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Configuration Mixing and Quadrupole Moments of Odd Nuclei
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The quadrupole moments of odd nuclei are calculated from the standpoint of configuration mixing. The
calculations are based upon the simple perturbation theory. The quadrupole moments of odd-neutron nuclei
are due to the excitation of one or more protons. The quadrupole moments of odd-proton nuclei also contain
the quadrupole moments of the initial configuration. The agreement between the calculated and observed
values are fairly good except for the nuclei with very large quadrupole moments.

I. INTRODUCTION

HE fact that the quadrupole moments of nuclei
containing one proton outside a closed shell are

negative and those of nuclei lacking one proton to a
closed shell are positive is a simple consequence of the
shell model. ' ' Further, if p is the number of protons
in the shell with total angular moxnentum jk, the
quadrupole moment of the j"configuration (P odd) and
spin J=j becomes in this modeP 4:

Q= Q, (2j+1—2p)/(2 j—1), (1)

where Q; is the quadrupole moment of the nucleus with
a single proton in the orbit j outside a closed shell:

Q, = —(2j—1)j(2j+2) (r'), . (2)

(r'), is the expectation value of r' for the proton in the
outermost orbit j. Thus, quadrupole moments are
negative for less than half-filled shells and positive for
more than half-filled shells. The observed signs of quad-
rupole moments are, in general, in agreement with this
rule.

The quadrupole moments of some nuclei with an odd
number of protons lying between the magic numbers
50 and 82 are so large that one cannot expect to explain
them by the shell model. The collective model ascribes
these very large quadrupole moments to core defor-
mation. ' ' According to this model, the magnitude of
the quadrupole moments of closed shell & one proton
nuclei should also be very large —considerably larger
than the observed values. ' ' These are usually two or
three times larger than the values given by the simple
shell model.

Quadrupole moments of several odd-neutron nuclei
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show a similar variation with the number of neutrons
in the not-closed shell to that shown by odd-proton
nuclei with respect to the number of protons. This might
be explained by the collective model. Again this model
gives too large quadrupole moments for nuclei with a
closed shell & one neutron. On the other hand, the
usual shell model gives zero quadrupole moments for
odd-neutron nuclei, since the neutrons carry no charge
and since the effect of the recoil of the core is negligibly
small except for extremely light nuclei.

We consider the effect of configuration mixing which
explains the deviations of magnetic moments of odd
nuclei from the Schmidt lines in a reasonable way. ' As
the starting configuration, we adopt again the con-
figuration given by the single-particle model, i.e.,
assume that the even particles couple to angular
momentum zero and the state of the odd particles is
that of lowest seniority consistent with the observed
spin. Thus, for some of our wave functions the isotopic
spin is not a good quantum number. However, intro-
duction of the isotopic spin does not improve the agree-
ment with respect to quadrupole moments' and its use
does not change the wave function for medium heavy
and heavy nuclei.

II. THE QUADRUPOLE MOMENTS DUE TO THE
EXCITATION OF PROTONS

In the shell model with strong spin-orbit interaction,
even and odd numbers of nucleons in the same orbit j
couple in such a way that the resultant angular mo-
menta are J=O and J=j, respectively. ' Although there
are a few exceptions under this rule for an odd number
of nucleons, it does hold in most cases and will be
adopted as the starting point for our considerations.
As was mentioned before, if one disregards the inter-
mixing of configurations, the quadrupole moments of
odd-proton nuclei in the j& configuration is given by
(1).The quadrupole moments of odd-neutron nuclei are
zero in this model.

I.et us consider the eGects of configuration mixing
on quadrupole moments of odd nuclei. If we assume
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that the admixture of excited con6gurations to the
original one is so small that the effects proportional to
the square of the admixture coefFicients can be neglected,
only the contributions from the nondiagonal elements
of the quadrupole moment operator between the excited
and ground configurations need be considered. Let us
denote the ground configuration given by the shell
model by %s(jm). Let %„(jm) be a typical excited con-
6guration; j and m are the angular momentum and its
s-component, respectively, for these states. Then the
whole wave function is given by

1/2 3/2 5/2 7/2 9/2 11/2 13/2

1/2
3/2
5/2
7/2
9/2

11/2
13/2

~ ~ ~

1/5
1/5

2/5 3/5
1/5 3/35 18/35
2/35 8/35 4/105
9/35 1/35 5/21

2/7 4/231
28/65

~ ~ ~

io/2i
5/231
8/33
7/715

36/85

~ ~ ~

5/11
2/i43

35/143
8/1105

~ ~ ~

64/143
5/429

16/65

TABLE I. The values of the square of Clebsch-Gordan coeKcient
(I, —,

' 20l J, 2g, -', )s.

,a(jm) = +o(jm)+p„cr„%'„(jm), (3)
the single-particle model as

where the n are the coeKcients of mixing. The expecta-
tion value of the quadrupole moment operator for the
state represented by the first term of (3) with m= j
gives the value (1) of the single-particle model, while
the main correction caused by the addition of the other
terms is given by the cross terms between the 6rst and
later terms with ns= j. Thus, the quadrupole moment
caused by the configuration mixing is given by ex-
pressions of the form

(4)

where Q,~ represents the quadrupole moment operator

z
Q,„=PerP(3 cos'8, —1).

@s(jm)=@(jt"(0)j&(j); jm),

where nucleons in the orbit j1 are protons and e is an
even number not larger than 2jr+1; P is the number
of nucleons in the outermost orbit. Then a sequence of
excited states in which one proton in j& orbit jumps to j&,

can interact with the above state. "J is restricted by
the condition

l ji—js l
(I&ji+js. However, it can

easily be seen that only the state with J=2 gives non-
vanishing 5Q by (4) and the orbital angular momentum
of j2 must be equal to that of j1 or differ from it by two
units. Hence, the mixed configuration which can give
rise to the quadrupole moment is expressed as

+(jt"(0)j"(j); j~)+~+([jt" '(jt) js](2)P(j);j~)
r; and 8; are radial and angular variables of the ith
proton. The excited configuration %t(jm) must not
differ from the original one %s(jm) by more than one
orbit in order to have a nonvanishing 5Q in (4) because
the quadrupole operator Q„ is a one-particle operator.
It is also evident that either the orbital angular momenta
of the orbits in which 4'0 and +& diGer must be equal,
or their difference must be &2.The coef6cient of mixing,
o., is given by perturbation theory in terms of the non-
diagonal element of energy matrix:

crt ———(4o(jm), Q V,&4&(jnz))/AE, (6)

where V;g, is the interaction between the ith and kth
nucleons and DE is the energy difference between the
first and second con6guration. We assume, for the sake
of simplicity, that the radial dependence of the inter-
action has delta-function character.

There are several modes of excitation of the proton
group which will give rise to quadrupole moments.
First of all, we consider the excitation of a proton from
one of the orbits filled with an even number of protons
to another orbit which is not filled, due to the interac-
tion with the odd nucleons" in the outermost orbit. We
represent the zeroth-order state of the nucleus given by

' In an odd nucleus which has an odd number of protons, the
protons are the "odd nucleons. " Similarly, the neutrons will be
called "odd nucleons" if their number is odd. This notation
facilitates the discussion.

After a straightforward calculation following the pro-
cedure (4) and (6) which is given in Appendix I, 5Q is
obtained as

and I is a Slater integral for a delta-function interaction

r"
I= —', R'(j)R(jt)R(js)r'«.

Jo
(9)

The E. are radial wave functions; their phases do not
affect the signs of 5Q since each radial wave function
appears necessarily an even number of times in Eq. (7).

"The case that j2 coincides with j in odd proton nuclei will
be considered later in the excitation (II).

5Qi= —e[(2j+1—2P)/(2j+2)$(ji & 20l ji 2js s)'
'(—V,I)/AE for odd-proton nuclei

X (jrlr'l js) ( ,'V, ,'V,)I/AE ————(7)
for odd-neutron nuclei,

where (ji -', 20l ji 2j& —',)' is the square of the Clebsch-
Gordan coefficient, the values of which are shown in
Table I, and V, and V~ are interaction strengths in the
singlet and triplet states, respectively. (jilr l js) is a
matrix element of r' between the radial wave functions
of j1and j2 orbits:
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Although it was assumed that the zeroth-order state
contained no proton in the orbit js, (7) will be valid
also when there are m protons in the orbit. js (m even)
and if they couple to an angular momentum zero,
except that the right side must be multiplied by
(2js+1—m)/(2j&+1). Equation (7) and the equation
modified in this way are applicable for both odd-proton
and odd-neutron nuclei and they correspond to Table I
of reference 8 for the case of magnetic moments.

For odd-proton nuclei, there are two other con
figurations which give a quadrupole moment. In one of
these, js coincides with j in (I) and the corresponding
mixed configuration is

where Pq is the coeKcient of mixing for each j' and
1=2, 4, ~, 2j—1 so that j"+'(J) represent the states
of seniority two.""The derivation of the quadrupole
moment caused by the configuration mixing (II) is
somewhat more complicated than that of (I). However,
by making use of the average value of the reciprocals
of the zeroth order energy difFerences between the first
and each of the second configurations as (1/DE), we
obtain a formula for 3Q which is similar to (7) (see
Appendix 8):
BQii = —NL (2j—p)/(2 j+2)$

X (ji s 20
I jr 2js s)s(jil~'l js)(—V I) (1/~E).

The integral I is obtained by putting js——j in (9). The
factor (2j—P) in (10) reflects the fact that this mode
of excitation cannot take place in those odd-proton
nuclei in which a single proton is missing from the
outermost orbit.

In the other configuration which must be considered
for the quadrupole moments of odd-proton nuclei the
number of protons in the outermost orbit j is larger
than I. It corresponds to the inverse case of the excita-
tion mode (II) and is expressed as

+(j "(o)j"(j);j~)
+Z~ v~+(i i"+'(i i)i '(~); j~) (111)

where the even number e may be equal to zero, and

p J' is the coeflicient of mixing. The quadrupole moment
caused by the excitation (III) is

3Qiii= (p —1)$(2ji+1—e)/(2ji+2) j
&& (ji s 20

~ ji 2j s)s(ji )
rs

) j)(—V,I) (1/AE), (11)

where I is similar to the corresponding integral in (10).
Equations (10) and (11) correspond to (11) and (14)
of reference 8, respectively.

In addition to the three modes of excitation which
were described above, the state ji"(0) (n even) of
protons can be excited into a state j&"(J). The lowest
excited states ji"(J') are usually assumed to be those of

"G. Racah, Phys. Rev. 63, 367 (1943)."B.H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1952).

seniority two. Again only the state with 7= 2 can con-
tribute to the quadrupole moment in our approxima-
tion. " This type of excitation may be taken as a
degenerate case of (I) in which js coincides with ji, so
that the result is obtained at once by putting j&——j& in

(7) and multiplying a factor (2ji+1—m)/(2j, —1)
which comes from the coefficient of fractional parentage.
Hence, the excitation

+(ji"(o)p(j)j~)+~+(ji"(2)j"(j)j~), (1~)
gives

3Qiv = —nL (2j,+1—e) (2j+1—2P)/(2 ji—1)(2j+2)]
X(jr —,

' 201 jr 2ji —',)'(jiI"'I j,)

(—V,I)/AEs for odd-proton nuclei
X (——,'V, —s V,)I/~E, )

for odd-neutron nuclei.
(12)

Thus, the corrections to the quadrupole moments in
the approximation here considered are given by the
sum of (7) and (12) for odd-neutron nuclei, and the
sum of (7), (10), (11), and (12) for odd-proton nuclei.
They depend on the number p of nucleons in the outer-
most orbit linearly. Furthermore, the contributions
given by (7) and (12) depend on p in the same way as
the single-particle model s expression (1). This applies
also for odd-neutron nuclei. The other corrections to
the odd-proton nuclei, given in (10) and (11), have a
different dependence upon p. The former vanishes at
the end of the subshell while the latter vanishes at the
beginning of the subshell.

E„i(r)=X„iexp( —vr'/2)r'rt„i(r).
'4 This type of excitation does not contribute to the magnetic

moment in the approximation of reference 8, since there is no low
excited state with J=1.

"For example, L Talmi, Helv. Phys. Acta 25, 185 (1952).

III. COMPARISON WITH THE OBSERVED VALUES

(i) Determination of the Parameters

In order to compare the theoretical values for the
quadrupole moment, obtained in the preceding section,
with the observed values it is necessary to estimate the
quantities which appear in (7), (10), (11), and (12).
First of all, we assume that the interactions between
nucleons are attractive and the attractive force in the
triplet state is stronger than in the singlet state so that

~
V ~

~

= 1.5
~
V,

~

. Although this agrees with the experi-
mental data of two-nucleon systems at low energy, it
remains an assumption since the interactions in larger
nuclei might di6er from those in two-nucleon systems.
It is possible, in fact, that the integrals I and the
matrix elements of r' become negative in some cases.
It is necessary, therefore, to obtain a somewhat more
accurate estimate of these quantities than was neces-
sary for the calculation of the magnetic moments. We
assume that the wave functions for nucleons are those
of a harmonic oscillator":
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E„~ is a normalization constant and v„~(v) is an asso-
ciated Laguerre polynomial

v„~(r) =L„+g v(s+' '(vr')

TAsLK II. Doublet splitting assumed in the calculation. The
splitting 1d3/2 —1d5/2 is taken from the experimental data on0"."The others are estimated by the formula by determining the
proportionality constant by the doublet splitting of 0'7.

The constant v is determined by evaluating the diagonal
elements of rs. For n,= 1, these are (1/

~

rs
~
1l)= (2l+3)/2 v.

If one assumes a uniform nuclear density, the average
value of r' is (r') = (3/5) (1.45A'")'X 10 "cm', A being
the mass number. Thus, putting 1/2v= crAsls, the order
of magnitude of c~ becomes 1 to 1.8 times 10 '~ cm'
(assuming 3=2~5). Furthermore, the matrix elements
of r' become

(j~lv'I js)=fU~; js)/(2v) =c~fU~; js)A'",

1 pl/2 p3/2
1d8/2 —d5/2
1f5/2 —j7/2

2 pl/2 p3/2
1gv/2 —

g9/2

2d3/2 —d 5/2

1h9/2 h 11/2

2f5/2 f7/2
3 pl/2 pa/2
1111/2 113/2

AZdoublet in MeV

3
5
3
1.5
2.5
1.5
2
1.5
0.5
2

17
~ ~ ~

60
60

105
120
200
200
200
260

where f(j &,
' js) does not depend on the mass number,

and they can be obtained by straightforward integration.
The integrals I are inversely proportional to the

mass number A since they' involve four wave functions.
For harmonic oscillator wave functions, they have the
form

ID(~ jjs)=sFVir its)("/~)"'
where F(jj&,jj s) does not dePend uPon v or A, while
the factor v'" provides an A ' dependence because of
the proportionality of v to A '".The average value of
V,I can be estimated from the difference of binding
energies of odd and even nuclei" to be —25/A Mev.
Hence, we obtain from

V,I(jj &,jj s)= csF(jj &,jj,)/—2A,

200 to 300 Mev for the order of magnitude of c~ at
A~200 because the values of Ii for 2d, 1g, and 1h
orbits are 0.260, 0.213, and 0.176, respectively. This
gives the estimate crcs ——(0.3 to 0.6)X10—"cm' Mev.
Actually, the value c&c2

——O.S)(10 "cm Mev was used
in the calculations.

(ii) Determination of the Energy Denominators

The energy diGerence AE consists of two parts. One
is the difference between the single-particle levels in
which the ground and excited configurations differ, and
the other is that between the energies caused by the
interaction between nucleons in each configuration. The
estimate of the latter is complicated and it will be
ignored in the actual calculation. Even if we restrict
ourselves only to the energy differences of the single-
particle levels, it is not easy to determine completely
on the basis of conventional potentials, spin-orbit
interactions, and the observed values of nuclear spins.
The oscillator potential gives strongly degenerate states
with diferent principal and azimuthal quantum
numbers, and the square well potential with finite or
infinite well depth does not always provide the order
of levels which, together with plausible doublet
splittings, would yield the observed values of the
nuclear spins. Therefore, we attempted to construct
a level scheme by using both empirical data and
theoretical information,

First of all, the doublet splittings are estimated by
the simple formula of lnglis": AEq, „b~,t =E (2l+ 1)A '",
where A and E are the mass number and a propor-
tionality constant with the dimension of energy. If we

employ the observed value' of the splitting 1d5/2 —1da/&

in 0', we obtain E=6.6 Mev. However, the doublet
splitting was assumed to be constant for a subshell and
the mass number A adopted for calculating it was the
average A of those nuclei the observed spins of which
indicate that they contain this subshell partially filled.
The assumed doublet splittings obtained in this way
are given in Table II and the above-mentioned mass
numbers are shown under A. The values adopted will
be seen to be considerably in excess of the excitation
energy of isomeric levels. This was not considered to
be an inconsistency because the isomeric levels are
probably not single-particle levels but result from
many-body effects.

The position of the 1s level relative to the 1p levels
cannot be obtained directly from the experimental data.
However, as the contribution from the excitation of a
1s proton can be seen to be small, the estimate obtained
from the square well potentiap was considered to be
suKciently accurate. The spacing is given as 15.5 Mev
and 9.2 Mev by the potential with infinite depth if one
assumes a mass number 17 and 37, respectively (and
corresponding nuclear radii). These hgures are the two
extreme mass numbers in which the 1s level plays a role
in our calculation. Therefore, we assume the 1s—1p
energy difference to be 12 Mev. Then the 1ps~s level is
assumed to be lower than the center of gravity of the
1p levels by 1 Mev and the lp&is higher by 2 Mev.
These numbers were obtained by dividing the doublet
splitting 3 Mev in the ratio 1 to 2.

The observed levels of C" and N" give the spacings
between 1pr~s and 1ds~s as 3.86 Mev and 3.56 Mev, re-
spectively. ' We assume the 1dsis —1p&is spacing to be
3 Mev for nuclei, the mass number of which are larger
than 20. The position of the 2s~/2 level relative to the
1d5/2 is assumed in accordance with the observed levels

"D.R. Ing1is, Revs. Modern Phys. 25, 390 (1953).' F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77
(1955),
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TABLE III(a). Spacing of even-parity levels which was used in
our calculation.

1$
1dG/2
2$
1d3/2
1gg/2
1g7/2
2d G/2

2d3/2
3$
1i13/2

1ds/2 2$1dg/2 igg/2

17 ''' 22
1 5 12

4 ~ ~ ~

7

1g7/2 2ds/2 2dg/2 3S i its/2 1iII/2

~ ~ ~ 32
14.5 15
~ 14
9.5 10
2.5 3

0.5

33 5 I ~ ~

16.5 16.75
15 5 0 ~ ~

11.5 11.75
4.5 4.75
2 225
1.5 1.75

0.25

8.5
6

10.5
8

TABLE III(b). Spacing of odd-parity levels which was u ed in our
calculation.

1pl/2 1f7/2 2p3/2 ifs/2 2pl/2 ' ilail/2 i&9/2 2f7/2 2fs/2

1p3/2 3 13 15 5 16
1P1/2 ~ 12.5 13
1f7/2 2.5 3
2p3/2 0.5
1fG/2

2P1/2
1h11/2
1hg/2
2 f7/2
2/5/2
3p3/2

~ ~ ~

1.5
1

245 26
~ oo 23
11.5 13
9 10.5
8.5 10

~ ~ ~ 9
2.5 4
0.5 2

1.5

2P3/2 2P1/2

26.75 27.25
23.75
13 75
11.25 11.75
10.75 11.25
9 75 o ~ ~

4.75 5.25
2.75 3.25
2.25 2.75
0.75 1.25

0.5

"P. M. Endt and J. C. Kluyver, Revs. Modern Phys. 26, 95
(1954).

"M. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 179
(1952).

for 0' so that the 2s level is higher than the 1d5/2 by
1 Mev. '7 The spacing between 1f7/s and 1d,/s is assumed
to be 2 Mev, since the corresponding spacings of S33

and K" appear to be 2.85 Mev and 1.37 Mev, respec-
tively. "Although the spacing between the 2ps/s and
1f7/9 levels seems to be 2 Mev from the observed data
on Ca4', we use the value of 2.5 Mev for this spacing in
order to bring the 2ps/s level close to 1fs/s. It is known
that 2Ps/s and 1f,/, are close to each other from the
change of spins in Rb isotopes.

The pair of levels 2pr/s and 1gs/s often change position
in isomeric nuclei. However, the inversion seems to
take place on account of the large pairing energy of the
1g9/2 nucleons. Hence we adopt the energy difference
observed in 39Y" which might be free from this effect.
The observed data indicate that the 1g9/2 is higher than
2Pt/7 by 0.913 Mev, " and we assume the spacing as
1 Mev. The situation is similar with respect to the
1g7/2 and 2d5/& levels. Fortunately, as the contribution
to the quadrupole moment from the jump of a proton
between these levels is much smaller than the con-
tribution from other excitations (see Table I), the
relative position of these levels does not influence the
calculated results critically. We assume on the basis
of the observed energy differences of 0.66, 0.15 and
0.33 Mev for Mo", Sb'" and Sb"', respectively, " that
the 2d5/2 level lies 0.5 Mev above the 1g7/2 level.

The spacings between 1h11/2, 2d3/2, and 3s are known
to be small from isomeric transitions. It was pointed
out by Mihelich and de-Shalit" that it is uncertain
whether the isomeric transitions between these states
are "particle transitions" or "hole transitions. " For-
tunately, the energy differences 2d3/& —1h»/2 and
3s—1h11/2 do not affect the calculated values of the
quadrupole moments. We assume that the 1h11/2 level
is lowest, the 2d3/2 second, and the 3si/2 level highest,
and that the spacing 2d3/2 —1h11/2 is 0.5 Mev and
3s—2d3/~ is 0.25 Mev. The order of magnitude of the
former is inferred from the level of Ba"' at 0.66 Mev
and the latter is taken from the 0.26-Mev level" in
Au"'.

The spacing between 1hs/7 and 2f7/7 levels is expected
to be small but no experimental data are available.
Since the spin of ssBi'" is 9/2, we assume that hs/s is
slightly lower than 2f7/s the spacing is tentatively
assumed to be 0.5 Mev. We note in passing that no
case is known in which a hs/s proton jumps to the 2f7/7
level.

The position of the 2fs/s, 1irs/s and 3p, /, levels must
be determined for estimating the contribution of the
excitation of protons from lower levels even though
these levels appear only as the neutron levels in actual
nuclei. Therefore, we obtain their relative positions
from the levels of odd-neutron nuclei. The analysis of
isomeric states" of Hg, Au, and Pt indicates that 1i&3/Q

is higher than 2fs/s by about 0.5 Mev and that 3ps/s is
higher than 2fs/s by almost the same amount; the
spacing 3Ps/s —1ils/s is assumed as 0.25 Mev. It might
be mentioned that this level scheme is somewhat dif-
ferent from that obtained recently" for Pb"'. However,
our results are not seriously affected by our assumptions
concerning the positions of these levels.

The assumed position of all the levels is summarized
in Tables III(a) and (b). The former gives the spacings
between levels with even parity and the latter of those
with odd parity. The values given in these tables are
assumed to give the energy differe. ces between levels
for all nuclei, regardless of their masses. This might
seem to be a crude approximation because the level
spacings decrease with increasing A. However, only
limited numbers of level spacings affect the calculated
values and most level spacings have very little effect
on our results. The uncertainties which appeared in the
determination of high levels might give rise to some
ambiguities in the calculated quadrupole moments of
heavier nuclei, but it is not likely that our results could
be changed substantially by assuming different level
spacings.

For the excitation modes (II) and (III) the average
value (1/DE) would be needed. These are assumed to
be equal to 1/DE for the sake of simplicity. On the
other hand, the AEs in the excitation mode (IV) is the

ss J. H. Mihelich and A. de-Shalit, Phys. Rev. 93, 135 (1954).
' D. E. Alburger and M. H. L. Pryce, Phys. Rev. 95, 1482

(1954).
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energy difference between J=0 and J= 2 states of the
ji" configuration (m= even, 0(ss(2 jr+1). Theo-
retically, this energy difference does not depend upon
the numbers e of nucleons" and we estimate it from the
experimental data near the closed shell. It decreases
from 2 to 0.5 Mev as the mass number increases. ""

TABLE IV. Calculated and observed values of quadrupole
moments of odd-neutron nuclei. c~c2=0.5X10 '4 cm' Mev. The
Q&.M. 's are the hydrodynamical estimate of the collective model
(reference 6).

Configuration
Nucleus proton neutron Qobs Qcalc QB.M.

017
16S33

S35

»Ge73

,6Kr'3
54Xe13'

Er167

~ ~ ~

(feei)'
(gi/i)4
(hi I/2)

d 5/2

d3/2
(di/s)'

(Pus) g9/2

(g9/2)
(g9/2)

d3/2

(fr/i)r

—0.004—0.064
0.045—0.2~0.1

0.15—0.12
10.2

—0.04—0.09
0.09—0.43—0.27
0.28—0.26
0.70

—0.16—0.22
0.22—1.2

table gives the hydrodynamic estimates of the collective
model (reference 6, Table IX). Our calculated values
are for odd neutron nuclei (except for Er'") in general
somewhat larger than the observed values. For 0'~, the
assumption that the interaction has delta-function
character might not be valid. Two zeroth-order con-
figurations are tried for Ge" because there is a com-
petition between the pi/s and gs/, neutron levels. The
calculated values of the magnetic moment following
the treatment of reference 8, are —1.72 and —0.76 nm
for the configurations (pi/s) gs/s and (gs/s)', respec-
tively. The observed value is —0.88 nm. Hence, the
latter configuration gives better agreement both for
magnetic and quadrupole moments. The large quad-
rupole moment of Kr'" cannot be explained by the
present calculation. Some remarks concerning such
large quadrupole moments which appear also in odd-

~ C. Schwartz and A. de-Shalit, Phys. Rev. 94, 1257 (1954)."G. Scharff-Goldhaber, Phys. Rev. 87, 218 (1952)."P.Stahelin and P. Presiwek, Nuovo cimento 10, 1219 (1953).
ss P. F. A. Klinkenberg, Revs. Modern Phys. 24, 63 (1952}.
~6 K. Murakawa and T. Kamei, Rept. Inst. Sci. and Technol. ,

Univ. Tokyo 7, 219 (1953).

(iii) Comparison with the Observed Values

The calculation of the quadrupole moments was
carried out only for the nuclei with normal coupling;
the quadrupole moments of Xa", Mn", Se~', and Ku'"
were not calculated. 4 Those nuclei with mass numbers
less than 16 were also omitted because the approxi-
mation adopted might break down. The observed
values for the quadrupole moments were obtained from
the compilations of Klinkenberg" and Murakawa and
Kamei" and the configurations adopted are based upon
the tables of Klinkenberg, " unless otherwise stated.
The results for odd-neutron nuclei are given in the
fourth column of Table IV. The fifth column of this

TABLE V. Contributions from the individual mode of excitation
of protons for the quadrupole moment of S'3. The zeroth-order
proton configuration is (Is)'(Ipui)'(Ipui)'(1dui)'(2s)'.

Excitation modes of protons

(1s) —+ (1s}Idi/i
(1pi/s)' ~ (1pi/s)' 1fr/s
(Ipi/s)' ~ (Ipse)' 1fsn
(1p3/2)' ~ (1p3/2)' 2pa/2
(1P,/, )' ~ (Ipi/, )' 2P, /,
(Ipus)' ~ (Ipui) Ifs/s
(Ipus)' ~ (Ipi/s) 2pus
(1dus)' ~ (Idi/i} 1d, /s
(tdus)' ~ (1ds/s)' Igs/s
(1du, )' ~ (1dui)' 1gr/s
(1dus) ~ (1ds/s) 2ds/s
(1dus)' —+ (Idus)' 2dus

(2s)' i (2s) Ids/s

—0.004—0.007—0.001
0.001
0.001—0.005
0.001—0.015—0.042—0.003
0.004
0.001—0.021

Sum —0.090

proton nuclei will be given in the next section. The
detailed contribution of each type of configuration
mixing is shown in Table V for S" as an example. The
largest contribution comes from the excitation mode
(1ds/s)'~ (1ds/s)' 1gg/s for protons and the proba-
bility of this excited configuration is 2.8%. This jus-
tifies the use of the first order perturbation theory; the
reduction of the zeroth order configuration is negligible
at least in most cases.

For odd-proton nuclei, we obtain the values listed in
Table VI. The value of the parameter t,"~ was assumed
to be 1.2)&10 " cm' for the calculation of the quad-
rupole moment (1) due to the normal configuration.
The only nucleus for which the calculation gives a
quadrupole moment with the wrong sign is V". How-
ever, if the normal configuration is assumed to be
(ds/s) '(fi/s)' in this case, the calculated value becomes
positive in agreement with the observed value. It might
be recalled that the (ds/s) '(fr/s)s proton configuration
gives a much better value than the (fi/s)' configuration
for magnetic moment of Sc4'. However, this con-
figuration assignment is difficult to reconcile with the
magic character of nuclei with 20 protons. For Tc",
the value calculated for the configuration (gs/s)' is
much smaller than the observed value. The experi-
mental moment is, however, somewhat ambiguous. Two
configurations are examined for Pr"'. One of these gives
a large negative, the other a small positive quadrupole
moment. Therefore, it is likely that the zeroth-order
wave function is a mixture of both. The observed value
is obtained by assuming that the main configuration
is (ds/s)' with a small admixture of (g7/s) ds/s, This is
consistent with the value of the magnetic moment

/s, s, ——4.0, since the (/Es/s)' and {gi/s)' ds/s configurations
give 3.95 nm and 4.53 nm, respectively. From Eu'" to
Re'", the observed values are much larger than the
calculated values, just as in the case of Er"7.The values
given by the collective model are in general much
larger than the observed values for the shell & one

nuclei for both odd-proton and odd-neutron nuclei.
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TABLE VI. Calculated and observed values of quadrupole
moments of odd proton nuclei. c1——1,2)(10 ' cm and cic2=0.5
X10~4 cm Mev. Q, .„. and Qg. M. are the values given by the
single-particle model and the hydrodynamic estimates of the
collective model (reference 6), respectively.

Proton con-
Nucleus figuration gobs Qeaic Qs. p. QB.M.

13AP'

17Cl36

17CP'

V61

27Co69

2gCu'3
2gCu65
31Ga69

31Ga71

(An)'

d3/2

A/2

(f7/2)'

(f7/2)7

P3/2
P3/2

(Psn)'

(Ps/2)

ssAs" (fs/2)s(ps/2)'

25»" (fs/2)'(Psn)'

36Br81

41Nb"
43Tcgg

4gIn"'
49In
1$b121

1$b123

I127

6 I129

La139

6 Pr141

Eu151
71Lu175

Ta181

76Re
76R.e187

Z7II 191

Ir193

Au197
Bi209

(fs/2) (ps/2)

gg/2

(gs/ )'

(gs/2)
(gs/2)'
~6/2

gz/2

(g7/2)'ds/2

(g7/2) (An)'

(g7n)'

~6/2

(g7/2) (ds/2)'
('A/2 )

(hil/2) (g7/2)
(h11/2) (g7/2)

(d 5/2)

(d5/2)
(hll/2)" (ds/2)'

(hII/2)" (An)'

(ds/2)'
hg/2

0.156
3—0.07894

2—0.06213
2

0.3
&2
0.5
&2—0.157—0.147
0.2318

23
0.1461

15
0.32
~ 5
0.26
& 8
0,21
& 7—0,4
0.34
&17
1.144
1.161—0.52
~10—0.67
~10—0.72
a 2—0.43
~15
0.9
&1—0.05

1.2
5.9
6
2.8
2.6
1.0
&5
1.0
&5
0.56—0,4

0.16 0.04 0.30

—0.08 —0.04 —0.26

—0.08 —0,04 —0.26

—0.03 —0.03

0.19

—0.11—0.11
0.15

0.15

0.18

0.11

—0.07—0.07
0.07

0.07

0.08

—0.48—0.48
0.53

0.53

0.19 0.08

0.19 0.08

—0,33
0.03

0.41
0.42—0.26

—0.20
0.00

0.22
0.23—0.18

2.4
2.4—1.5

—0.39 —0.22 .—2.1

—0.31 —0.19

—0.42 —0.22

0.44 0.24

—0.30
0.02
0.36
0.74
0.65
0.39
0.40
0.40

0.40

—0.20
0.00
0.21
0.28
0.28
0.24
0.25
0.18

0.18

0.29 0.18—0.53 —0.39 —5.6

IV. DISCUSSION AND CONCLUSION

There are isotopes with equal spins but somewhat
diferent quadrupole moments. These will not be dis-
cussed in detail; one can explain such a situation by
assuming a mixture for the zeroth-order wave function.
This was shown for Pr"' in the preceding section. The
configuration interaction of this kind has been discussed
concerning beta transitions with anomalous ff values
and the first excited states of even-even nuclei by other
authors '4 -'~

The harmonic oscillator wave functions might not be
the appropriate nucleon wave functions in the heavy
nuclei. The wave functions for potentials similar to the
square well will presumably give larger quadrupole
moments for heavier nuclei by virtue of the increased
matrix element of r'. In general, our calculated values
for odd-neutron nuclei are somewhat larger, those for
odd-proton nuclei somewhat smaller, than the observed
values. This holds even for closed shell % one nuclei.
It is likely that this discrepancy is due to our assump-
tion concerning the interaction between nucleons. The
quadrupole moments due to the excitation of the
proton group of odd-neutron and odd-proton nuclei are
proportional to -z'(V, +3VI) and V„respectively, if a
delta-function interaction is assumed. Hence, a better
agreement could be obtained by decreasing Vs/Vss
However, one cannot determine this ratio exactly,
although some indications have been obtained from
the ground-state spins of odd-odd nuclei. "

The treatment by first-order perturbation theory
appears justified, at least in most cases. This was shown
in the example of S", However, it should be noted that
the estimate of the energy denominators is not suK-
ciently accurate. The observed level spacing between
J=0 and J= 2 states of even-even nuclei decreases to
as little as 0.1 Mev in heavy nuclei between the magic
numbers. If this is true also for the states of the even
groups of odd nuclei, the treatment by perturbation
theory will break down. The large quadrupole moments
in the rare earth region, which cannot be explained by
the present treatment, may be caused by such a
mechanism. In order to interpret the large quadrupole
moments in this way, it will be necessary to investigate
the level spacings given by the model underlying the
present article.

It follows from the calculations here presented that
the quadrupole moments of odd-neutron nuclei can be
explained as resulting from the excitation of the proton
group and that the additional quadrupole moments of
odd-proton nuclei due to the same cause are rather
large. The agreement between the calculated and ob-
served values of the quadrupole Inoments of odd nuclei
is fairly good except for nuclei with very large quad-
rupole moments.
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27 A, de-Shalit and M. Goldhaber/ Phys. Rev. 92, 1211 (1953). "CI. Schwartz, Phys. Rev. 94, 95 (1954).



QUADRUPOLE MOMENTS OF ODD NUCLEI

APPENDIX A. DERIVATION OF EQ. (7)

The derivation of (7) is given only briefly since the
derivation of a similar equation for magnetic moments
has been given before. ' The methods of Racah"" are
employed for the calculation of the various matrix
elements.

The matrix element in (4) can be expressed in terms
of the double-barred element

(jl (O)j"(j);jj I Q., I Lji" '(ji)js7(2)j"(j);jj)
= Lj(2j—1)/ (j+1)(2j+1)(2j+3)72

&&(j~"(o)j"U); jllQ"IILj"~ (j~)js7(»j"(j) j).
The double-barred element is reduced to that of 'the

single particle by making use of the coeKcients of frac-
tional parentage and Racah coefficients:

(ji"(0)j"(j); jllQ"IILj~" 'U~) js7(»j"U) j)
=Le(2j+1)/5(2 j&+1)7'(j,llr'(3 cos'8 —1)ll j).

One can show in general that

4'IIC"'ll~) = (—1)' 'L(2j+ 1)(2j'+ 1)/(2&+ 1)7'
x(j'-: j——:

I
j'juo),

where C, '~' is an unnormalized spherical harmonic:
C,&s& = L4s/(2k+1)7:O(kq)C (q), and the difference of
the orbital angular momenta of j and j' must have the
same parity as k. In our case, because of 3 cos'0 —1
=2CO(", the double-barred matrix element of the last
equation can be given in terms of a Clebsch-Gordan
coeKcient with k= 2.

The calculation of the nondiagonal matrix element
of the interaction in (6) is somewhat lengthy. The
matrix element between many-particle configurations
can be expressed in terms of matrix elements for two-
particle configurations:

(j~"(o)j"(j) j~ I Z I"all:j~" '(j~)js7(2)j"(j) j~)
i)k

=
I (2j+1—2p)l (2j—1)7X I SN/ (2j+1) (2j&+1)7'

XEz(2J+I)'(Jjj s2;j ij) (jijJ I ~I jsjJ)
I G. Racah, Phys. Rev. 62, 438 (1942).

The summation over J extends herein over the possible
angular momenta of the j&j and j&j configurations.
The matrix elements of the interaction between two-
particle configurations can then be obtained in a
usual way. The assumption of the delta-function inter-
action makes the calculation relatively simple and the
summation over J can be carried out without difhculty.
If the particles in the orbits j and j& are both protons,
the exclusion principle must be taken into account.

APPENDIX B. DERIVATION OF EQ. (10)

For the wave function (II), the matrix element of
the quadrupole moment operator becomes

(j~"(o)j'U) DIQ" lj~" 'U~)j~'(J) jj)
= $2nj(2j p)—(2J+1)/(j+1)(2j+3)(2jr+1)7'

&& (j~ll~'(3 «s'|)—1)IIj)&&II'U~jjj' J2).
The explicit formulas for the coefficients of fractional
parentage were used when deriving this equation. The
phase factors are cancelled by the phase factors in the
following formula. The nondiagonal energy matrix
element for the delta-function interaction is'

(j "(0)j"(j)'j IZ ~'. Ij " '(j )i~'(J);j )
i&&

= (—1)'+'~I 2e(2j—p) (2J+1)/(2j—1)
X(2j+1)(2ji+1)7'(j~jJII

I jjJ).
If the energy denominators are replaced by their aver-
age value and factored out, the summation with respect
to J in (II) can be carried out by means of the property
of Racah coeKcient and the delta-function character
of the interaction:

2&(2J+1)I (i~iii; J2)(i ~PI ~ID J)
= I'.Z(2j~+1) (2j+1)'7'

X(ji—& jsl jij2O)(j-',j——',
I jj20)/2O.

The J in this formula run over the allowed states of
j&+' configuration with seniority two and restricted by

I j&—jl (J(j&+j. The derivation of (11) is quite
similar.


