase shifts are collected in Table I. At 45 Mev, we

extrapolated the Steinberger" results. At 169 Mev we

"Bodansky, Sachs, and Steinberger, Phys. Rev. 93, 1367
(1954).
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TABLE I. The phase shifts used in the numerical calculations
For Ei b=169 Mev, corresponding to k=1.46@, we give the two
sets proposed by Fermi and by Bethe. For E&,b ——45 Mev, corre-
sponding to 4 =0.75', we have extrapolated the phase shifts from
Steinberger's experiments at 65 Mev, assuming that the 5 and I'
phase shifts are proportional to k and k', respectively. We use the
usual notation for the phase shifts, with the first index representing
twice the isotopic spin and the second one, twice the angular
momentum for the I' states.

83 81 838 ~31 813 ~11

k =0.75p
k= 1.46@, (Fermi)
0=1.46@ (Bethe)

—5.3' 9.4' 5.8' 0 0 0—42' 7 48' 14' 0 0—4' 7' 64' 0 0 0

V. CONCLUSIONS

used both the Fermi" and Bethe" determinations of
the phase shifts.

As stated before, the integration over R was carried
out numerically using the Hulthen wave function for
the deuteron. The differential elastic cross sections for
0=0, s-/2, and s., and the total cross sections were
calculated for the diGerent scattering models discussed
in the previous section. The results are summarized in
Table II for E=45 Mev and in Table III for 8=169
Mev.

appreciable corrections result from multiple scattering
eQ'ects. As we see in Table III, these corrections are
sensitive to assumptions made concerning the off-the-
energy-shell behavior of the scattering amplitudes.
They are most important for backward scattering, in
which case the double-scattered waves are in phase as
discussed previously. However, backward elastic scat-
tering is quite sensitive to the sma11 distance behavior
of the deuteron wave function since the large momen-
tum transfer can be eBected best when the neutron and
proton are in close coincidence. Since the deuteron
wave function in this region is both unknown and in
itself sensitive to the nuclear force, an interpretation of
experimental results on backward elastic scattering
must remain to a large extent ambiguous. On the other
hand, in that it does depend both on the deuteron wave
function and on the scattering amplitudes in a very
sensitive manner, backward elastic m+ —D scattering
may serve as a critical test of future meson theories.

TABLE III. The double-scattering corrections for E&,b = 169
Mev. The smallness of the cross section at s-/2 is a consequence of
near cancellation in the single-scattering calculation, The double-
scattering corrections can therefore be relatively very important.
However, the smallness of the cross section at s./2 makes their
experimental determination all the more difficult.

TABLE II. The double scattering corrections are presented in
this table for Ei,b=45 Mev according to Model II and Model III
with the two choices of square-well radii corresponding to a
=0.25/p and a=0.50/p. Model I, corresponding to a ~ 0 in
Model III was omitted in these calculations because of unre-
liability of the double-scattering approximation as discussed in
the text.

0 =0.75ig
Zi,b =45 Mev

Single
scattering

Ratio of the corrected scattering
to the single scattering for:

Model III Model III
Model with radius with radius

II a =0.25/p a =O.SO/p

o.(0)
~(~/2)
o.(~)

2.35 mb/sterad
0.29 mb/sterad
1.25 mb/sterad

25. mb

0.99
0.93
0.97
0.88

1.04
1.1
1.2
0.92

1.04
1.05
1.1
0.94

'~Fermi, Glicksman, Martin, and Nagle, Phys. Rev. 92, 161
(1953};Fermi, Metropolis, and Alei, Phys. Rev. 95, 1581 (1954).

'3de Hoffman, Metropolis, Alei, and Bethe, Phys. Rev. 95,
1586 (1954).

From this study we conclude that a phenomeno-
logical calculation of the multiple-scattering correction
to the x+—D scattering can only lead in general to
uncertain results. This is due to our lack of knowledge
of the off-the-energy-shell amplitudes for which we
must introduce specific models. DiGerent models lead
to multiple-scattering corrections which have in com-
mon only their orders of magnitude.

Since the phase shifts for pion-nucleon scattering are
relatively small at pion kinetic energies of 45 Mev, the
multiple scattering corrections as exhibited in Table II
are of minor importance. However, the phase shifts are
large at 169 Mev and the scattering lengths are com-
parable to the characteristic deuteron size, so that

0 =1.46@
Blab =169 Mev

Single
scattering

Ratio of the corrected scattering
to the single scattering for:

Model III Model III
Model with radius with radius

II a =0.25/p a =0.50/, tt

0 (0) (Fermi)
o-(0) (Bethe)
a.(s/2} (Fermi)
o (w) (Fermi)
0.(s.) (Bethe)
o.q,t (Fermi)
0.t,t (Bethe)

53 mb/sterad
55 mb/sterad
0.10 mb/sterad
5.2 mb/sterad
5.5 mh/sterad

250 mb
250 mb

0.89 1.04
0.89 1.07
0.45 1.5
0.68 0.68
0.67 0.67
0.95 1.01
0.97 1.03

0.95
0.98

0.63
0.57
1.05
1.09

'4hshkin, Blaser, Feiner, Gorman, and Stern, Phys. Rev. 96,
1109 (1954).

's Arase, Goldhaher, and Goldhaber, Phys. Rev. 90, 160 (1953).
See also D. E. Nagle, Phys. Rev. 97, 480 (1955).

rs T. Green, Phys. Rev. 90, 161 (1953).

The total cross sections as calculated in Table III
can be compared with the experimental results of
Ashkin'4 and collaborators. For positive mesons of
energy 162&12 Mev they observed a total cross section
of 217&14 mb. The predictions of the impulse approxi-
mation at 169Mev is 250 mb and the multiple scattering
corrections are calculated to be less than 10 percent.
In view of the theoretical and experimental uncer-
tainties, and of the fact that the data were obtained for
a broad spread of meson energies in a region of rapidly
varying cross section, little more can be inferred from
this result than that there is a satisfactory qualitative
agreement between the calculated and observed cross
sectioIls.

In his analysis of the experiments of Arase, Gold-
haber, and Goldhaber" on w —D elastic scattering at
140 Mev, Green" has pointed out an additional un-
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certainty which the application of the impulse approxi-
mation introduces: scattering amplitudes with the
momentum energy relations which apply in meson-
nucleon collisions are used in the meson-deuteron case
for which there are diGerent kinematical conditions.
This difference is especially important in this energy
region near the resonance where the cross section is
rapidly varying with energy.

Finally we note from our results in Table III that
it does not seem feasible to use m+ —D scattering experi-
ments alone as a means of distinguishing between the
predictions of the Fermi and Bethe sets of meson-
nucleon scattering phase shifts since the multiple-
scattering corrections are pretty much the same in
both cases.
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APPENDIX A

We exhibit in this paragraph a brief deduction of the
amplitudes for double and multiple S-scattering from
two scattering sources. Writing and formally solving
the Schrodinger equation for the case of scattering
from a single source described by potential V (in units
of 2zrz/Ii'), we have

(E—Hog = Vztz',

f= y+GVzf= oo+GVz(1 GVz) zp-(1a)

where y= exp(iko r) represents the incident wave, P the
eigensolution, and G=(E—Hp) ' the integral operator
for scattering used by Lippman and Schwinger, "with
the contour at the singularity chosen to satisfy the
scattering boundary conditions. In terms of the Green
function g(r; r'), we write

r expiq (r—r')
g(r; r') = (2~) ') d'q

q' —P—ie
(6a)

In Eq. (6a), the small negative imaginary term is
appended in the denominator to define the contour
corresponding to outgoing waves scattered from the
source.

The multiple scattering can be handled in Eq. (Sa)
with the assumption of constant scattering amplitudes
as follows. Consider a contribution from the denomina-
tor expansion,

GagGa2Gagq.

Using Kqs. (2a) and (6a), we have

GaiGu2Gayq

we 6nd

GVzL1 —G(Vi+ Vo)$
—'

=Gaz+GazGao+GazGaoGVzl 1—G(Vi+ Vo)$
= (1—GazGao) '(Gaz+GazGao).

This gives us then the multiple-scattering expression,

f= oo+ (1—GazGao) '(Gaz+GazGao) q

+ (1—GaoGaz) '(Gao+GaoGaz) qo, (Sa)

in terms of the scattering amplitudes from the individual
sources. If we keep only the single- and double-scatter-
ing terms, Eq. (Sa) approximates to

4D Ã+G(az+u2+azGao+u2Gaz) oo

= rp+GLVz(1 —GVz)
—'+ Vo(1—GUo)

—'

+Uz(1 —GUi) 'GVo(1 —GVo) '

+Vo(1—GVo) 'GVi(1 —GV,)
—

zlio,

which together with defining Eqs. (2a) and (3a) gives
Eq. (4) of the text for the scattering of waves with wave
number k which solve the Helmholtz wave equation
with Green's function

(Gf) = "d'r'g—(r; r')f(r'). (2a) ( 4zr y' p d'q
t

d'q'
=Gail &iq r~

g(2zr)o j J qo jP je~—q'o——P—je
The elastic scattering amplitude in this case is given by

—(4zr) z&k
I
Ui(1 —GVz) 'I ko) =fz(k, ko). (3a)

We next note the relation
For two sources, Eq. (1a) becomes

&&&«I asl «')&q'I ailko) (7a)

4= +G(V+V)l:1—G(U+U)] ' (4 )

We wish now to express the scattering amplitude from
the two sources as given in Eq. (4a) in terms of the
scattering amplitudes of the individual sources, Eq.
(3a). That is, we shall manipulate the right member of
Kq. (4a) into combinations of the form in Eq. (3a).
Defining

&ql as I
q')=— d'r expLi(q' —q) rgas(r)

=e'«' —o& "&qla, l
q'), (ga)

with E introduced as the separation between the two
scattering sources. Introducing Eq. (Sa) into (7a) and
making use of the above assumption that —(4r) '
X (q I ai

I
q') =—fz is independent of q and q', we obtain

a;—= V;(1—GV;)—' for i=1, 2, GazGaoGazoo=Gaze'o "(e'""/R)'fz', ' (9a)

'z B. A. Lippznan and J. Schwinger, Phys. Rev. 79, 469 (1950). which is equivalent to (e'"~/R)ofzoGazy with our as-
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ln this appendix we write the formula for f(R,k,&),

f(R,k,0), and f(R,k,rr/2), which were too cumbersome
to be introduced in the text.

2 ( ei+e2
f(R,k, e) =-

(
.yP k ko-i&

2

sumptions. Equation (9a) leads immediately to the in the text, and g, (x) = —go'(x); g2(x) = —xLg&(x)/x]'.

f(R k 0) = (2/k) (n'+ 'k'+ (n"—2n'") jo(x)go(x)
result expressed in the text by Eq. (7).

APPENDIX B +2 (n'P' —2n"P")kog i(x)gi(x)+ (P"—2P'")k4

Xfgl(x)jo(x) g2(x)jl(x)+xg2(x)j2(x)]/x
+ (p"—2&'")eiX ko e2X kok'Lgi(x) jo(x)

g2(x) ji(x)]/x j=ao+boeiXko e2Xko/k . (2b)

2 f ez+e2
f(R,k,rr/2) = ]n'——iy'k2 n I jo(u)

koXk [jo(s) 2 )
+ (n"—2n'") go(*)jo(u)+ L2(n'P' —2n"P")

+ (n"—2n'") jo(y)go(x)+ (
2(n'p' —2n"p")ko 1

ei+e2 $ k

(i—n'V' 2n -"V") koX k
I

—ji(y)gl(x))i
+L(P' —2P" )k'ko —i (P'p' —2P' p )(el+co) koXk

+-2, (V"—2V'")(eiXk e2Xko+eixko eoxk)]

, (gi(x) . ji(y) ) t'
Xk'I jo(y)-g ( ) I+I (p"-2p'")ko l

E x y i

If/ If'—i(P'v' —2P"v") ' koX k(ko 1/i) —(y"—2y'")

(ei koXk)(e2'koXk) yX-
~
Xk g2(x)j2(y), (&b)

4P

where x=—kR; y= /R; I=—(ko+—k)/2; s= ~ko k~R/2,
j&(s) is the spherical Bessel function of order 1, with

jo(z) —=sins/s; go(x) is one of the propagators discussed

—i(n'p' —2n"p") (e&+e2) n]kg&(x) j,(u)/v2

y[ i(P—'p' 2P—"p")(e,+e,) nk'

+ (p"—2p'") (eiXk e2Xko+eiXko e2Xk)/2]

Xk'Ljo(u)gi(x)/x —g2(*)ji(u)iu]+L(p" —2p'")

—i (P'p' 2P"p") (ei+—e2) n —(y"—2y'")ei ne2 n]

Xk g2(x)j 2(u)/2 =a~2+b„f2(e—&+e2) n

+cm /2 (e 1Xk ' e2 X40+ el Xk 0
' e2 Xk) /k'

+d~~oei Ile'2 Il& (3b)

where koXk=kon and u—:x/2l. The cross sections are
deduced as in the text and reduce to

e(R;k;o)= laol'+(4/3)IboI'+2(ao*bo+aobo*); (4b)

a(R k ~/2) = Ia-i2I'+(g/3) Ib yol'+(g/3) IC iol'

+1' nl'+2(a go*~.a+a.god )2*). (5b)

The constants in (4b) and (Sb) are defined in (2b)
and (3b). The total cross section is expressed by Eq.
(17) in the text and requires evaluation of the spin sum:

(2r*, D~ao+boeiXko e2Xko/k'~2r+, D)=ao+obo. (Ab)


