PHYSICAL REVIEW

VOLUME 99,

NUMBER 3 AUGUST 1, 1955

Energy Eigenvalues for a Spherical Well with an Exponentially Diffuse Boundary*

Arex E. S. GreeN AND Kruck Leef
Department of Physics, The Florida State University, Tallahassee, Florida

(Received March 23, 1955)

The discrete energy eigenvalues of a spherical well with an exponentially diffuse boundary are obtained
to a good approximation for a range of well parameters of interest in nuclear physics. The method used in-
volves replacing the centrifugal energy in the exponentially diffuse region by an approximate expression
which leads to analytic solutions of the wave equation. The matching of the internal and external wave
functions is then accomplished by the use of specially prepared graphs and tables. The eigenvalues and
eigenfunctions are thought to be of interest in connection with studies of the independent particle model

of the nucleus.

1. INTRODUCTION

NUMBER of recent studies' have stimulated

interest in the problem of a single particle in a
central field with a diffuse boundary. While most of this
interest has been in connection with the positive energy
states of the continuum, nevertheless the bound states
are also of considerable importance. In this paper, an
approximate method is developed which appears to be
adequate for the range of well parameters encountered
in nuclear physics.

The solution of the square spherical well eigenvalue
problem is an essential preliminary phase of the approxi-
mate method of solution of the diffuse boundary
problem. Accordingly, this older problem, which has
been solved earlier in the literature,* will be considered
briefly first.

2. EIGENVALUES FOR THE SQUARE
SPHERICAL WELL

The radial wave equation for the /th state of orbital
. angular momentum for a central field characterized by
the potential V() may be placed in the form

&G/ dr+ Qm/B)[W—V (1) =12 (+1)/2m?]G=0, (1)

where G=7R and R is the radial wave function. For
the study of the spherical well of depth ¥y and radius a,
it is convenient to let ¢ serve as a unit of length,
Ey=7%%/2ma? serve as a unit of energy and to define
the dimensionless parameters:

€,2=—W/E,, (2)
e?=V o/ E,, 3)

and
€2= ¢l — €,%. ©Y)
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Letting p=7/a, the radial wave equation becomes

G'+[?—1(+1)p2]G=0, p<1 (5)
and
G"—[e+10+1)p72]G=0, p>1, (6)

where prime denotes differentiation relative to p. The
internal solution which is well-behaved at p=0 is

Gi=Ap T 113(€p), (7

where J denotes the usual Bessel function and A4;
denotes a normalization constant. The external solution
which is well-behaved as p—c may be expressed in
terms of modified Hankel functions. Denoting these
functions by K4 the external solution may be written as

G.=4 eP%KH%(ewp)- (8)

The ¢, eigenvalues are obtained without considera-
tion of the normalization constants by imposing the
requirement that at the boundary,

p=1, —Gil/G@':—Ge'/Ge or Il(ﬁ,)=El(€w)» (9)

where I;(¢') and E;(e,) are defined as the negatives of
the logarithmic derivatives of the internal and external
radial wave functions.

To facilitate the solution of this transcendental
equation subject to the condition imposed by Eq. (4),
tables and graphs of I, and E,; have been prepared. In
this effort, use was made of the recurrence relations:

1, (x) =]— (x2/I;_1+l), (10)
Ez(x)=l‘|’ (xz/E,*ﬁ—l), (11)

which follow from the usual recurrence relations between
Bessel functions. Using Eq. (11) and

Ey(x)=ux, (12)

the higher integral order E;(x) were generated. To
obtain higher order I;(x) including nonintegral orders
which are needed in Sec. 3, tabulated Bessel functions
for orders between —1 and +1 were first used to
generate the corresponding I; functions. Then Eq. (10)
was used to generate the higher order functions. In Fig.
1 and Fig. 2 the values of various I;(x) and E;(x) are

plotted at abscissas corresponding to 2. These graphs
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Fi1G. 1. The function /;(x) plotted against 2. Labels within the graph denote /. The second set of curves
which start at 7= 420 correspond to the right scales.

greatly facilitate the task of obtaining functional rela-
tions between e,? and e? for various #’s which simul-
taneously satisfy Eq. (4) and Eq. (9).

Figure 3 contains the results of the work with the
square well potential. The form of presentation of the
eigenvalues follows that of Moszkowski® who has pre-
pared a similar graph for a somewhat narrower range
of the well range parameter. Essentially, Fig. 3 repre-
sents the energy eigenvalue in units of Ey, measured
relative to the bottom of the well. For a given state
this parameter has a far smaller range of variation as
&’ is changed than e,? which corresponds to the actual
energy. Furthermore, these €2 values go over to the
results of the infinite spherical well as e? goes to
infinity. The €% eigenvalues for the infinite spherical
well case are obtained simply by imposing the require-
ment that J;,;(¢)=0. These €2 eigenvalues for the
infinite case results are shown on the right side of Fig. 3.
Some noteworthy points which are apparent in Fig. 3
are the 3s—1% and 1j—2g cross-overs as well as the
fact that the approximate equality in spacing of the
low-lying levels breaks down above the 1g state.

3. SPHERICAL WELL WITH AN EXPONENTIALLY
DIFFUSE BOUNDARY
In this section, a continuous central potential is
assumed which changes at »=a from a constant —V, to
V(r)=—V,exp[ (a—7)/dal. 13)

The dimensionless parameter 6 characterizes the “short-
ness” of the exponential “tail”. The case §=0 is simply
the case discussed in the previous section. The form of

5S. A. Moszkowski, Phys. Rev. 89, 482 (1953).

the interior radial wave equation and its solutions are,
of course, unaltered from those developed in the
previous section; however, the dimensionless radial
equation for p>1 in this case is

G+ e exp(1—p/8)—L(+ 1) — e, 1G=0.

Because of the presence of both the exponential and
p~2 terms, Eq. (14) cannot be reduced to any of the
well-studied differential equations. It is, however,
known that for s states, i.e., when the p=2 term vanishes,
Eq. (14) can be transformed into Bessel’s equation.®
One approximate procedure which has been used’ to
overcome the difficulty for other than s states is equiva-
lent to replacing p=2 by 1. The centrifugal energy can
then be taken together with e,? and solutions can be
obtained in terms of Bessel functions. This approxima-
tion, however, is fairly crude and the chief concern
here shall be to improve upon it. The improvement
considered here is based upon the assumption that

pm~a’+ (1—a?) expl (1—-p)/3], (15)

where the constant o? is chosen to accomplish the best
match of the function on the right to the function on the
left over the external region of importance. Thus, the
‘“centrifugal”” energy in the external region is absorbed
into the exponential tail and the total energy. The
external radial wave equation now becomes

482G+ {B exp[ (1—p)/6]—n2}G=0,  (16)

e P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), Part II,
Chap. 12.

7B. J. Malenka, Phys. Rev. 86, 68 (1952).

(14)
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where the prime here denotes differentiation relative
to x. The solution of this equation which is well behaved
as p—o, i.e., as ¥—0 is

Go=A.J,(kx)=A J . {k exp[ (1—p)/257}. (21)

The negative of the logarithmic derivative of the ex-
terior function at p=1 is thus

—G//G.=kT, (k)/267 (k)
=3[n—kJ i1 (k)/Tn(k)].

Introducing »=#—3, the negative of the external
logarithmic derivative takes the form

E,(k8)=—1,(k)/26—1/48, (23)

where I,(k) is precisely the function introduced in
Eq. (9). The eigenvalue equation for the present case
thus becomes

1€)==, (8)/251— (1/49)

The parameters involved in this equation are subject
to the requirements imposed by Eq. (4), Eq. (17), and
Eq. (18). These may be combined into

?=[R—(v+3)2]/482+1(+1). (25)

For a given §, /, and 2, Eq. (24) and Eq. (25) may be
regarded as two simultaneous equations for the deter-
mination of ¢ and ». Actually, for the application to
which these solutions have been applied, 6 and / are first
chosen in accord with the states under study and » is
taken in accord with the orders of tabulated or graphed
I functions. Then, Eq. (24) and Eq. (25) are solved
simultaneously for €2 and £2. Since »? fixes €,?, and €2 in
conjunction with e,* determines eg?, it is possible to gen-
erate the curves relating €2 to ? throughout the range
of interest.

For the purposes of solving Eq. (24) and Eq. (25) for
¢’? and #% the graph of the values of I functions may
be utilized in the following way. According to Eq. (25),
€% is a linear function of k? with the slope (1/48%). If a
compressed scale is prepared such that one unit on the
€’ scale corresponds to (1/46%) units of €2 on the com-
pressed scale, then for chosen values of » and ! the
compressed scale may be positioned so that any ¢? on
the compressed scale corresponds directly to %% on the
basic scale. This may be accomplished simply by
aligning the value of (v+3)? on the regular scale next
to I(i+1) on the compressed scale. Next, a compressed
vertical scale is prepared with an offset index so that
as the index point is slid along the center axis of the
horizontal scale the readings of the curve correspond
directly to E,(k,5) given by Eq. (23). Now to solve .
simultaneously for the values of €2 and k* the special
vertical scale is moved in relation to €2 values listed
on the horizontal scale and readings of the »th curve are
taken. At the same time, values of I;(¢) are read at
the corresponding ¢? of the basic scale. Proceeding in
this way, one finds readily the € eigenvalues. Having

(22)

(24)
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generated all the ¢ (and %?) values for a given » and /,
one advances to the next » for the same / and repeats
the procedure. In this way, a series of relationships be-
tween € vs »? for each / is developed.

It is noteworthy that the values of €2 so obtained
do not depend upon the constant «?. However, to
translate from ¢’2 and k2 into &? and ¢,?, a value of o2
must be established.

4. ADJUSTMENT OF «?

The form chosen for Eq. (15) insures the agreement
of the right and left sides at p=1. Clearly, therefore,
a? may be related to a second point at which agreement
between these functions is imposed. Denoting this point
by p1, Eq. (15) may be placed in the form

o?=[pr2—exp(1—p1/8)]/[1—exp(1—p,/5)].

Thus, the adjustment problem has been reduced
essentially to the problem of arriving at a prescription
for the second cross over point between the functions
characterized in Eq. (15).

The procedure used in this study takes advantage
of the fact that the case §=0 can be solved exactly, as
well as by the approximation method. Therefore, this
case was studied carefully in an effort to find how best
to accomplish the adjustment of o? for the small values
of & which may be of interest in nuclear physics.

Equation (17) and Eq. (18) indicate that as 6—0
both the order, #, and the argument, %, of the external
radial function vanish. Since J;(0)=0 and J,(0)=1, it
follows immediately from Eq. (22) that

—G//Go=[e+1(+ 1)

To obtain a reasonable value for o2, the right side of this
equation was equated to the function E;(e,) derived
in Sec. 2. When solved for o2, Eq. (27) then becomes

?=[E2(ew)— e 1/1(1+1). (28)

Substituting into this for a range of values for €,? and
! it became clear that the values of o? so obtained varied
only slightly (in the range from 0.8 to 0.9). The final
constant,

(26)

@7

«?=0.82645 for 8=0, (29)

was chosen as an appropriate one. This corresponds
to a second cross-over point at

p=1.1=140.1 for §=0. (30)

This choice was made not only because of its con-
venience but also because it works particularly well for
small values of ¢,% the region for which Eq. (27) is
most sensitive to o2, This region of ¢,? values is particu-
larly of interest in applications of these results to the
study of particle binding energies and nuclear transi-
tions. Accordingly, it would seem best to favor this
region in an adjustment.
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TaBLE 1. The values of o2(5).

) 0 0.1 0.2 0.3 0.4 0.5
o 0.8264 0.6466 0.4744 0.3349 0.2214 0.1280
For nonzero values of §, the rule

p1=1464+0.1 (31)

was chosen as the simplest result which goes over to
Eq. (30) for §=0. This simple rule is admittedly some-
what arbitrary ; however, since only a small correction
is involved here, it is difficult to see how Eq. (31) can
lead to appreciable errors. Most certainly this procedure
represents an improvement over the usual approxi-
mation of replacing p~2 by 1 which is equivalent to
making the second point of agreement at infinity. In-
serting Eq. (31) into Eq. (26) leads immediately to the
function o2(8). Values of this function are given in
Table I.

5. RESULTS AND DISCUSSION

The €2 vs v and /, and %* »s » and / relationships
arrived at by the procedure described in Sec. 3 may
now be translated into €? vs € relationships for com-
parison with Fig. 3. These are shown in Figs. 4, 5, 6, and
7 for 6=0.1, 0.2, 0.3 and 0.4, respectively. For case
6=0, the eigenvalues arrived at by the approximate
method rarely deviate by more than a line width from
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the curves shown in Fig. 3 It must be remembered that
the results for 6540 are exact for s states but are approxi-
mate for p, d, . . . f. By first-order perturbation theory
the error of the energy eigenvalue in natural units may
be estimated to be

f Lo — o~ (1—a?) exp(1—p/8)1dp

1 0
f G 2dp+ f G 2dp
0 1

By virtue of the vanishing of the perturbation at p=1
and p=14640.1, the factor in the bracket is less than
0.05 in the intermediate region, which is the region
within which the external wave function is significantly
large. Accordingly the error is expected to be less than
0.05/(J+1) f, where f is the probability for the particle
being found beyond p=1. Since f is expected to be
considerably less than 1, the error in e,? due to the
method of approximation is expected to be considerably
less than unity. Quantitative estimates using numerical
integration substantiate this statement. At the present
stage of our knowledge of the nucleus the approximate
eigenvalues given in Figs. 3-7 should be sufficiently
accurate so that their further refinement at this time
is unnecessary. If these approximate eigenvalues and

Ae?=1(1+1)

(32)
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F1c. 5. Eigenvalues for 6=0.2.
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the corresponding analytical eigenfunctions prove help-
ful in resolving nuclear problems, further efforts toward
refining them would certainly be warranted. In many
instances refinements may be accomplished by the
direct use of available tables of Bessel functions.®? As
an illustration of such a calculation it can be shown that
the critical ¢, values at which various s states of binding
set in, satisfy

F1(€0)/ Jo(€0)=€c1—J1(20€0)/ T 0 (20€0),

where j; and j, are spherical Bessel functions and J;
and Jy are ordinary Bessel functions. Using the graphical
results to locate the approximate e, values, it is rela-
tively simple to refine them to four or even five sig-
nificant figures by interpolation. The results of this
particular calculation are given in Table II. These
€0 values are listed because of their possible usefulness
in connection with the interpretation of the low
velocity maxima in the Barschall neutron cross section
surface.’® On the “diffuse-cloudy crystal ball” model of
neutron scattering the observed low velocity maxima
at A=11, 55 and 150 would be expected to correspond
to the 2s, 3s, and 4s critical ¢ values for the appropriate
diffuseness parameters, hence the “well strengths” in

(33)
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8 Tables of Spherical Bessel Functions (Columbia University
Press, New York, 1947), Vols. 1 and 2.

9 E. Cambi, Bessel Functions (Dover Publications, Inc., New
York, 1948).

10 . H, Barschall, Phys. Rev. 86, 431 (1952).
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TaBLE II. The critical € values for the s states.

e (1s) € (2s) €0 (3s) €o(4s)

0 1.571 4.712 7.854 10.996
0.1 1.428 4.272 7.084 9.825
0.2 1.307 3.855 6.204 8.370
0.3 1.202 3.454 5.371 7.324
0.4 1.111 3.081 4.747 6.554
0.5 1.031 2.761 4.280 5.896

any one column are effectively equivalent from the
standpoint of these observations.

In a number of other instances, it is possible to
arrange the calculations to take advantage of existing
tables of Bessel functions for the refinement of the
approximate eigenvalues presented in Figs. 3-7. How-
ever, with the advent of high-speed digital computers,
the best way of refining the eigenvalues would probably
be to solve the exact radial wave equation directly
by numerical methods. Here again, the eigenvalues
shown in Figs. 3-7 should be helpful by providing
starting points which will greatly speed up the calcula-
tions.”! Indeed one might expect that this family of
eigenvalues and their analytical eigenfunctions might
provide good initial approximations for the investiga-
tion of any other potential functions similar in general
shape to the exponentially diffuse spherical well cases
treated here.

In conclusion, it is important to note that the infinite
spherical well eigenvalues provide a poor representation
of the finite spherical well eigenvalues in the range of
€’ values of interest in nuclear physics (certainly less
than 200). When the boundary is made diffuse to a
moderate degree the infinite spherical well eigenvalues
are hopelessly inaccurate. Thus the numerous theoretical
results in the nuclear literature which are based upon
the infinite spherical or cubic well approximations must
clearly be treated with great care. Even the finite square
spherical well eigenvalues differ considerably from the
diffuse boundary eigenvalues, particularly in the region
of small energies, which is the region of greatest in-
terest in nuclear physics.”? Accordingly, one might

11 The writer is indebted to Dr. Ward C. Sangren of the Oak
Ridge National Laboratory Mathematics Panel for an illuminating
discussion relative to this point.

2 Tn examining the influence of an increase in the diffuseness

parameter & one must, of course, reduce the radius parameter a
(hence increase the natural energy unit E,) and the well strength
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F1c. 7. Eigenvalues for §=0.4.

hope that some of the well-known difficulties of the
independent-particle model based upon square well
eigenvalues and eigenfunctions might be removed by
the use of the diffuse boundary eigenvalues and
eigenfunctions.
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parameter € in order to preserve an effective radius and an
effective well strength defined by a particular set of experimental
observations. Similar considerations are applied in the so-called
shape-independent treatment of two-nucleon systems in which the
critical 1s well strengths of various types of potentials are placed
in correspondence. In the study of complex nuclei, the best pre-
scriptions for @(5) and e(5) will depend upon the intended
application.



