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A simplified method of obtaining the direct interaction between two identical nucleons in the nuclear
shell model is given for the special case of singlet forces. Configuration interaction is included in the method.
A semi-empirical analysis of simple two and three particle nuclear spectra is outlined which enables one
to determine properties of the two-body perturbing interaction provided many body forces are negligible
and coupling to the nuclear surface is weak. Corrections to the singlet force formalism due to triplet central
and tensor forces are discussed. Formulas are given for magnetic dipole and quadrupole moments and
magnetic dipole transition rates for mixed three-particle configurations. The effect of weak surface coupling
on multi-particle configuration is given in paper II of this series. A detailed discussion of the spectra of

two isotopes of calcium is given in paper IIL.

I. INTRODUCTION

CCORDING to the simplest picture of the nuclear
shell model, nucleons move independently within
the nucleus subject only to the force of a common
central potential and to a spin-orbit force.! When the
degeneracies of this idealized model have been removed
by an assumed ‘“‘pairing energy,”’? then the model has
surprisingly great success in affording a qualitative
explanation for most of the low-energy properties of
nuclei® (with some notable exceptions associated with
collective nuclear motion).* This qualitative success has
led to efforts to refine the shell model to the point where
it may yield quantitative agreement with experiment.
This refinement has at first taken the form of adding
to the independent particle Hamiltonian a direct two-
body interaction among the nucleons outside of closed
shells. Kurath, Talmi,% Flowers and Edmonds,” and
Pryce® have studied the effects of various assumed
formsof thisperturbinginteraction on the energy levels of
two-, three-, and four-particle configurations. Although
configuration interaction was neglected in their work,
the predicted level ordering was in accord with experi-
ment where comparison could be made.
As one might expect from the strength of the nuclear
forces, the inclusion of perturbing inter-particle forces
in the shell model leads to the prediction that configur-
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ation interaction is of substantial importance. de-Shalit
and Goldhaber® have emphasized some important
consequences of configuration interaction, and Redlich!®
has shown that a mixture of configurations considerably
improves the calculated ft value of the transition
F13(3t)08, as compared to any single configuration
calculation. Among the many efforts to explain the
deviations of nuclear magnetic moments from the
Schmidt lines, one of the simplest and most unforced is
embodied in the work of Blin-Stoyle and Perks,!! who
find that the direction and order of magnitude of the
deviations can be accounted for in terms of simple
interconfigurational mixing. Collective effects may also
play an important role in the magnetic moment devi-
ations,* but a general survey of this question® has led
to the conclusion that in addition to surface effects,
there must be another and at least as large an effect
producing an inward deviation of the moments from
the Schmidt lines. This extra effect was first interpreted
in terms of a quenching of the anomalous moment of
the nucleon, but now appears to be more reasonably
attributed to the Blin-Stoyle and Perks effect of con-
figuration mixing. Other recent attempts have been
made to take into account both collective and con-
figuration mixing effects*’® on nuclear magnetic mo-
ments. More recently Elliott and Flowers' have had
detailed quantitative success in the analysis of simple
configurations just beyond the O'® core, using a Rosen-
feld exchange type force and including configuration
interaction. Volkov!® has carried out calculations with
the “statistical shell model” based on very great
configuration mixing, but this limit does not appear to
be justified by more detailed shell-model calculations.

A detailed treatment of two-body interactions among
nucleons outside of closed shells need not, of course,
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INDEPENDENT PARTICLE MODEL OF NUCLEUS

lead to a quantitatively correct nuclear model. Either
many-body forces or collective nuclear motions, for
example, could require large corrections. Indeed the
comprehensive work of Bohr and Mottelson* and
others!® has shown that at least in certain regions of
the periodic table, coupling of nucleons to the nuclear
surface and the contribution of the nuclear core to the
motion are of dominant importance. These collective
effects can be taken account of, however, as a further
refinement of the shell model, and indeed the form of
the particle-to-surface interaction used by Bohr!? de-
pends essentially on the zero-order assumption of
independent particle motion in the nucleus.

Possible many-body forces cannot be taken into
account with equal ease, but the ‘“pair damping”
postulated by Drell and Henley,'® and Brueckner and
Watson," in the pseudoscalar meson theory would tend
to make many-body forces in the nucleus much less
important than two-body forces. At the present stage
of understanding of the nuclear forces, however, the
role of many-body forces in determining low-energy
nuclear properties must be deduced primarily from the
indirect evidence of the validity of calculations which
ignore such forces. The work of Brueckner, Levinson,
and Mahmoud? on nuclear saturation with two-body
forces, for example, provides indirect evidence of this
kind. The shell model calculations of Elliott and
Flowers* and our calculations on the isotopes of
calcium (paper IIT of this series?!) further strengthen
the conclusion that many-body forces are not of much
importance for the low-energy properties of nuclei.

The theoretical?? and experimental evidence accumu-
lated to date favors the idea that the independent-
particle model is a good starting point for any attempted
quantitative theory of nuclei in the ground state and
low excited states. The work reported in this and the
succeeding two papers was motivated by a desire to see
to what extent the independent particle model, modified
by spin-orbit coupling, by direct interparticle coupling,
and by particle-to-surface coupling, could be made to
yield quantitative results. These three added inter-
actions have previously been shown separately to be
necessary in special cases. Altogether, the model to be
tested is represented by the Hamiltonian

H=H,+Y Vij(p)+H,(@)+X Vi(s),

>7 b

in which H, represents the average central field together
with a one-body spin-orbit coupling, V;;(p) represents
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the direct two-body interactions among particles outside
closed shells, H,(a) represents the energy of collective
motion (restricted in practice to the five degrees of
freedom of ellipsoidal deformations), and V;(s) repre-
sents the particle-to-surface interaction derived from
the linear dependence of particle kinetic energy on the
deformation of the average potential well.

The primary interest in this work was divided be-
tween the nature of the interparticle forces themselves
within condensed nuclear matter and the general
validity of the independent-particle model as a basis
for quantitative calculations.

Some important questions that naturally arise are:

(1) To what extent can interparticle forces in nuclear
matter be treated as two-body forces?

(2) What is the relative importance of surface cor-
rections and interparticle force corrections to the
independent-particle model states?

(3) What is the magnitude of the energy shifts due
to configuration interaction?

(4) Are the “interparticle forces” that act between
particles in a nucleus equivalent to the nuclear force
between two nucleons in a vacuum?

In this paper (I), a general discussion is presented
of the shell-model assumptions and the nature of the
particle and core forces neglecting the surface forces.
In paper IL® there is included a discussion of weak
surface coupling and idealized calculations of the effect
of one and two excited phonons on two- and three-
particle configurations. In paper IIL* the techniques
developed in the previous papers are applied to the
energy levels of Ca® and Ca® and to the magnetic
moment of Ca®. On the basis of this limited calculation
one can give tentative answers to the above-listed
questions.

In this paper, we discuss properties of the shell model
modified by direct two-body forces only. Previous
applications of such a model have utilized specific
assumptions about the two-body forces which in general
do not accord with current ideas about the nature of
the nuclear force as deduced from theory?' or from
nucleon-nucleon scattering experiments.?’ In any case,
the question whether the forces in the nucleus are the
same as those in the ‘“vacuum” is not answered for
certain. Consequently we emphasize a semiempirical
approach in which very few details of the nuclear forces
are assumed. But the model discussed in this paper
does assume the following: (a) A double closed-shell
nucleus, or nuclear core, may be replaced by a one-
particle potential well plus spin-orbit coupling. The
levels in this well are determined empirically by the
nucleus containing only one nucleon beyond the closed-
shell core. (b) Extra-core nucleons moving in this well
interact with each other via two-body forces. (c) These

8B K. W. Ford and C. A. Levinson (to be published).
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interactions mix configurations as well as split con-
figurations, and this mixing must be taken into account.
(d) For configurations of identical particles (all neutrons
or all protons) the forces are predominantly singlet.
This assumption can be tested since the nucleon-nucleon
interaction is sufficiently well known from analysis of
scattering experiments at the energies important in a
nucleus. Of course, in applying such a test one must
verify that question four has an affirmative answer.

The calculation of the matrix elements of the inter-
particle interaction is considerably simplified if one
uses methods developed by Bacher and Goudsmit,?®
Racah,?” and others. It can be shown that the matrix
elements involving 7 particles can be computed from
those involving »—1 particles, where #> 3. Therefore,
the main physical problem is the determination of the
two-particle matrix elements. If the two particles are
both neutrons or protons, then two simplifying features
enter the calculation: (1) the forces are approximately
singlet, and (2) the Pauli principle restricts the number
of possible states. In order to treat the effect of various
two-particle configurations of identical particles, the
Schrédinger equation is algebraically manipulated so
that the calculation can be done simply. This avoids
the more clumsy matrix approach, and makes it
possible to determine the matrix elements of the inter-
action from the empirical two-particle level structure
including the effects of configuration interaction.

The three-particle problem is then set up as a matrix
diagonalization problem, the matrix elements being
derived from the two-particle elements. Hence the
three-particle energy levels and wave functions are
logically tied to the two-particle matrix elements. This
enables one to make an empirical analysis of a two-
particle configuration, and then make predictions for
the three-particle problem. In this manner, one does
not have to know the exact nature of the interparticle
forces in order to test the model under consideration.
If the model can be verified in this way, one can then
test various possible interparticle potentials to see if
they give the correct matrix elements. The theory in
the present paper is therefore directly applicable only
to special configurations of identical particles, and is
not explicitly carried beyond the point required for the
applications discussed in paper ITI.2

II. HAMILTONIAN WITH PARTICLE FORCES

To zero order one assumes that the particles move
independently in the potential of the double closed-shell
core in states given by the independent-particle model.
The “particle” can in fact be a neutron, a proton, a
neutron hole, or a proton hole. The levels of these
particles are given by the core-plus-one-particle nuclei.
The nuclei are listed in Table I, and are not very

26 R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934).
7 G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943); 76,
1352 (1949).

C. LEVINSON AND K. W. FORD

numerous. 'Without experimental data on these nuclei
one cannot analyze in a completely empirical way the
effects of configuration interaction, since these nuclei
give the relative spacing of the various configurations.
It is possible, of course, to make reasonable guesses in
some cases of the zero-order level spacings. Also it
should be mentioned that there may exist closed
subshells which to a fair approximation may be incorpo-
rated in the cores. For example, Zr® with 40 protons
and 50 neutrons shows some of the properties of a
double closed-shell nucleus.

The zero-order assumption certainly is not rigorously
true. For instance, as pointed out by Blin-Stoyle and
Perks," the explanation of the deviation of the magnetic
moment of Bi*® from the Schmidt value (Au=1.4 n.m.)
is that the odd proton is not in a pure kg, state, but
other configurations involving the %y, protons in the
core are admixed. This effect should be most significant
when there are orbital states in the core identical to
orbital states of the extra core particles, i.e., when the
core is “j—j magic” but not “L-S magic.” Single-
particle levels in the core field are not quite the pure
single-particle states predicted by the independent-
particle model. This effect of admixed states of core
excitation is not ruled out even for L-S magic nuclei,
but if its effect on the one-particle energy spacing is
small, then its effect on the two- and three-particle
analysis will be small, independent of its effect on the
one-particle wave function.

The coherent nuclear model2*-22 has provided a theo-
retical justification for the concept of the effective core
field. Calculations of this average potential are now
being performed.

Interparticie Forces

There are two fundamental difficulties concerned
with the choice of the two-body forces acting between
the particles moving in the core field. (1) It is uncertain
how much these forces within the nucleus differ from
the vacuum nuclear forces. Some difference is predicted
by the coherent nuclear model,?? but details about the
difference are still under study. (2) If the effective
forces within nucleus possess repulsive cores as indi-
cated by theory' and experiment? for free nucleons,
then perturbation theory with independent particle
wave functions is not appropriate. The first difficulty
we avoid by not specifying the forces in advance, but
letting matrix elements of the interaction potential
appear as parameters in the theory. Only through the
simplifying assumption of singlet forces between iden-

TaBLE I. Double magic cores and single-particle or
single-hole configuration nuclei.

Par- Par- Par- Par-

ticle Hole ticle Hole ticle  Hole ticle Hole
Proton oF17  7NI6 5 Scal K30 2S¢t K47 83Bi209 g TI207
Neutron 5017 5015 3Catt 30Ca®  30Ca® 20Ca¥”  gPb29 g,Ph207
Cores 5018 20Cat0 20Cat8 32Pb208
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tical particles are the forces in nuclei and in vacuum
assumed to be similar. The second difficulty we do not
strictly avoid, but rather ignore. The effect of a repul-
sive core on the radial parts of the wave function and
short range correlations of nucleon positions is not taken
into account. There is theoretical evidence?? that the
independent particle picture is approximately correct
at low energies in spite of such correlations, but the
final test of this approximation must come through the
success or failure of calculations which start with the
independent particle assumption.

Most workers have assumed a Gaussian radial
dependence for the interparticle potential for conveni-
ence, but have assumed a variety of exchange mixtures.
Based on a comparison of the Gaussian and Yukawa
radial dependence, Talmi® has stressed the fact that pre-
dicted relative energy spacings are sufficiently sensitive
to the shape of the potential that detailed conclusions,
such as the point of crossing of two levels, should not be
drawn for any specific assumed shape.

For identical particles, there are only two independent
central force exchange mixtures, which can be conveni-
ently taken to be of singlet and triplet character. In
Figs. 1 through 3 we give the diagonal matrix elements
of the energies of the two-particle configuration (f7,2)?
as a function of the range of the forces for three different
assumptions about the shape of the potential and for
the singlet and triplet exchange character, in order to
give a qualitative illustration of the roles of range,
shape, and exchange character in the relative level
spacings. Figure 1 is based on the Gaussian potential,
V="V,exp(—7*/r¢). Energies are calculated by the
method of Talmi® with oscillator wave functions, which
contain the factor exp(—72/r,2). The relative range is
defined by A=7¢/r,, and the abscissa is taken as
n=M\%/(14+\?), which varies between O and 1 as the
range, 7o, varies from O to . The ‘“correct” range can
be found by fitting the Gaussian potential to an effective

GAUSSIAN - AN
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F1c. 1. Diagonal energy matrix elements for an (f72)? con-
figuration (J=0, 2, 4, 6) for a singlet central (S) and triplet
central (7') Gaussian well in units of the singlet spin zero matrix
element. 7, the range parameter is defined in the text. =0
corresponds to a zero range interparticle force and »=1 corre-
sponds to an infinite range interparticle force.
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F16. 2. Diagonal energy matrix elements for a modified Gaussian
well plotted as in Fig. 1.

range of 3X107® c¢cm and to a bound state at zero
energy in order to approximate the low-energy singlet
well. One finds V=25.8 Mev and 7,=2.09X 10~ cm.
For calcium, Kurath gives as a reasonable value of 7,,
2.9%X 107 cm, which leads to A=0.72. All energies on
the vertical scale are normalized to a value of —1 for
the energy of the spin-zero state with an attractive
singlet force, and are plotted relative to the configur-
ation energy in the absence of the perturbing forces.
The short-range limit shows the characteristic large
depression of the spin-zero state (seniority zero) relative
to the state of spin 2, 4, and 6 (seniority two) for singlet
forces, with of course no energy shifts for triplet forces.
In the long-range limit, the singlet energies are propor-
tional to [const+J(J41)7], while the triplet spacings
are equal and opposite to the singlet spacings. For a
“reasonable” range, N=<0.72 #=20.34, the singlet 0-2
spacing is larger than the 2-4 spacing, and the triplet
splittings are small compared to the singlet splittings.
One is therefore qualitatively closer to the short-range
than to the long-range limit.

In Fig. 2, the effect of a sharp attractive singularity
in the potential is demonstrated. The potential is
chosen (for convenience) to have the form,

V=Vy2exp(—r*/rd).

The result is that the level splittings remain for all
ranges qualitatively very similar to the short range
limit, with the singlet spin zero energy depression being
large compared to all other energy shifts. As will be
brought out in Paper ITI,*' this behavior associated
with the strong singularity at the origin is inconsistent
with the experimental evidence.

Although a repulsive core potential cannot be taken
account of properly with independent-particle wave
functions, the central repulsion can be simulated by
cutting off the potential to zero value at the origin. In
Fig. 3, energies are plotted, as in Figs. 1 and 2, for
such a potential, chosen to be,

V=Ve?exp(—r2/r).

The short- and long-range limits agree with those of
the Gaussian potential, but the intermediate region of
‘“reasonable” ranges is substantially different. The 0-2
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Fic. 3. Diagonal energy matrix elements for a modified Gaussian
well plotted as in Fig. 1.

spacing, due to singlet forces, decreases rapidly as the
range is increased from zero: the 0-2 and 2-4 spacings

become equal at 7220.33 (A=£0.71), and the 0-2 singlet

spacing becomes zero at 7=20.5 (A\=<1.0). As with the
Gaussian (Fig. 1), the triplet energies show cross-over
and small splittings in the neighborhood of equal 0-2
and 2-4 singlet splittings. But with this “hard core”
potential the triplet splittings become inverted and
quite appreciable for A2 0.9.

The qualitative differences among the diagonal energy
spacings of Figs. 1-3 are sufficient to make desirable the
kind of empirical approach to the diagonal matrix
elements which is outlined in the next section. The
figures also suggest that a sufficiently refined treatment
of the spectra of some simple nuclear configurations
may provide evidence on the shape of the interparticle
potential.

It should be stressed that these figures are plotted
for equal range and strength of the singlet and triplet
potentials. Differences in range and strength may easily
be taken account of by reading singlet and triplet
splittings from different abcissas, and by multiplying
the singlet or triplet energies by a suitable scale factor.

Coulomb Forces

In case one has to deal with proton configurations or
to compare the level structure of similar neutron and
proton configurations, the contribution of Coulomb
forces to the level splitting must be calculated. This
may be done readily following the method of Talmi®
for oscillator wave functions of the nucleons. The
Talmi radial integrals for the Coulomb force are

I=(121/ (20+1) 1) o,
where (2041)!!=1-3..-(2/41), and the energy unit is

=7/,

The nuclear size parameter, »,, enters only in the
energy unit. For a particular configuration, it is neces-
sary to express the Slater integrals, F*, in terms of the
Talmi integrals, I;, and then to express the energies
E; in terms of the F*. Coulomb energies obtained in
this way for the configurations (f7,2)? and (f7/2)® are
given in Table II. The long range Coulomb force splits
the levels by a lesser amount than it shifts the center
of gravity. For both (f7,2)? and (f/2), the total level
splitting is about 0.3¢p. For A4=40, =20.3 Mev;
therefore, the total level splitting due to Coulomb
forces in about 0.1 Mev; an amount small compared
to the splitting produced by the nuclear forces.

III. TWO-BODY PROBLEM WITH SINGLET
Forces

Let Hy be the zero-order Hamiltonian of average
central core field plus spin-orbit force; V, the sum of
two-body interactions among particles outside the core;
E, the correct nuclear energy; and |¢), the “correct”
nuclear state vector.

The Schrédinger equation can be written

(E—Ho) [Y)=V [¥). ¢y

Now introduce a representation |&) such that Hy is
diagonal, in this case a 54 coupling representation :

Hy [@)=H, (o) |a). @

The energies Ho(a) are given empirically by the levels
of the nucleus with a single nucleon outside the closed-
shell core.

In the |e@) representation, (1) can be written:

1
(a|¢)=m(aw[¢)- 3

One now introduces a representation |B) convenient for
expressing the matrix elements of V. Multiplying both
sides by (8|«’) and summing, we get

E—H(")
o BV E'[Y)
~—at’,ﬂ’ E—Ho(a’) '

PCIMIMMEICIMESS

4)

TaBiE II. Coulomb energies for configuration (f7/2)* of protons.
€=20.3 Mev for calcium.

n=2 n=3

J E/eo J E/en
0 1.357 3/2 3.236
2 1.160 5/2 © 3.336
4 1.067 7/2 3.410
6 1.033 9/2 3.176

11/2 3.216

15/2 3.112
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We now specifically choose a singlet potential and let
|B) be the LS representation. For two particles the «
and B labels become

l)=|IM sjijehils), |B)=|TM LShl).  (5)

For shortness in notation we shall write |a) = 7172/ls)
and |B8)=|ll,L). The value of J, M ; will be the same
throughout and since V is a pure singlet potential we
shall only need S=0, L=J. Hence the above labels
will be sufficient. Setting |8)=|ll:J), Eq. (4) becomes

(LdoT hb)
Z (lll2J|j1,j2,l1’l2l) (jllj2lllll2l[ V] lllllzllj) (l1/1l2”jllll)
E_‘HD (jl’j2ll1,l2/)

(6)

Now
(jllj2lllllzll Vllll’lzll.])
= Z (jlljz’hllzlll1/”lz’//f) (llle///J[ Vl 11”12”])

AT

= (GG W0 | W T) W T | V| W), )

i.e., the LS to 77 transformation coefficient is diagonal
in //ly’. The fact that one can factor out the ji'7
dependence in Eq. (7) leads to a great simplification.
Equation (6) may now be written:

| (udaT | 172 1o) |2
(l1l2]l¢)= z e —

Jlll’ézz', E—‘Ho(lll?]l,]Z,)
X (LT | VWL T) L T|Y). (8)

We define a new coefficient

[ (WiaT | 7152 o) |2
a(]hlz) =3 T T e’ )
i’ E—H, (lllzj 1’] 2/)

Then Eq. (8), which defines the expansion coefficients
of |¢) in the LS representation, may be written;

Z {a (]lllg) (ldz]l V l llllzlj)
i’
- 6 (ll’,ll)é (lzl,lz) } (llllzl.] I ¢) = 0.

The condition that Eq. (10) have nonzero solutions is
that for each J the coefficient determinant of Eq. (10)
vanish:

det[a(Jlls) (WioT | V|11 —68(1 1) (151) ]=0,

(10)

(1

where the rows are labeled by /il and the columns
by llllzl.

The number of configurations included in Eq. (11)
is, of course, arbitrarily great, but in order that the
number of unknowns be only as great as the number
of equations (equal to the number of levels of the
two-particle configuration), it is necessary to make
assumptions about the relative magnitudes of the radial
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integrals (the Slater integrals) for different / values.
Near-lying levels of different / but with the same number
of radial nodes have clearly similar wave functions,
and may to good approximation be regarded as per-
fectly overlapping. If the number of radial nodes in the
admixed wave function is different, one may reduce
the interconfiguration matrix elements by an arbitrary
factor or one may again assume a perfect overlap in
order to obtain an upper limit to the configuration
interaction. In either case, all required matrix elements
will be expressible in terms of the diagonal matrix
elements of V for the zero-order configuration. These
assumptions lead to errors, so to speak, only in second
order, i.e., in the effect of configuration interaction,
not in the diagonal contribution to the energy. The
method outlined here will then be appropriate either
when configuration interaction is small, or when all
important configurations have nearly the same radial
dependence of their wave functions.

An especially simple situation results if the only
important configurations have the same ! value. Then
the matrix elements are determined, according to
Eq. (11), by

@r\vian=La(Ji)T™ (12)

Using the techniques of matrix diagonalization, one
would be confronted instead with a set of third-order
matrices to diagonalize, corresponding to the three
configurations (I4+3%)%, (I4+3%,7—%), and (I—3%)%

Equation (4) might be useful for three-body con-
figurationsalso. One must then introduce extra quantum
numbers in the |a) and |B) representations. The
usefulness of this approach again depends on how one
can factor (a|V|B).

IV. THREE-BODY CONFIGURATION
MATRIX ELEMENTS

In order to evaluate three-body matrix elements in
terms of two-body matrix elements, it is necessary to .
use fractional parentage coefficients, which were intro-
duced by Racah?® for configurations containing equiva-
lent particles. The extension of Racah’s discussion of
fractional parentage coefficients to apply to groups of
inequivalent particles has been carried out by Redlich?®
and Meshkov.?® A discussion and tabulation of fractional
parentage coefficients for equivalent particles in jj
coupling has been given by Flowers and Edmonds.”
We shall give here Redlich’s definition of fractional
parentage coefficients for nonequivalent or equivalent
particles with jj wave functions and his statement of
the matrix element theorems.

Let ¥.(j1- - 7, @J) be an antisymmetrized n-particle
wave function made up of states ji---j, coupled
together to make a total J. Let a be the other quantum
numbers not explicitly written down. One can expand

28 M. Redlich, thesis, Princeton University, January, 1954
(unpublished).
2 S, Meshkov, Phys. Rev. 91, 871 (1953).
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Yo in terms of functions ¢[ (j1*+* fre1fri1:* Jn@’J)a
X jr(m);aJ] which are constructed by combining
functions ¥o(f1-* * fr1fre1-* - Jue’J") with ¢(4,(n)) by
means of the vector coupling coefficients. to make a
state of angular momentum J. The notation j,.(n)
means that the added wave function ¥(j.(n)) be
written as a function of the variables x,0,. ¥, may be
expanded as

Vel -dual)= T @T'5.Jd)

(13)

where the sum over r is taken only over distinct 7,.
The coefficient of ¢ is called a fractional parentage
coefficient. Redlich gives formulas for these coefficients
for three-particle configurations with two equivalent
particles in terms of Racah coefficients [see, e.g., Eq.
(30)]. This definition of fractional parentage coefficient
reduces to Racah’s for the case of equivalent particles.

The formulas for computing matrix elements of
one- and two-body operators will be given here: Let

X[ (1 *frorfrsr: - jnd T)afr(n); et ],

F=3" f(i), where f(7) operates only on particle 7. Then
ic1

Wa(gr - jnad )| Fl¢a(fre - 7B 2))
=n 3 (J T i) T ;5. T1| f(m) | T; 5T )

a'J'r

X('J"; ]8T ),

where (A{B)=(BJ4)*. Let G.=2 i1 g(i,k) where
g(1,k) operates only on particles 7 and &, and g(,k) is a
scalar operator.

(‘pu(jl' : 'jﬂa])lGn!‘Pa(]-l" : fnlﬁ-]))

(14)

s

n_z r,a’,8,J'
X('pa(]l . 'jr—ljr+1' : '].naljl)lG”-ll‘l’a
X (G grdfrd - 3a"8T)) BT ; - 18T).

(@' T3 7)8(nir")

(15)

Equation (15) provides a relation between diagonal
elements of n-particle and (z— 1)-particle configurations
which makes it possible to test observed nuclear spectra
to find out whether or not configuration interaction is
important. If configuration interaction is unimportant,
then, independent of the potential involved (it must be
a G-type two-body operator, however), Eq. (15) relates
the energies of the #n-particle and (#z—1)-particle con-
figurations. Hence if the observed energies are not
related by (15), one knows either that configuration
interaction is important, or that forces other than
two-body forces are acting, e.g., direct many-body
forces, or surface forces. (It is to be noted, however,
that the weak coupling of particles via the surface can
also be represented as two-body forces of type G.)

C. LEVINSON AND K. W. FORD

V. NUCLEAR MOMENTS AND TRANSITION RATES

Nuclear moments and transition rates depend more
strongly on configuration admixtures than do energy
spacings and hence are a better indication of the
amount present. For magnetic moments the admixtures
of states with the same / values are most important
since they give contributions to the magnetic moments
linear in the mixture amplitudes. Blin-Stoyle and
Perks,! have analyzed the magnetic moments of nuclei
from this viewpoint and have shown that, if the con-
figuration interaction is due to attractive central forces,
the predicted sign and order of magnitude of the shifts
of the magnetic moments away from the Schmidt line
are correct. Consider, for example, the magnetic mo-
ment of a nucleus with three identical particles beyond
closed shells. Let the ground-state wave function be
approximated as a three-particle shell-model function:

1//=|IM>=Z¢1 aa[aIM>; (16)

where 7 is the total spin, @, is a mixture amplitude,
and « designates the jj coupling particle configuration.
Configurations of three kinds are possible, according as
1, 2, or 3 single-particle states enter: ai=[7"], as
=[72(J)72], and az=[4172(J)7s], where J labels the
intermediate angular momentum. (Antisymmetized
functions are assumed.) The magnetic moment of the
state is

p=I, M=I|p.|I, M=D)= Y afawu(ed), (17)

where

ulad)=(al, M=1I|u.|o'I, M=T), (18)

pe=2_: gl (1) g:S:(3). (19)

We list here formulas for the components u(ac’)
required in (17) only for configurations of type a; and
as, but components involving «; configurations are
equally readily derived, by using fractional parentage
expansions and the general methods of Racah:

and

(20)

the well-known result that a group of equivalent
particles has the same g factor as a single particle in
the group,

gi= gt (g—g) 2j+1F1)7,

,u(azaz) =<j12(])j2flﬂz' j12(J)j2I>
=20+ DI H{aZI+D+T(T+ 1D —72(j2+1) ]
+e[IT+1)—JU+D)+5:0+1D]}; (22)

ulena) = (I |u.| PI)=g;1,

j=ixl; @)

and

p (o) =72 | uz] 5:2(J) jI)
=— (VD) (gi—g )22+ 1) T+1) T8 (l2)
XEBUT+HI+14+3) (J+HT—1+3)
X(T=I+I+5)T—T+I+DT,  (23)

where (J}) is shorthand for the fractional parentage
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coefficient (72(J)sI1}7°I). The last formula gives the
important off-diagonal contribution to the magnetic
moment emphasized by Blin-Stoyle and Perks.

Quadrupole moments are sensitive to effects of
collective nuclear deformation, and provide a better
measure of the strength of surface coupling than does
the energy level spectrum. By the same token, however,
quadrupole moments are less useful as a measure of the
degree of configuration interaction than are magnetic
moments. Contributions of weak surface coupling to
magnetic and quadrupole moments are discussed briefly
in the following paper. In certain nuclei, however (e.g.,
s017), the direct particle contribution to the quadrupole
moment is dominant,? and it is therefore of interest to
give formulas for the quadrupole moment of mixed
configuration analogous to Egs. (17) through (23) above
for magnetic moments. Again let the nuclear ground
state wave function be approximated by (16), but with
the assumption now that the extra particles are all
protons. The quadrupole moment operator is

Q=4e X i 792001

and 9)s0= (7/5)¥ 90, V20 being the normalized spherical
harmonic. Analogous to Eq. (17), the quadrupole
moment of the mixed state is given by

(24)

Q= Z aa*a’a’n' a’y (25)
where '
Quar=46r?) aar[ 1 (21 —1 DEI+1)(2I+3) ]
X (X 9:0)lle’D),  (26)

and (r%),q is the radial integral of 72 of the ith proton
(any 1) between the antisymmetrized states « and o’'.
This factor is the order of magnitude of the mean square
nuclear radius. Equation (26) holds for an arbitrary
number of particles, but we list formulas for the reduced
matrix elements appearing in (26) only for the special
case of the three-particle configurations a; and a, defined
below Eq. (16). For a=a'=ay,

(ad||Z: De()]lenl)=3(—= 1)1 (2I+1) (7] Dl 5)
XE (=D (PUTDIPD [PW (GI5T; 112).

Equation (27) is also somewhat more general, holding
for the configuration (7)™ For the special case that
I=3j, and seniority, v=1, a result of Racah? may be
applied to yield,

(Gro=11=4]%: D) jv=11=)
=[Q2j+1-22)/ (25— 1)1 D:ll 1),

a formula already given by Goeppert-Mayer® in a
discussion of shell-model quadrupole moments. It is to
be noted that the absolute value of the quadrupole
moment found from Eq. (28) is never greater than the
one-particle moment. For the quadrupole moment
component diagonal with respect to configuration a,,

27)

(28)
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one gets
CHIIPIHOLEY
= QI+D{(=D" (Dl /W (51515 T2)
+ Gl NZn] G015 D |
X(=0)7==W (G115 J:2)},  (29)

in which the fractional parentage coefficients may be
given explicitly?®:

(G5' I LP)F'T)
=—BQI+)Q@NLHD)IW (55T 15). (30)

For the quadrupole moment component connecting
configurations a; and as one obtains,

(@122 Do) ||aol)=33(2(JT) JI | (— 1) 7=
XGNDall 7)) QI+-1)W (5151572). (31)

The one-particle reduced matrix elements appearing in
(27)-(31) are

@lD:ll 1) =3 25+1)4(52—130] j2j—3%
X|1=1]=0,2, (32)

where (j2—30| 725—%) is a Clebsch-Gordon coefficient.

The predominant gamma-ray transitions among the
low states of nuclei—especially if these states arise
primarily from a single multiparticle configuration—
are of magnetic dipole or electric quadrupole type. The
general remarks above about magnetic and quadrupole
moments apply also to M1 and E2 transition rates.
That is, M1 transition rates are sensitive to configur-
ation mixing, while E2 rates, although also substantially
affected by mixing, are more sensitive to collective
effects. E2 rates are discussed in the following paper.

Magnetic dipole transitions are in fact forbidden
between pure states of the configuration (j)*, and
therefore occur only through configuration mixing or
collective motion when the dominant configuration is
of this simple type. Consider, for example, the matrix
element,

(FT @il ot8oSe| j7T) = (G T | g1 o+ (gs— ) S| 5°T)

which governs magnetic dipole transitions. The part
giJ . does not connect states of different J. The part
(gs—g1)S . is an F-type operator and its matrix elements
are given by Eq. (14). f(n) now becomes (g,— g.).S. (%),
the single particle spin operator for the nth particle
multiplied by (gs—gi). The matrix elements of
(gs—g1)S.(n) which one needs in order to evaluate
@J'; jn)J1|S.(n)|«’T"; j(n)T2) are all of the form
(§m;|S.| jm;). But as pointed out by Racah and
others® (jm;| S.| jm ) =p(j) Gm;| j.| jm) where u(j)
is the ratio of the reduced matrix elements of .S, and 7,
and only depends on j. Hence the magnetic dipole transi-
tion operator can be written as [gi+ (gs—gou(7) 1/ .
for equivalent particles of spin j. This operator is

® E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1951).
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diagonal with respect to the states of the configuration
4™ It does not connect states of different J, nor does
it connect orthogonal states with the same J, e.g.,
states of different seniority.

We consider now the magnetic dipole transition rate
between mixed configurations of three identical nucleons.
Let the nuclear wave function be approximated by
(16) for the final state and by the analogous expression,

Vim |I'MY= o bor | T'M") (33)

for the initial state. Then, because the magnetic dipole
operator, M1, is a vector, the methods of Racah may be
applied to yield the expression for the reduced transi-
tion probability, B.(1), defined, for example, in
reference 4: ~

Bn(1)= (2I'+1) |2 (34)

(The change of I’ to I in this formula gives the reduced
probability for the inverse transition I—I’.) I is a
weighted mean reduced matrix element,

M= Z aa*ba’gﬁaa’y (35)
where
WMaar=(al||MA||o'T"), (36)

and the double-bar matrix element is defined as by
Racah.?® The general selection rules, which apply to
(36) are AI=0, =1, and configurations « and o' differ
by at most the quantum numbers of one particle. For
a=a'= ()}, PMaar=0, as shown above. We consider
three nonvanishing matrix elements which may con-
tribute to the sum (35).

@) a=[/"] o'=[7*(/)5']:
Do = G FTLFT) (— 1) -1 [3(2I+1) I +1) ]
XW(GLi'Ts ) GIMA 7)), (37)
where (72(J)sI]4%I) is the fractional parentage coeffi-
cient of the state «, W is a Racah coefficient, and

(4llM.]|5") is a reduced one-particle magnetic dipole
matrix element.

(b) a=[*(NJ], «'=[7(J)J']:
Moo =3(— DL+ Q2I+1)
X G (=D TW (G T5'T5 T (5| M| 7)
+2 (G5 01T DG T 1T 5T
X(=D)7=WGLI T ) GIMA 7)Y, (38)

in which the sum over J; includes the fractional
parentage coefficients of the states « and «'.

(© e=[2(Nj'], o'=[7*(T)J]:

Mae=3LQ2I+ D) QI+ D BGIMA 7))
XX (=07 (G (T 1) 5T
X (G ) FT T (GI5T 5 T41).

The reduced one-particle matrix elements appearing in

(39)
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Eqgs. (37)-(39) are

(M =g (3/4m)j(G+1) 25+ 1Tt (40)
and
(41| 5)
= (gs—g){ 3/4m)[20(+1)/ (2I+1) T} (L1).  (41)

The matrix elements M., are of the same order of
magnitude as the magnetic moments of the states
involved. A substantial inhibition of the transition rate
(as compared with the one-particle rate) is therefore
to be expected only if the dominant configurations of
initial and final states are not connected by M;—e.g.,
if both are (7)? or if they differ in the quantum numbers
of more than one particle. In either such case, the
averaged matrix element, Jt, will be smaller than the
one-particle matrix element by the order of the mixture
amplitudes of configurations which are connected to
the dominant configurations, and the transition rate
will be smaller by the order of the square of these
mixture amplitudes. It is to be noted that these effects
could lead to a large inhibition of an M1 transition
rate, but would not be expected ever to lead to an
appreciable enhancement. This fact coupled with the
known enhancement of E2 radiation due to collective
effects might account for the observed E2-M1 compe-
tition in a number of cases where the one-particle
transition rate formulas predict that the M1 rate
should be much greater than the E2 rate. An example
of such a case, the isotope 50Ca®, is discussed in paper
I11.

Consider the following idealized example of the
possible utility of transition rate measurements in
determining nuclear configurations. Suppose a nucleus
has ground state 5/2+4 and first excited state 3/2+4,
and the shell-model assignment of the ground state is
ds;2. One wishes to know whether the one-particle
assignments ds» and dye for the two states or the
multiparticle assignments (ds/s)® for both states are
more nearly correct. If the absolute E2 rate between
the states is, for example, determined by a Coulomb
excitation process, and the M1/E2 ratio is inferred,
or limited, by internal conversion or angular correlation
experiments, then the M1 rate is in principal deter-
mined. It may be compared with the known dso—ds/2
prediction: if the same order of magnitude, the one
particle configurations are preferred; if much smaller,
the (ds/2)? configuration is preferred. Factors of differ-
ence of 100 or more are to be expected.

Beta-decay matrix elements are especially sensitive
to details of nuclear structure—the more so since states
of two different nuclei are involved—and quantitative
agreement between theoretical and experimental transi-
tion rates has been obtained only for mirror nuclei.
Fermi matrix elements, and one-particle Gamow-Teller
matrix elements are well known; they have been
summarized, for example, by Bohr and Mottelson,?
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whose notation we follow. Talmi® has considered three-
particle Gamow-Teller matrix elements in jj coupling
and shown that the distinction between favored and
unfavored transitions does not exist for pure j; con-
figurations. From his work, the reduced transition
probability for [ /3J'T"J—[ /*JT7] follows easily:

Dar=27(2T+1)(2T'+1)| (5] BV||Z;) |2
X(T'1T,/T,—T. | T'1TT.)2S, (42)

where (T2T9T1.T2.|T:ToTT,) is a Clebsch-Gordon
coefficient; (]| B®||Z;) is the reduced Gamow-Teller
matrix element, sometimes denoted by f'o,

GIBON) =[G+ Q+D/ 71, j=I+3%
=0iQj+0/G+HDTE, j=1-% 43)

and S is a sum over fractional parentage coefficients,
S= X (=0 (G )W GTET; Thl)

ai,I1,T1
X (]3IITJ{[]2((X1T1]1)]T])

X (P TJ) T T 1%/ T'T").  (44)
This result could readily be generalized to other three-
particle configurations by expanding them also in terms
of fractional parentage coefficients. Applicable selection
rules are AT=0, 1, AJ=0, 41 and configurations
differ at most in the quantum numbers of one particle.

For beta decay (nonmirror transitions), the most
important configuration mixing is that between particle
states of the same / value. Small deviations from either
pure jj or pure LS coupling can cause large changes in
the beta decay rate. This can easily be understood,
since an ‘“unfavored” transition has zero probability
for pure LS coupling and goes at a ‘“favored” rate for
pure 77 coupling. Mirror transitions are not so sensitive
to configuration mixing.

This relative sensitivity to mixing has been shown in
calculations by Redlich.?? Starting with a zero order 77
scheme, and computing mixing in the 2s—3d shell, he
finds that the mirror transition 1oNe®—¢F goes at a
rate greater by a factor of 230 than the nonmirror
transition gO¥—¢F", in accord with experiment, and in
disagreement with theory for pure jj states. A similarly
important distinction between the mirror transition
29 Ti%—9;Sc* and the nonmirror transition 9;Sc#—4,Ca%?
has been pointed out by Peaslee.?® The mirror transition
goes at a superallowed rate, while the nonmirror
transition is slower by a factor of 10 than for pure
configurations. As Peaslee and Talmi point out, these
unfavored decays are conclusive proof against pure j7
configurations. They need not, however, imply that the
true coupling scheme is much closer to LS. The partic-
ular decay Sc#—Ca® is discussed further in paper III,
where it is shown that the calculated configuration
mixing is sufficient to explain the order of magnitude

3t T, Talmi, Phys. Rev. 91, 122 (1953).
8 M. Redlich (to be published)
3 D. C. Peaslee (private communication).
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of the observed slowdown. This calculated mixing
results in a coupling scheme about equally removed
from both j; and LS coupling.

VI. TRIPLET FORCES AND SCATTERING DATA

It is expected that the nuclear forces derived from
scattering data will approximate those acting between
the extra-core particles in nuclei. One objection to this
point has been that the potentials adjusted to give
correct scattering results do not lead to saturation of
nuclear forces. However, it has been shown that if one
uses repulsive core potentials a fit to both scattering
and saturation requirements can be made.®* For our
purposes it is most important to fix the spin and
exchange properties of the nuclear force since our
approach is independent of the shape of the well. The
spin and exchange properties of nuclear potentials
adjusted to fit scattering are nearly independent of
whether cores were used in the wells or not. We there-
fore argue that it is sufficient to examine potentials
which fit nuclear scattering data but do not necessarily
have repulsive cores.

Analysis of #-p and p-p scattering up to 100 Mev
has been carried out by Christian and Hart,? Christian
and Noyes,* and Jastrow.?” They have concluded that:

(a) There is no appreciable central force in odd states.

(b) There is a weak odd-state tensor force present in
addition to the even-state tensor force which is needed
to give the deuteron quadrupole moment. In their
analysis of p-p scattering at 32 Mev, Christian and
Noyes fit the differential cross section with a singlet
central force and an odd-state tensor force. Using
wells of the form Vo exp(—7/0.75X107 cm), these
authors find that well depths

Vo (singlet-central) = —100 Mev,
Vo (odd state tensor)= 50 Mev,

gives a reasonably good fit to the data. Jastrow uses
the same odd-state tensor potential as given above, but
uses a singlet central potential with a repulsive core,
in his discussion of p-p scattering. In addition he takes
an even state tensor force with Vo=127 Mev and a
triplet central force with V=69 Mev:

For an n-n or p-p system we need to consider only
the following possibilities for the forces: (a) singlet-
even, central; (b) triplet-odd, central; (c) triplet-odd,
tensor; other forces being excluded by the Pauli
principle. Force (a) is the largest and its range and
depth are given above for an exponential well. Force
(b) has not manifested itself in nucleon-nucleon scat-
tering. Even if it were present between extra core
particles its effect on level splitting would be diminished
because, as shown in Figs. 1-3, the level depressions

3 K. A. Brueckner, Phys. Rev. 96, 508 (1954).

3% R. S. Christian and E. W. Hart, Phys. Rev. 77, 441 (1950).
36 R. S. Christian and H. P. Noyes, Phys. Rev. 79, 85 (1950).
37 R, Jastrow, Phys. Rev. 81, 165 (1951).
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F1G. 4. Diagonal energy matrix elements for a (ds2)? configur-
ation (J=0, 2, 4) for a singlet central Gaussian well (S) and a
tensor force with a Gaussian well (T"). The tensor force well is
half as deep as the singlet well. Elements plotted as in Fig. 1.

due to central triplet interactions are almost inde-
pendent of J for assumed reasonable force ranges.
Force (c), however, is about one-half as large as force
(a) in nucleon-nucleon scattering. In order to show
qualitatively the effect of such a tensor force on level
structure, we plot in Fig. 4 the diagonal energy matrix
elements of an attractive central singlet force and of an
attractive odd-state tensor force for the configuration
(ds;2)*. (This calculation utilizes results derived by
Talmi®® for tensor forces.) Gaussian radial dependence
is assumed for both potentials with singlet to tensor
well depths in the ratio 2:1. The effect of the tensor
force on the spin zero state is quite appreciable, as
shown in Fig. 4. Because the odd-state tensor force is
in fact repulsive,’®37 the perturbation method of calcu-
lation with independent particle wave functions over-

# 1. Talmi, Phys. Rev. 89, 1065 (1952).
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estimates the effect of the tensor force relative to the
singlet force. In addition calculations based on meson
theory indicate that the tensor well shape is quite
different from the central well shape. Therefore, the
results shown in Fig. 4 are at best qualitative. It seems
probable that the assumption of pure singlet forces
between identical particles is a good first approximation,
but the magnitude of the corrections due to odd-state
tensor forces may be important.

In the discussion of the Schrédinger equation in Sec.
IT it was important that one could factor the matrix in
Eq. (7). This matrix can also be factored if V is a
central triplet force. Then

(f1febide| V| LSIL)
= {(f1jehils| L1NI)(L10L| V| L1l )8(s,1).  (45)

If V is a triplet tensor force L? no longer commutes
with ¥ and the factorization cannot be carried out.
However, even in this case it may be possible to write a
tensor force as an effective central force.

If the semiempirical approach to nuclear spectra
outlined here proves to be fruitful, it would appear best
first to fix the singlet parameters of the potential by
analyzing configurations of identical particles, then to
analyze mixed neutron-proton configurations with only
the triplet matrix elements regarded as unknowns. In
paper IIT of this series, explicit application of these
techniques will be made to the nuclei Ca* and Ca®.
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