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Energy Eigenvalues for a Spherical Well with an Exponentially Diffuse Boundary*
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The discrete energy eigenvalues of a spherical well with an exponentially diffuse boundary are obtained
to a good approximation for a range of well parameters of interest in nuclear physics. The method used in-
volves replacing the centrifugal energy in the exponentially diftuse region by an approximate expression
which leads to analytic solutions of the wave equation. The matching of the internal and external wave
functions is then accomplished by the use of specially prepared graphs and tables. The eigenvalues and
eigenfunctions are thought to be of interest in connection with studies of the independent particle model
of the nucleus.

1. INTRODUCTION

A NUMBER of recent studies' ' have stimulated
interest in the problem of a single particle in a

central field with a di6use boundary. While most of this
interest has been in connection with the positive energy
states of the continuum, nevertheless the bound states
are also of considerable importance. In this paper, an
approximate method is developed which appears to be
adequate for the range of well parameters encountered
in nuclear physics.

The solution of the square spherical well eigenvalue
problem is an essential preliminary phase of the approxi-
mate method of solution of the diffuse boundary
problem. Accordingly, this older problem, which has
been solved earlier in the literature, ' will be considered
brieRy 6rst.

2. EIGENVALUES FOR THE SQUARE
SPHERICAL WELL

Letting p=r/a, the radial wave equation becomes

G"+Le"—l(l+1)p 'jG=O p(1
G" t e„'—+l(t+1)p 'KG=0 p&1

where prime denotes di6'erentiation relative to p. The
internal solution which is well-behaved at p =0 is

G, =A;p~Ji+, (p'p),

where J denotes the usual Bessel function and 3;
denotes a normalization constant. The external solution
which is well-behaved as p—+~ may be expressed in
terms of modified Hankel functions. Denoting these
functions by E&+, the external solution may be written as

G,=A,p:Ei~; (e„p).

The e„eigenvalues are obtained without considera-
tion of the normalization constants by imposing the
requirement that at the boundary,

The radial wave equation for the /th state of orbital
angular momentum for a central field characterized by
the potential V(r) may be placed in the form

p=1, —G,'/G, = —G,'/G, or Ii(e') =Ei(e„), (9)

where Ii(e') and Ei(e„) are defined as the negatives of
the logarithmic derivatives of the internal and external
radial wave functions.

To facilitate the solution of this transcendental
equation subject to the condition imposed by Eq. (4),
tables and graphs of I~ and El, have been prepared. In
this effort, use was made of the recurrence relations:

O'G/dr'+ (2ris/A')LW —V (r) —is'1 (/+ 1)/2rgr'$G =0 (1)

where G=rE and E is the radial wave function. For
the study of the spherical well of depth Vo and radius a,
it is convenient to let a serve as a unit of length,
Ep=k'/2ma' serve as a unit of energy and to define
the dimensionless parameters: Ii(x) =1 (x'/Ii i+l), —

Ei(x) =1+ (x'/E, ,+1),

(1o)

(11)(2)e '= —W/Ep

ep'= Vp/Ep,
and

(3) which follow from the usual recurrence relations between
Bessel functions. Using Eq. (11)and

g 2 —$02 g 2 (4)
Ep(x) =x,
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the higher integral order Ei(x) were generated. To
obtain higher order Ii(x) including nonintegral orders
which are needed in Sec. 3, tabulated Bessel functions
for orders between ——,

' and +sr were first used to
generate the corresponding Ii functions. Then Eq. (10)
was used to generate the higher order functions. In Fig.
1 and Fig. 2 the values of various Ii(x) and Ei(x) are
plotted at abscissas corresponding to x'. These graphs
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FiG. 1. The function I~(x) plotted against x'. Labels within the graph denote l. The second set of curves
which start at I=&20 correspond to the right scales.

greatly facilitate the task of obtaining functional rela-
tions between e„' and &p' for various l's which simul-
taneously satisfy Eq. (4) and Eq. (9).

Figure 3 contains the results of the work with the
square well potential. The form of presentation of the
eigenvalues follows that of Moszkowski' who has pre-
pared a similar graph for a somewhat narrower range
of the well range parameter. Essentially, Fig. 3 repre-
sents the energy eigenvalue in units of Ep measured
relative to the bottom of the well. For a given state
this parameter has a far smaller range of variation as
cp is changed than ~„' which corresponds to the actual
energy. Furthermore, these e" values go over to the
results of the infinite spherical well as ep' goes to
in6nity. The ~" eigenvalues for the in6nite spherical
well case are obtained simply by imposing the require-
ment that J~+, (e')=0. These e" eigenvalues for the
infinite case results are shown on the right side of Fig. 3.
Some noteworthy points which are apparent in Fig. 3
are the 3s—1h and 1j—2g cross-overs as well as the
fact that the approximate equality in spacing of the
low-lying levels breaks down above the 1g state.

3. SPHERICAL WELL WITH AN EXPONENTIALLY
DIFFUSE BOUNDARY

In this section, a continuous central potential is
assumed which changes at r = u from a constant —Vp to

V (r) = —Vp expL(a —r)/6uj. (13)

The dimensionless parameter b characterizes the "short-
ness" of the exponential "tail". The case 5=0 is simply
the case discussed in the previous section. The form of

s S. A. Moszkowski, Phys. Rev 89, 482 (195.3).

where the constant cP is chosen to accomplish the best
match of the function on the right to the function on the
left over the external region of importance. Thus, the
"centrifugal" energy in the external region is absorbed
into the exponential tail and the total energy. The
external radial wave equation now becomes

46sG"+{&'expL(1 —p)/~) —~s}G=O,

6 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Part II,
Chap. 12.

r B.J. Malenka, Phys. Rev. 86, 68 (1952).

(16)

the interior radial wave equation and its solutions are 7

of course, unaltered from those developed in the
previous section; however, the dimensionless radial
equation for p&1 in this case is

G +fess exp(1 —p/5) —l(l+1)p s —e sjG=0. (14)

Because of the presence of both the exponential and
p

' terms, Eq. (14) cannot be reduced to any of the
well-studied differential equations. It is, however,
known that for s states, i.e., when the p

' term vanishes
7

Eq. (14) can be transformed into Iiessel's equation. '
One approximate procedure which has been used' to
overcome the difhculty for other than s states is equiva-
lent to replacing p

' by 1. The centrifugal energy can
then be taken together with e„' and solutions can be
obtained in terms of Bessel functions. This approxima-
tion, however, is fairly crude and the chief concern
here shall be to improve upon it. The improvement
considered here is based upon the assumption that

(15)
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Letting
(23)(19)x= exp((1 —p)/28),

the radial equation becomes

x'G"+xG'+ (k'x' —e')G =0
7

'I 50

, /
//', :

lj
/j

ff

I40

130

I20
/

/
/

/
/ /

/ r'
/ /

//
/ /

//
I/
I

I IO

IOO

90

Binding
one gy ~ 0-'@80

„I.
Eo y0

Ih-&

Qd

60

50

40

2$
50

20

IO

0

ls

0 20 40 60 80 IOO I20 I40
2ma$

l60 l80 200 C)

o
pa

Vo

Fr(:.3. Ener gy eigenvalues for the s uare
nht 1 th

' fi'te in nite spherical well eigenvalues

(+1)
For a given 8, 1, and k' Eq (24) and E

mination of e' and A
q ions for the deter-

an v. Actuall for pp'
ions ave been a lie

chosen in accord with h
pp ie, 8 and l are first

taken in accord with th
wit t e states unde r study and v is

g pe orders of ta

lt o l fo
en, q. (24) and E
or e and k . Sjnce v2 fi

tio ith ' determines Ep lt i let g
re ating ~ to 6

of interest.
g 6p throughout the range

p poses of solving K . 24For the ur
dk', th h f h

b tl di t}1 f 1}
grap of the values of

go q(),
q~ 2

sca e is prepared such that o
ml o o d o(1/

pressed scale then f h
s o 4P) units of

d 1

en or chosen valu

h d I
e may e positioned s
sea e corres on

a igntng the value of ( +—')'a t o v 2
' on the regular scale next

compressed scale.
prepared with an offs

d . e„t,
'

d is s i alon the
e e readings of th

e

( given by E . 23 ve.
lt 1 f thsi r e values of e"

1 1
'

d
'

move in relation to

A h
th

me ime, values of I.----dn '" f'ho t e basic sc
n s rea ily the P ei

in
eigenvalues. Having



ENERGY E I GENVALUES FOR SPR SPHERI CAL WELL 775

TAsLz Iz I. The values of n'(S)generated all the e" d k
'

one advances to th
pan k" values for

o e next v for the sam
or a given v and 1)

p
y, ies of relationships be-n is wa a ser

or each / is developed.

do
t is noteworth y that the values of e"

td d th
translate from

on e constant
an ' into eo' and e ' )

tb t blihd

a 0
0!

0.1 0.2 0.3
0.3349o. 0.8264 0.6466 0.4744

0.4 0.5
0.2214 0.1280

Foror nonzero values of b h, t erule

pi=1+&+0 1

l50
/II
/I

jI
/I

j/ j
,
"I

~~as I

I /I

/
II

I I/i~~'!!
'll I/

2(

(27)j
To obtain a reasonable value for n', the ri

o ve or n', Eq. (27) then becomes

n'= PEP(e„)—e„'j/l(l+1 .

l30

l20

I I 0

) (2g)

Substituting into this for a ran e of va
b 1 h h d

IOO

SO

Binding
«g 80

+ 70

ene'rgy 0.

4. ADJUSTMENT OF n'

The form chosen for Eq. (15 insures

was c osen as the simplest result wh'

(31)

msures the agreement
e t si es at p=1.

is sim le rule
'

o. may be related to

h a bi rar h

b
a e o a second point at whic

rary; owever, since onl a
is involved here it

b
o ing this point ead to aPPreciabl rro

e p aced in the form

a2 — 2—e

s an improvement over the usua

—
pg 5 . 26 1 h d

p y 1 which is

e a justment roblem

n point of agreement at in

p em has been reduced function n'(8). Value
]

in q. (15).

are given in

S. RESULTS AND DISCUSSI

y takes advantage Th "
8=0 b ol d tl

p

case was studied caref ll

p o
w e translated into e" vs c ' r

b t 'o ithFi . 3 T
th 11 1 7 f

e o interest in nuclear h

g, 5, 6, d

ear p ysics. 8=0 the
F q (18) dmte th t ~ 00 thd 1 d it b

.h Sis . ince J~~O =

e y more than a line w'dth fe m
'

wi rom

ia e y rom Eq. (22) that
)

—G,'/G, =r e '+l(l+1) ' -*

l40

o.'=0.82645 for 8=0)

was chosen as ann appropriate one. p
ss-over point at

p=1.1=1+0.1 for 5=0. (30)

60

50

40

2,d
/

/
/

/
/

I
/

This choiceice was made not onl be
b 1 bso ecause it works p

o ~„, the region for whic
on. is region of &

'
u p

es in applications of the
ic e inding ener ies ang

r ingy, it would seem best

30

lo

0
le

0 20 40 60 SO l00 l20 140
2 2 2

l60 l80 200 Q7

8e ma
V0 g2 0

Fxo. 4. 4. Eigenvalues for 5=0.1.



776 GREEN K. LFE

the corcorresponding analytical ei enfuny 'ca eigenfunctions prove help-
nuc ear problems fur, urther efforts toward

t fi t
wou certainly be warr

nernents may be ac
'1 bavaia le tables of Besse

' . s
o suc a calculation it can

t 1 1 t h'es a w ich various

the curves shown in F' 3 I
the results for 8/0

'n ig. t must be remembered that
but are approxi-are exact for s states

rst-or er perturbation theory
e energy eigenvalue in n

be estimated to be
in natural units may

J
G 'Lp ' n—' (—1—n') exp (1—p/i1)]dp

ho„'= l (1+1)
gi oo)/jo(oo)=oo ' —~ (2~ ~ o,oo o 25oo), (33)1

Jt' G, d, +
0

G,'dp
where j& andj& d j0 are spherical Bessel f

'nary esse} functions. U
'

1

1 1 h
1 i 1 o fi h

e approximate e v
o re ne them to four o

fi t fi by interpolation. The r
a ion are given in

values are listed because o ss

a in t e Barschall neutr
surface" On the "diG

utron cross section
e i use-cloud cr s

ering the observed low
at A = 11, 55 and 150

ow velocity maxima

to the 2s, 3s and4
would be ex ep cted to correspond

s, an s critical ~0 values for the
t he ers, ence the "well strengths" in

(32)

140

l30

By virtue of the vanishing of theo e perturbation at p=1

005 h
' d'

. , t e actor in the bracke
rme iate re ion w

'g, hich s the region

lar e Ac ord' 1 the o is

b f d b deyon p=1. Since is exp

pxima ion is ex ected t
i y, uantitative estimates usin

bt t t }1

st geofo rkno ld ofth
an iate t is statement. At h

eigenvalues given in F . 3—7

w e ge o the nucleus the a roapproximate

accurate so that their
in igs. 3—7 should bbe sufhcient}y

a t eir further refinement
If th ese approximate eigenvalues and

l40

l30

l20

1 I 0

l00

90

ne 80
I

7O

60

50

40

30

20

SiItding
ene rgy= 0-

-02
jl

I li

0t I /I

lg

2p

2S
Id

20 I II
I II

(( II( (I
(

I II i(I ('

7/
o.-. /j
1h

'
/

2d
/ /
/

/ /
/ /'/ /

/
/

//

120

l lo

100

~~ 80
I

70

60

SO

40

30

8indino
energy~0. ~

2t

2p

qf

2S
ld

I II(I

I II
I I(I (.

(
( I(
( I(' ll'

t(I /

(

. IIl
I ~

'I /
( /
j /

/
//.

/ /
/

/
/

/ //
/

tS

80 100 120 l40 160

2ma

lp

00 20 40 60 180 200

IO

00 20 40 6060 80 lOO 120
2mae

Ve -"'
I'&G, 5. Eigenvalues for

lp

140 160 IBO 200

Fyo. 6. 6. Eigenvalues for 6=0.3.
8 Tables o 8phencal Besse/ FunP, N Yok 194'I V

Fttnctgn (Dove Publ'catam i, Bessel Eu

'0H H Bar

PN u ications, Inc. , New

. H. Barschall, Phys. Rev. 86 43& 1952).



ENERGY EIGENVALUES FOR SPHERICAL WELL

TABLE II. The critical 6p values for the s states.

0
O. i
0.2
0.3
0.4
0.5

.o(Cs)

1.571
1.428
1.307
1.202
1.111
1.031

to (2s)

4.712
4.272
3.855
3.454
3.081
2.761

~o(3s)

7.854
7.084
6.204
5.371
4.747
4.280

.o(4s)

10.996
9.825
8.370
7.324
6.554
5.896

l40

l30

l20

IIO

g=.4

any one column are effectively equivalent from the
standpoint of these observations.

In a number of other instances, it is possible to
arrange the calculations to take advantage of existing
tables of Bessel functions for the refinement of the
approximate eigenvalues presented in Figs. 3—7. How-
ever, with the advent of high-speed digital computers,
the best way of refining the eigenvalues would probabla y

b n
e to solve the exact radial wave equation dire tlC

y numerical methods. Here again, the eigenvalues
shown in Figs. 3—7 should be helpful by providing
starting points which will greatly speed up the calcula-
tions. " Indeed one might expect that this family of
eigenvalues and their analytical eigenfunctions might
provide good initial approximations for the investiga-
tion of any other potential functions similar in general
shape to the exponentially diffuse spherical well cases
treated here.

In conclusion, it is important to note that the infinite
spherical well eigenvalues provide a poor representation
of the finite spherical well eigenvalues in the range of
es' values of interest in nuclear physics (certainly less
than 200). When the boundary is made disuse to a
moderate degree the infinite spherical well eigenvalues
are hopelessly inaccurate. Thus the numerous theoretical
results in the nuclear literature which are based upon
t e infinite spherical or cubic well approximations must
clearly be treated with great care. Even the finite square
spherical well eigenvalues differ considerably from the
dieu bi use boundary eigenvalues, particularly in the region
of small energies, which is the region of greatest in-
terest in nuclear physics. " Accordingly, one might

"The writer is indebted to Dr. %'ard C. Sangren of the Oak
Ridge National Laboratory Mathematics Panel for an illuminating
discussion relative to this point.

"In examining the influence of an increase in the diffuseness
parameter b one must, of course, reduce the radius parameter a
(hence increase the natural energy unit Eo) and the well strength
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hope that some of the well-known difficulties of the
independent-particle model based upon square well

eigenvalues and eigenfunctions might be removed by
the use of the diffuse boundary eigenvalues and

eigenfunctions. .
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parameter ep in order to preserve an effective radius and an
effective well strength defined by a particular set of experimental
observations. Similar considerations are applied in the so-called
s ape-independent treatment of two-nucleon systems in which the
critical is well strengths of various types of potentials are placed
in correspondence. In the study of complex nuclei, the best pre-
scriptions for a(s) and eo(s) will depend upon the intended
application.


