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Particle States in Spheroidal Nuclei*
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Particle motion in a spheroidal box has been studied by making an appropriate coordinate transformation
so that the potential appears as spherically symmetric. The effect of the nonsphericity then appears as a
change in kinetic energy for which the perturbation matrix elements can be evaluated. Matrix elements
between states in different major shells are small. The energy levels and wave functions (dehned in the
transformed coordinate system) can then be calculated by the customary techniques of matrix diagonal-
ization.

This method was used to obtain energy levels of a spheroidal box both without and with an additional
spin-orbit term of the magnitude suggested by nuclear shell systematics.

Corresponding results for distorted wells of finite depths appear to be rather simply related to those for
a box.

Nuclear deformations predicted by this picture are in qualitative agreement with experimental values,
and are, in general, considerably smaller than the values implied by a hydrodynamical model.

I. INTRODUCTION

'HE striking success of the collective model in
accounting for many features of nuclear struc-

ture' ' has stimulated interest in some of the underlying
problems. One of these is the study of the properties of
particle states in nonspherical potentials. The strong-

coupling version of the collective model applies best for
mass numbers between 155 and 185 and above 225.' '
For these cases, the nucleus, under the deforming
inQuence of the particles outside of closed shells,

acquires a semipermanently deformed shape, which to
a good degree of approximation is a spheroid of revolu-

tion. As is well known, the collective motion of such
nuclei gives rise to rotational and vibrational states and
the nonsphericity results in large electric quadrupole
moments, both static and dynamic. For lighter nuclei,
the strong-coupling approximation is not realized, but
collective eGects resulting from deviation of the nuclear

shape from sphericity are still important. One of the
important problems in this connection is to calculate
the magnitude of nuclear deformations. Previously
some estimates have been made on the basis of a simple

hydrodynamical model. 4 ' In general the hydrodynam-
ical model gives deformations considerably larger than

empirical values, sometimes by an order of magnitude.
However any model which considers particles moving

independently in a deformed potential, gives much
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smaller deformations. ~"At least part of this difference
is a consequence of the inherent shell-structure regu-
larities in spacings between particle levels for a spherical
well. The opposite limit would be a strictly statistical
distribution of particle states, for which hydrodynam-
ical estimates would be more nearly valid. ' '

The basic assumptions made in the present paper are
very extreme. The particles are assumed to move
independently in a box (V=O inside, V= ~ outside)
whose wall is elastic and deformable into a spheroid of
fixed volume. As far as the particle motion is concerned,
the wall is considered as static. Dynamic effects, such
as rotational motion of the wall, are thus not taken
into account. The results depend on the position of
particle states in a spherical. well. The order of particle
levels in nuclei is approximately that for a spherical
well of finite depth, with rounded edges and a spin-orbit
coupling. The order of levels for such a well is nearly
the same as for a box with an additional spin orbit
term. The effect of making the well finite and rounding
it can, of course, be taken into account. However, the
general features of the results probably will not depend
very much on the detailed potential. In any case, other
eGects not considered here are probably of far greater
significance. Thus direct interactions between particles
outside of closed shells are very important. Further-
more, the nuclear distortion is time-dependent and it
must be treated as a quantum variable. Nevertheless,
one might hope that the present calculations reproduce
at least the qualitative trends of nuclear deformations
as function of nucleon number.

In the following discussion, it is shown how wave
functions and energy levels in a static nonspherical well

may be found to a reasonable degree of accuracy.

s D. P6rsch, Z. Physik 132, 409 (1952).' R. van Wageningen, Physica 19, 1004 (1953)."S.Gallone and C. Salvetti, Nuovo cimento 10, 145 (1953)."J.P. Davidson and E. Feenberg, Phys. Rev. 89, 856 (1953)."S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. (to be published)."D. L. Hill and J. A. Wheeler (private communication).
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Section II of this paper deals with calculations of the
wavefunctions and energy levels for particles in a
spheroidal box. The eGect of a spin orbit term is
discussed in Sec. III. In Sec. IU, some estimates are
made for energy levels in a distorted well of more
general shape. The deformations calculated in this way
and their relation to empirical values are discussed in
Sec. V.

II. ENERGY LEVELS AND WAVE FUNCTIONS OF A
PARTICLE IN A SPHEROIDAL BOX

Particle states in a spheroidal well do not have a
well-defined angular momentum because of the absence
of spherical symmetry. However, the parity is a good
quantum number, and so is the component of angular
momentum about the axis of deformation, denoted
here by m. The spatial (21+1)-fold degeneracy of levels
in a spherical well is broken up in such a way that only
twofold degeneracies remain, those for levels diGering
solely with respect to their sign of m.

The solution of the wave equation for a spheroidal
box can, in principle, be carried through in several ways.

First, one can solve the wave equation by separation
into spheroidal coordinates. Such calculations, which
have been performed by several authors, 4""are ex-
tremely complicated, and it may be dificult to adapt
them to take into account interparticle forces and the
time dependence of the nuclear distortion. The sphe-
roidal coordinates $ and r) have no apparent direct
signidcance for problems which involve wavefunctions
inside the nucleus, since no special distinction attaches
to the focal points Of a spheroidal nucleus. On the other
hand, the separation into spheroidal coordinates may
be extremely useful for the study of particle motion
oltside the nucleus; e.g., for 0. decay. Another promising
approach consists of expanding the wave functions for
a deformed box in terms of wave functions for a
spherical box. The coefBcients of this expansion, as
well as the wave number, are determined by the
requirement that the wave function must vanish at
the wall of the box. Such calculations have been made
for deformations of arbitrary shape. 2 "

The basis of the method described in the present
paper is that a spheroid (and more generally any
ellipsoid) can be transformed into a sphere in a very
simple way. The coordinates are merely multiplied by
a strain tensor. By use of this transformation, one can
calculate energy levels and wave functions for a sphe-
roidal box to any desired degree of accuracy. It is also
possible to get results quite simply without losing much
precision.

Consider a box whose wall is defined by the following
spheroid:

R&2 —D+2+Dys+D 2s2 (&)

This spheroid has one axis of length DEQ and two axes
of length D &RQ. The volume is, of course, independent

'4 R. D. Spence, Phys. Rev. 83, 460 (1951).

of D. The deformation d is de6ned'~ as

(2)

where
Ps(e, s—E,S;„)g,(r') =0, (7)

, p', 2"»(p)
H, s=-s'(2D+D ') —-'(D —D—') (8)

28$ i' 28$ ik
and

2'ss(p) = (3p.'—p')/2.

Since the potential is zero throughout the box, all
matrix elements of V vanish.

For small deformations, Eq. (7) becomes

2nzH;s ——(1+d')p'J, s—2(d —d')Tss(p) ~,s. (&0)

The matrix elements H;~ can be easily evaluated by
reference to the well-known properties of spherical
Bessel functions. "

"The relation of d to some other quantities used to de6ne
degrees of distortion is, for small deformations: d=-,'~= (5/4')&P,
where s is defined (see reference 3) as the difference between axes
in units of Ro, and P is defined (see reference 1) by:

R =RoL1+ff YP (8,&)3"P. M. Morse and H. Feshbach, 3fethods of Theoretics/ Physics
(Mt.oraw-Hill Book Company, Inc. , New York, 1953), Vol. 2,
p. 1573.

Now introduce "primed" coordinates as follows:

x=D &x', y=D &y', a=De'. (3)
Then the potential is given by

V(r') =0 for r'(Rs
(4)

for r'& RQ.

It is seen that the spheroidal box (and in fact any
spheroidal potential), is central in r space. This suggests
that a formulation of the wave equation in r' space
might be of value. Thus, in the primed coordinate
system, the Schrodinger equation reads:

(2 ) (»"-+DP;+D P")«-")
+I (")~(")=»( ) (5)

This equation is, apart from the coefficients of the
kinetic energy terms, the same as the wave equation for
a particle in a spherical potential, but with all quantities
defined in r' space. The energy levels and wave functions
can then be found by constructing the secular determi-
nant of Eq. (5) using as zero-order functions the wave
functions iP;(r') for the Hamiltonian when D=1 (the
spherical case). For a spheriodal box, the boundary
conditions require that iP(r') vanish for r'= Re.

The zero-order functions for a box are given as
follows:

&'(")= Ji(~-i"iRs) I'i, -(0'A'). (6)

Here co;=co„~ denotes the eth root of the spherical
Bessel function of order /. Since both the Hamiltonian
and the zero-order wave functions are expressed in
terms of primed coordinates, it may avoid confusion
to drop the primes for calculations of matrix elements.

The secular determinant reads:
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The results are:

=E,5;g= o);~8,/„
2m j', /(, 2fÃRp

2'~0(1)) /, (/;+1) —3m/
COi ~n~n/(;~mim@

2m;g 2mEp' (2/, —1)(2/;+3)

~PP2(8)
~
g, for /(, =/;,

2mzp2
'

T2o(1)) A co 'GOg

5m my

2m;/, 2mRp' u)g,
'—co

(/, +1+m,) (/, +2+re,)
&& (/;+1 —m;) (/;+2 —m, )

(2/, +1)(2/;+5)

A 07&CO/(;

2(2/, +3)P,(8) ~,,
2BIRp cop Q)

(1.2a)

for /i, =/~+2, (12b)

where the subscripts i and k denote integration over
angles only.

Of course, only states of the same m and of the same
parity can be coupled by a spheroidal distortion. It
should be noted that the matrix elements between
states in different major shells vanish if the orbital
angular momenta are the same and they are small for
l's different by. two, because of the large energy denomi-
nator.

On the other hand, the interaction strongly couples
states of the same major shell. The energy differences
between two states of the same major shell are given
approximately by

1 xj('(x)

ai(&)—

and the two other sums which are obtained by differ-
entiation of (18) with respect to. x once and twice.
Here x is any number and the sum extends over all
positive roots of the spherical Bessel function of order /.

The energy of a given state can then be written as
follows:

+nlm Eall' +d+nlm +d Pnlm (19)

The secular determinant now reads as follows:

Pa[~,~
—K'&;~]P~(r') =0,

where the sum now extends only over states k of the
same major shell as state i. The smallness of the
coupling term between different major shells shows that
on the "average, " the )/(r') are good zero-order func-
tions to use for this problem. On the average, the
spheroidal distortion of a box causes the wave functions
to "follow" it apart from (a) the strong mixing within
a given shell, and (b) the weak coupling between
different shells. It should be noted here that for boxes
whose walls are rectangular parallelipipeds or right
circular cylinders, the wave equation can be solved
exactly. For these cases the wave functions follow the
distortion exactly without any mixing.

Slightly more accurate values for the energy levels
may be obtained by taking into account the small
coupling between different shells. Thus, the energy can
be expressed as a power series in d, and values of the
coeKcients up to d' obtained exactly from Eqs. (10)—
(12) by use of second order perturbation theory.

The sums over intermediate states can be evaluated
in terms of the expression

» ~~ —2(2/~+3) f r /i=/'+ ( 3) where the coeKcients in the power series are:

It follows from Eqs. (8), (11), (12), (13) that matrix
elements of H between states in the same shell are
given to a good degree of approximation by

E„( (') = (co A')/(2mRD'),

()=g, (o)[ 2P (8)i, ]
(20a)

(20b)

E =E,(-',D+-', D-') .-E,(1+0').
sma11 d

(15)

The perturbation matrix elements K;/, are then given

by
X,= —(-'D —-'D-2) (Z;Z,) P, (8) i,, (16)

H;(,= (-', D+-',D ') (E,8;(.)
-(lD-lD-')(~~. )».(8) I' (14)

To calculate energy levels and wave functions to a fair
degree of accuracy it is sufficient to diagonalize only
the part of the infinite secular determinant (7) between
states in the major shell under consideration. This
approach neglects the small interactions between
different major shells and yields the following average
energy for the states in each shell:

E„( ("=E„t (0)(1+2P2(8)
i ii —[(2/+7)

—2(op(2/+3) —'$P, (8)
~

) i+2'+ [(2/ —5)
—2&up(2/ —1) 'jP2(8) ~i, i 22}. (20c)

Values of the coefFicients are given in Table I.
It is evident that the power series expansion does

not converge well for states which are strongly coupled
to other states in the same shell; e.g. , 1d0 and 2s0.
Such an expansion by itself can therefore not be used
for these states and a matrix diagonalization must be
carried out.

For the numerical calculations of this paper, only
matrix elements between states of the same shell were
considered using Eqs. (15) to (17). However, rather
than neglecting intershell. contributions entirely, the



806 STEUEN A. MOSZKOWSKI

2 RO~E
%a

—lpO

IaO
10

Is lsO
IO

"P ".I5 ~IO -05 0 .05 IO .IS .RO .25 80 ~35

V
— Ig I

IfO ~ ~ lf2

If2 ~N~

~ Ifl

Idl ~ -lfO
Id

Ido ~
30 ~ 30

Id2

IpO g ld0~ Ipl

20

I I= 20
Ipl—

rotations was used. Results for states up to the 1g shell
are shown in Fig. 1. The numerical values obtained
agree very well with calculations of Spence'4 and of
Hill and Wheeler" who used spheroidal coordinates.

2, .= —k[(l' or)+d(sory, 'or, ——,'1'.rr)], (22)

where all coordinates and operators are de6ned in r'

space.
The constant 0 v as taken equal to one in units of

5'/2mRp' to give approximately the correct doublet

splitting in nuclei. The zero-order states were taken as
P(r')x(spin), where y(spin) can be $ or

In this approximation only states of the same shell

and with the same values of / and m; are coupled by
the spin-orbit term.

The rest of the Hamiltonian was not altered from

the form used in the calculations of Sec. 2. The results

of including this spin-orbit term are shown in Fig. 2.
It is seen that for small deformations, the energy levels

agree with the previous calculations using first order
perturbation theory. ' ' For example, the first-order

III. EFFECT OF A SPIN-ORBIT TERM
ON THE ENERGY LEVELS

The above method can be extended to include a
spin-orbit coupling term in the Hamiltonian. Strictly
speaking, there can be no spin-orbit coupling of the
Thomas type (or VVXp) for any well with infinitely

high walls. However, by adding instead a constant
spin-orbit term, it is possible to reproduce the approxi-
mate order of single-particle levels in light and medium
nuclei.

The particular spin-orbit term used in the present
calculations is a constant with an attempted correction
for the deformation:

&aO —.IS —.io —.OS 0 .05 .IO .I5 .20 .25 .30 .35 80
d

FrG. 1.Energy levels of a spheroidal box as function of deformation,
No spin-orbit coupling. Length of symmetry axis =Ro(1+2).

TABLE I. Energy levels in sPheroidal box [in units of Ao/2oNRo']
as function of deformation. First three terms in power series
expansion

jy —jv(o) +go)d+ jv(2)d2+ ~ ~ ~

coefficients of p'/2m were altered slightly from unity to

&+ (~/3) (2D+D ' 3) -1+v~-', — .
small d

(21)

where q is an adjustable parameter whose values are
slightly smaller than unity. Ualues of p were picked
for each state in such a way that the energy would
agree exactly with the power series expansion (20) as
far as terms in d'. According to the numbers of Table I,
g ranges from 0.92 for the 1s0 state to 0.66 for the
1g0 state. Terms of order d', d', etc., also appear to be
quite accurately given with this approximation.

The matrices were diagonalized on the SWAC at
the UCLA campus. The Jacobi method of successive

n l m

is 0
1 p0ipi
1d0
id 1
1 d 2
2s0
1 f 0
if 1
1 f 2
1f 3
2p0
2pi
1g0

g 1
1 g 2
ig3
1g4

g(0)

9.870
20.191
20.191
33.217
33.217
33.217
39.479
48.831
48.831
48.831
48.831
59.679
59.679
66.955
66.955
66.955
66.955
66.955

0—16.153
8.076—18.981—9.491

18.981
0—26.042—19.532
0

32.554—47.743
23.872—34.782—29.565—13.913
12.174
48.694

9.041
33.467
10.196—108.935
36.570
11.168

192.014—79.892—38.347
39.294
12.042

244.350
127.098—84.022—60.983—5.464
41.787
12.842
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energy shift is given by:
j(j+1)—3ff)'

~73l j?73 2~nl j?)3

2J(2i+2)
(23)

IV. SOME RESULTS FOR OTHER FORMS
OF THE POTENTIAL

The problem of finding the energy levels in a realistic
nuclear potential (e.g. , square well with rounded edges)
which has been deformed into spheroidal shape is a very
formidable one. Moreover, it is not clear that such
calculations would yield significant improvements over
the results obtained with the spheroidal box. Surely the
relation of the effective one-particLe potential to the
two-body forces must be correctly taken into account.
Thus, the well depth is expected to decrease when the
well is deformed into spheroidal shape, "which results
in an additional restoring force of potential origin.
Some simple approximate results may, however, be of
interest.

One interesting form of the potential which has
proven extremely useful for many calculations is that
of the harmonic oscillator. It is well known that the
energy levels and wave functions for particles in an
anisotropic oscillator potential can be obtained ex-
actly 8—&2,&8

The potential can be written as follows:

V= -'nnu'r",2

where the components of r' are defined in [Eq. (3)].
The average energy over a closed shell is given by

I p I/2(l/2) ~
Ip I/2

«.ao;is 90;05 0 .05 .IO .I5 .ao .aS M .55 AO

2p 3/2(l /I
Ig9/2(l/2) ~

2p 3/2{l/2)

199/2(7/2) XQ)p '~ ~' )Q If?/2(7/2)
2p. l/2 ~ g~~~ P 107/2(i/2)

~ If 5/2(3/2)
I g 9/2(9/2)

If I'v'" ' — Ig 9/2(3/2)
lf 5/2{3/I

If5/2(5/2) ~ m N .W g If 7/2(5/2)
So SO

2sl/2(l/ ~C 2sl/2(l/2)
If 7/2(l/2) + ~ I f ~7/ ~~ ~ Ig 9/2(l/2)

If 5/2(l/2)

}f7/2(5/2) ~Y i & m .P & ld3/2(3/2)

——If?/2{3/2)
If?/2{7/2) ~ g 2 I/2 ~+&~

40 +L 40

ld3/2(l/2)
Id 3/2(3/2)~~~ ld 3//, ~ ~ I f 7/2{l/2)

2mRO & ~~ ~~ ld3/2{l/2)
'h~

Id 5/2~
IdS/2(l/2)- ——

I d 5/2(3/2)
ldS/2(3/2)

Id S/2(S/2) ~
Ip I /2{l/2)

~ Id 5/2(l/2)~ lp3/2(3/2)

I p 3/2
I p3/2(l/2)
lp3/2(3/cj

Ip3/2(I/2)

g/ g(0}(2D)+1D—1) .Q(0}(1+1d2)
small d

(25)
Is l/2(l/2)

Io
Is I/2 Is I/2(l/2)

io

and the average effect of the deformation on the wave
functions is to replace II/(r) by p(r"), where now

x=x"D:, y=y"D ', s=s"D'*. (26)

Thus the wave functions "follow" the deformation to
half its extent.

The first-order shift of energy levels in a deformed
well of any shape has been calculated previously by
several authors. "' It can be written as follows:

03ao -.is -.io ms o .os .io .{s .ao .as .50 .ss ad
d

FIG. 2. Energy levels of a spheroidal box as function of deformation
A reasonable spin-orbit term has been included.

( ) — g „(o}2P(0) I,~f~

where E is the total energy measured from the bot
the bottom of the well. f is the ratio of kinetic energy
(expectation value) to the total energy.

For all states of a harmonic oscillator potential f= —',.
A comparison of these results with those obtained in
Sec. 2 for a box (f=1) suggests that perhaps for an
arbitrary rounded well, the effect of changing V(r)
to V(r') might be, at least on the average, to distort
P(r) to P(r"), where

The residual interaction would then only mix states in
the same shell. Thus [see Eq. (16)j,

50,g——(E,~s)'2 fdPs(8) I '& (30)

where f is now a reasonable average value for the shell
in question.

The plausibility of this conjecture has been investi-
gated by a variational calculation of the lowest energy
level E;„and corresponding wave function. The wave
function was assumed to be of the form Ii/(r") with r"
defined in terms of r by Eq. (28); however f was taken

3=D/5", x=D «'x", y=D /"y", (28)

'7 K. Brueckner, Phys. Rev. 97, 1353 (1955).
rs M. L. Gursky, Phys. Rev. 98, 1205(A) (1955l.

(27)
and that the average energy over a closed shell is:

g'= g(0) (sD/+1D sf) g(0) (1+f—sds) (29)
small d
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On the other hand, the ratio of kinetic to total energy
1s:

f T=/~ s=i—V

which is only very slightly different from fp.
The corresponding energy is given by

(31b)

g(P)[1+ff res+. . .] (32)

Another special potential of great interest is the
square well with walls of 6nite height. The approximate
e8ect' ' of the finite wall height is to reduce all energies
(measured from the bottom) to the values they would
have for a box with radius Rp+Xp where

Xp ——Pi'/ (2'Vp) ]*'. (33)

A more accurate expression for the energy levels" is:

Xp) '( Xps )
&~p, itp=e 1—

I
1+—I

&3Z, )
2mRp'~

X —i(t+1), (34)
A2

where
e=Ã, zp(1+Xp/Rp) '.

The energy levels of a spheroidal well with walls of
6nite height Up might then be expected to be close to
those of a spheroidal box whose "radius" is larger by
Xp, in other words, of a spheroid with axes: RpD+Xp,
RpD i+Xp, EpD i+)I p. in this way, one can obtain
approximately the same results as those resulting from
application of Kqs. (28)—(30), particularly for tightly
bound states.

For a square well, a good approximation to the ratio

f is given by
l(l+1)nRp

+
rrRp+1 2(crEp+1)'

(33)

where = [2~(V,—Z)/a']:.

V. SOME APPLICATIONS TO NUCLEAR
STRUCTURE AND CONCLUSIONS

as a variable parameter. The value of f giving minimum

energy is denoted here by fp
For example, a particular rounded well shape is

provided by the potential U= ar' —br4, at least for not
too large values of r. For this case, the variational
calculation gives the value of fp.

(31a)
where

particles in an elastic well as function of deformation.
Although the approximations made here are extreme,
it is hoped that some qualitative trends are given
correctly. Considering for simplicity only identical
nucleons, Fig. 3 shows the total energies as function of
deformation for the energetically most favored con-
6guration of 20, 22, 24, 26, and 28 particles. The results
are in general agreement with previous calculations' ' '
except for the favoring of a prolate shape for the half-
filled shell at 24 particles. This is a consequence of the
repulsion of the 1f7/2(1/2) state [the m= +s~substate
of the 1f&~s shell] by higher-lying states, such as

2p 3/2(1/2) while the 1f 7/2(7/2) state is not pushed
downward.

The calculated restoring energies depend somewhat
on the model chosen, but are much larger, even by as
much as an order of magnitude, than the values calcu-
lated with the hydrodynamical model. One important
reason for this is that for light and medium nuclei
crossing of particle levels is not very extensive.

Consider, for example, the nucleus 22Ti'4. According
to the "box model, " the most favored deformation d;„
is —0.05 corresponding to the complete 611ing of the
m=&7/2 substates of 1fr~s shell. For a more realistic
well of finite depth, d;„=—0.07(f=0.8). On the
other hand, the hydrodynamical model gives d,„;„
= —0.4. To make this estimate, the hydrodynamical

20

The results of the above calculations can be used to
estimate the total relative energy of a given number of

l 1 i l l ) l ~ l
-.25 —.20 —.i 5 —.IO —.05 0 .05 .IO .l5 .20 .25 .30

I

.55 40

"For loosely bound states (V0—E(0.25V0) the "3" in the
denominator of Eq. (34) shouid be replaced by a "2." Equation
(34), with this modification when appropriate, gives values of E
within 0.1 to 1 jz of the exact values.

FIG. 3. Total energy as function of deformation for various
numbers of identicai f&/2 particles (plus core of 20 particles) in a
spheroidal box. For odd-particle numbers the energies can be
obtained by linear interpolation,
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restoring energy was assumed to be given by":
19A'XO 4d' —0.76Z'A 1X0.2d' (36)

.20

Qo 0

and 2E&'&f in Eq. (27) was taken as equal 45 Mev.
When much level crossing occurs, the effective

restoring energy is reduced considerably'' and large
deformations can occur. This situation is very probably
realized for nuclei with A between 155 and 185 and
above 225.

Figure 4 shows calculated equilibrium deformations
plotted. against numbers of particles. The magnitudes
and general trends of deformations calculated with this
model seem to agree at least qualitatively with experi-
mental values. The tendency for positive quadrupole
moments indicated by Fig. 4 may be significant. Such
a trend exists throughout the range of nuclei. " For
the lighter nuclei, for which the order of particle levels
predicted by a box potential is essentially correct, this
trend results from the lowering of the 1d 5/2(1/2),
1f7/2(1/2), and 1f7/2(3/2) states due to the strong
interaction with other states of the same m.

For heavier nuclei, the order of particle levels is
significantly different from that in a box, so that no
definite conclusions can be drawn on basis of a box
model. However, in the hydrodynamical limit, part of
the restoring energy is proportional to the surface
area'' and this tends to favor positive quadrupole
moments. "In addition, the Coulomb effect, which also
favors positive quadrupole moments, becomes im-

portant.
The above calculations show the effect of one im-

portant feature of nuclear structure, the deviation of
the nuclear potential from sphericity. To obtain de-
tailed agreement with nuclear data; e.g., ground state
spins, one must, of course, consider also the direct
interactions between extra-core particles. Even if these
are treated by themselves, without any core deforma-
tion, it is possible to obtain remarkable agreement with
experimental data" "for some of the light nuclei near

I See A. Green, Nuclear Physics (McGraw-Hill Book Company,
Inc. , New York, 1955), Chaps. 8 and 9."S.A, Moszkowski and C. H. Townes, Phys. Rev. 93, 306
(1954).

ms D. Inglis, Revs. Modern Phys. 25, 390 (1953).
ss A. M. Lane, Phys. Rev. 92, 839 (1953).
ss J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)

(to be published).
"M. Redlich, Phys. Rev. 98, 199 (1955).
"26. C. Levinson and K. Ford, Phys. Rev. (to be published).
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FIG. 4. Energetically favored deformations of a spheroidal box wit h
elastic walls, as function of the number of identical particles.

double magic nuclei He', 0", and Ca". Then also the
time dependence and quantization of the nuclear
distortion must be properly taken into account. This
can be readily done for a hydrodynamical model. ' ""
In this way, some of the most striking features of
nuclear states, such as energy spacings between rota-
tional states for nuclei far away from magic numbers
can be accounted for.' However, the absolute values
of these energies appear to be considerably smaller
than the hydrodynamic values deduced from known
deformations. " Some studies of this problem on basis
of the shell model have recently been made. ""
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