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Nuclear Energy Level Fine Structure and Configuration Mixing
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The departure of shell-model states from independent-particle states is investigated by means of trans-
formation methods developed in previous papers. The starting point in this paper is the many-body
Schrodinger equation for the nucleus in which the potential energy is assumed to arise from strong short-
range two-body interactions. As a consequence the shell-model wave function cannot be a solution of this
equation, however it can be related to the actual nuclear wave function by a suitably chosen transformation
operator. This operator preserves the energy and angular momentum of low-lying nuclear states; hence it
is possible to examine the splitting of energy levels in the shell model space. For a closed shell plus two or
three particles this is shown to originate primarily from perturbations due to two-body interactions between
the particles outside the shell. The methods used also give information about the nuclear wave function and
provide some justi6cation for the use of condguration mixing in determining nuclear magnetic moments.
It is noted that the successes of configuration mixing based on two-body forces provide evidence that two-
body correlations dominate over many-body correlations for many properties of the nucleus.

I. INTRODUCTION

~ ~HE independent-particle form of the shell model
has had many successes in classifying the proper-

ties of nuclei in their ground states. These successes
have suggested that small deviations from the pre-
dictions of the model, such as the departure of magnetic
moments from the Schmidt lines and the splitting of
energy levels, could be explained by introducing small
perturbing interactions which modify the independent
particle picture. Suggested interactions have been of
two kinds, (1) particle-to-particle interaction usually,
but not always, introduced for a small number of par-
ticles outside a closed shell, and (2) particle-to-surface
coupling associated with collective motion of a core of
nucleons.

At erst sight it seems strange that nucleon-nucleon
interactions, which appear to be strong in scattering
experiments, should give rise to almost independent-
particle motion in the shell model. Xt is perhaps even
more strange that particle-to-particle interactions should
be regarded as perturbations on the motion, since the
model appears to require weak interactions and yet the
perturbing interactions appear to be strong. In previous
papers' ' transformation methods have been developed
which relate the independent-particle model wave
function to the actual wave function. In this paper the
methods will be extended so that we can examine devi-
ations from this model. In particular, we shall show
that in certain approximations these deviations can be
obtained by introducing particle-to-particle interactions
to perturb the states of certain particles in the shell
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model. It should be noted that the approximations
which are made do not require a weak interaction
between nucleons; in fact the method which we use,
even in lowest approximation, takes into account many
of the strong correlations which exist in the nuclear
wave function.

The general problem we wish to investigate concerns
the energy level fine structure and the wave function
for a nucleus which contains a few nucleons more than
a closed-shell nucleus. In the independent-particle
model an inert core is assumed which corresponds to
the closed-shell nucleus. Then each energy level of the
model will have a degeneracy arising from the diGerent
ways the angular momenta of particles outside the core
can be combined to give the same total angular mo-
mentum. This degeneracy will be removed if a per-
turbing interaction between these particles is intro-
duced. Such a perturbing interaction will also lead to
mixing of different configurations and to modifications
in the magnetic moment predicted by the model. The
e6ects of these perturbations on the properties of the
independent-particle model have been investigated by
several authors, 4 ' and it is clear that these rednements
of the independent-particle model represent an im-
portant step towards obtaining a model wave function
which describes correctly low-energy properties of the
nucleus.

The aim of this paper is to try to understand, in terms
of the actual nuclear wave function, why it is that this
modified independent-particle model is able to predict
correctly certain nuclear properties, namely energy
level splitting and magnetic moments. The starting
point is the many-particle Schrodinger equation for the
actual nucleus and we assume strong interactions
between nucleons. The method for studying energy
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levels consists in expressing the energy of a nucleus
which contains A+2 nucleons in terms of the energy
levels of a nucleus having A+1 nucleons together with
an additional energy. It is then shown that this addi-
tional energy can be expressed as an interaction energy
if the following device is used. This device is to consider
'not the energy eigenvalues of the Schrodinger equation
for the actual nuclei but instead the energy eigenvalues
of nuclear models which are constructed to have the
same energy and angular momentum as the actual
nucleus for the states in which we are interested. We
find that the models correspond in a certain approxi-
mation to particles moving outside an inert core.

Corresponding to a nucleus consisting of A+1
nucleons, we obtain a model made up of a single particle
moving outside a core. There are correction terms to
the energy which are small when the nucleus containing
A nucleons is doubly magic (e.g. , Ca4'), but these
correction terms can be included if the energy levels of
the model are taken to be the empirical energy levels
of the actual nucleus. For the nucleus of A+2 nucleons
(e.g., Ca4'), the model consists of two particles outside
the core and we And that these particles interact both
directly and via the core. The interaction via the core
is found to be much smaller than the direct interaction.
The energy levels without these interactions can be
related to the energy levels of the single-particle-plus-
core model and they are degenerate due to the diferent
ways in which the angular momenta of the single-
particle states can be combined. In our model the direct
interaction term is diagonal in the states of the model
so gives directly an energy shift for' each state; these
energy shifts serve to split the otherwise degenerate
levels. We show that this level splitting is equivalent
to the splitting which would be obtained by the methods
of configuration mixing using a direct particle-to-par-
ticle interaction for the two particles outside the core.

In Sec. II we shall develop the consequences of an
application of a simplified form of the general tech-
niques which we have developed which is similar to the
approximation used in previous papers' on the satura-
tion problem. In Sec. III we shall discuss the structure
and interpretation of the wave function and then show
the extent to which the results of Sec. II can be related
to the approximation methods of Flowers, ' Pryce, '
Kurath, 4 Redlich, ' and Ford and I.evinson. ' In Sec. IV,
we shall return to the exact formulation of the problem
and show how various correction terms arise, what their
physical significance is, and the extent to which they
can be included in a simple approximation scheme fol-

lowing closely the methods developed in Sec. II. In
Sec. V we calculate the core coupling energy for two
particles outside a core interacting via the core par-
ticles. In Sec. VI we summarize our results and make
some concluding remarks.

Finally we note that throughout the paper we wi]l

make use of the effect of the exclusion principle on the
behavior of the particles in the nucleus and in the

nuclear models. Mathematically, therefore, we should
work with occupation numbers for the various states
other than in terms of particle coordinates, but this
would lead to a more complicated formalism and would
obscure the physical discussion. Fortunately there is
such a close correspondence' between the two Inethods
that it is unnecessary to depart from the formulation in
terms of particles, provided that we remember that the
exclusion principle operates both in actual states and
in intermediate states; this is the procedure adopted in
this paper. It must be pointed out, however, that in
actual evaluation it is necessary to make a translation
from particle description to state description together
with the appropriate introduction of second quantized
operators.

A. General Method

The Schrodinger equation for A nucleons is assumed
to be

A A

(2 T~+2 "1+(A)=~(A) (1)
i=1 i&j

We investigate the energy E for various numbers of
nucleons, not by comparing the Schrodinger equations
for the actual nuclei but by comparing the Schrodinger
equations for nuclear models which are chosen to have
the same energies as the actual nuclei.

The model wave function satisfies a Schrodinger
equation, '

A

[Q T +Vp]C'(A) =E@(A), (2)
i=1

and the relation between the actual nuclear wave func-
tion +(A) and the model wave function C (A) is

where
e(A) =Me (A),

M=1+(E—Q T~) 'Q 'v, ,M,
1 i+j

(3)

and
Vp(A) = (C (A), P n, ,MC (A)). (5)

i& j'

The model wave function can be taken to be a product
of single-particle wave functions, ' each corresponding to

II. DERIVATION OF ENERGY LEUEI SHIFTS IN
THE COHERENT APPROXIMATION

In this section we will consider the energy levels of
nuclei containing A+1, A+2, and A+3 nucleons. We
will use an approximation which is similar to that used
in reference 1, and we shall also assume that the nucleus
containing 3 nucleons is doubly magic. These simpli-
fications are not all necessary but are made so that we
can more clearly state the main features of the method.
A more detailed analysis of the approximations will be
made in Sec. IV where it will be shown that the general
conclusions are independent of a number of the sim-

plifying assumptions made in the present section.
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independent-particle motion. Thus the ground state of
the model will be obtained by filling up the lowest inde-
pendent-particle states according to the enclusion prin-
ciple, giving a fully occupied "Fermi sea." We shall
later require a model wave function which is the sum of
products of independent-particle wave functions which
is required to make it an eigenfunction of the total
angular momentum, but for the present can be inter-
preted simply as a product.

To. the approximation which we shall use in this
section, the model operator M can be replaced by the
operator Ii which is constructed from the following set
of equations' '.

1 A

F=1+—Q 'I, ,F;,, (6)
e i&2

1
Fg 1+ ——Q-'I F (7)

I „=nondiagonal part of t „,

t =v +v t-
e

A A

e=E gT; P—t.;;, — (10)

Vp(A) = (4 (A), P v;tF (4) (A) )

(12)

t, „=diagonal part of t „.

(The prime to the left of an operator indicates that
matrix elements to the ground state are to be omitted. )
The operators t;, are the reaction matrices for the two-

body interaction v;; constructed in the nuclear medium;
the t„; are analogous to forward scattering amplitudes
and the I;; to incoherent scattering. The propagator
"e "' describes the propagation of the nuclear particles
in the nuclear medium with the effect of many-particle
interactions appearing in the "potential" terms con-
structed from t,.

The potential Vp(A) for the model given by (5) can
now be written

The justi6cation for this series expansion comes essen-
tially from the operation of the exclusion principle in
the intermediate states of the last term of (13) and of
higher order terms in the series; thus the intermediate
states must lie above the occupied Fermi sea and this
causes large energy denominators in the integrals. A
more detailed and quantitative discussion of these
"correction" terms will be made in Secs. IV and V. We
will proceed now to consider a model for a nucleus con-
taining A+1 nucleons and we make the approximation
of taking for Vp(A+1) only the leading term in the
expansion corresponding to (13).

B. One Particle and Core

We consider the interaction of A+1 nucleons and
separate the interaction energy into parts associated
with one particle, with a core of A particles, and a
remainder. The purpose of this separation is to facilitate
comparison with the energies of A+2 and A+3 nucleon
systems. As noted previously, we consider the energies of
the corresponding nuclear models. The potential energy
Vp(A+1) for an (A+1)-nucleon system can be written
down analogously to Eq. (5). It is (using primes to
indicate quantities evaluated for the A+1 particle
system)

Vp'(A+1) = Vp'(A)+ Vg', (14)

where Up'(A) is the potential energy of the A-particle
core and V&' is the potential energy of the (A+1)th
particle in the Geld of the core.

A

Vi'=P(C (A+1), t„'C (A+1)).

The core potential energy Vo' is closely related to
the core potential energy Uo, it is not exactly the same
however for the following reasons: the addition of the
(A+1)th particle changes the properties of the medium
in which the core particles move. This change appears
through a change in the core propagators e ', and also
through a change in the nuclear volume. The latter
eGect is not explicitly present in the formalism we use,
the former appears explicitly in the reaction matrices
through the change

=(C(A), P t, FP( )A).
t,, =v;,+v, , t;;, —

e'
(16)

In deriving (12), terms of order 1/A compared with
the leading term are neglected. ' ' This expression for the
potential can be expanded by means of (7) as a series
in the incoherent reaction matrices I;;. The first two
terms of this series are

A

e =e+Ey T1—(i7)

where e' differs from e due to the presence of the
(A+1) th particle,

V, (A) =(e(A), P t;tC(A))
i( j'

( 1 1

+ P ~
C(A), 1; I, I,P(A) ~+-" .-(13)

i, j,k e e i

LA subscript "1"shown explicitly always denotes the
A(+1)th particle. ] We can see however that it is a
reasonable approximation to neglect the di6'erence
between e' and e since the extra term (E~—Tg Q / $g)

gives zero when acting on the ground state of the
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(A+1)th particle, thus any departures will only appear
as higher order eGects.

A second departure of the A+1 model from the A
model arises from the change in radius of the model
due to the presence of the extra particle. However this
radius has to be chosen to minimize the total energy
of the system so the core energy will not change to first
order, and we will neglect the change here.

The aforementioned approximations will be investi-
gated in more detail in Secs. IV and V where it will be
shown that the neglected terms (1) appear to be small,
and (2) they can be partly absorbed by taking empirical
values for the single-particle energy levels. With these
approximations, we 6nd for the energy of the system
of A+1 nucleons.

E(A+1)=E(A)+Ei,

where E(A) is the energy of a nucleus containing A
nucleons and Ej is given by

The double primes indicate that the expressions are to
be evaluated to include the effects of changes in core
volume and core propagators such as those discussed
for the system —one particle plus core, and the anal-
ogous changes associated with the extra two particles.
These effects we will again neglect for the present and
limit ourselves to noting the reasons why this is per-
missible: (1) the terms appear to be small as they
involve three-body (or higher order) correlations which
are reduced in magnitude by the operation of the
exclusion principle and by other properties related to
the closed-shell core, (2) some of the terms neglected
here will be absorbed in the single-particle energy levels
if empirical values of these are used when applying the
methods, (3) the small energy shift coming from the
core will not affect the relative spacing of the levels we
consider. Hence we can drop the primes on the terms
in (21), which means that the core energy becomes the
energy of the Ath nucleus.

In this approximation the total energy of the system

Ei= Vi+(C (A+1), TiC (A+1)), (19) ls
E(A+2) =Ei+E2+Vi2, (24)

Vi ——P(C (A+1), ti,4(A+1)). (20) where the extra term in the energy is

Vi2 ——(C (A+2), ti2C (A+2)). (23)
We note that these formulas have been obtained by

neglecting the following effects: (1) direct 3-particle
(and higher order) couplings including third-order core
polarization, (2) the change in the core propagators,
(3) the change in the nuclear volume.

C. Two Particles and Core

We next consider a system of A+2 nucleons, which
we will represent by two particles outside a core of A
particles. We will try to express the energy of this
system in a form equal to the sum of the energies of
two particles moving without mutual interaction in the
field of the core together with interaction terms which
couple the two particles together and remove the
degeneracy of energy levels of a system containing two
noninteracting particles. The value of this form for the
energy is that it facilitates comparison with the energy
levels given by a single particle and a core.

The potential energy for the system of core-plus-two
particles neglecting three- (or more) body correlations
and also neglecting "1/A" terms, takes the form

where

Uo(A+2) = Uo" (A)+ Ui"+ Ug"+Vi2", (21)

Uo" (A) =Q (C (A+2), t„;"C(A+2)), (22)

and V&", V2" are given by expressions analogous to
(20) but with the modified two-body reaction matrix
t;;".The term V&2" is defined by

C (A+2) =C (A)~(1,2), (26)

where C(A) is a wave function for a zero angular
momentum core. The outer two particles have a wave
function which is the appropriate combination of shell-

model wave functions to make up an eigenfunction of
the total angular momentum. If for example, the state
being filled by particles 1 and 2 have single-particle
angular momentum j,j', then the wave function P(1,2)
will be (neglecting antisymmetrization)

Qg"(1,2)= p C(j, j', mi, m2~ J, j, j', m)

~y ~~(1)y '~~(2) (27)

In this representation, the energy shifts given by V~~

pan be labeled by the total angular momentum, and are

This term will depend on the state of the two extra-core
particles and thus will remove the degeneracy of the
energy levels of the two particles moving without direct
interaction in the 6eld of the core.

To make this result more explicit, we next consider
the form of the model wave functions C (A+2). Up to
this point we have assumed this to be a product func-
tion; this, however, is not quite sufhcient since it is not
possible to form the correct functions of angular mo-
mentum in this way. We must instead choose the wave
function so that it corresponds to a definite total angu-
lar momentum. We will for simplicity take the Ath
nucleus to be a closed shell and assume that the model
wave function C (A+2) is a product

(23) AE (J)=(y (1,2), t,y "(1,2)). (28)
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In Sec. IV we will consider further the interpretation
of the energy shifts AE(J).

'

The energy shift AE, ' for a given state (t. , (1,2,3) of the
outer three particles is given by the last two terms of
(29), where

(
1 1

Ig2—I23—I3i
e e

(t,)2)= (Q, (1)2,3)) 3)2$s(1,2)3)), (30)

1 1
=

~
(t s(1,2,3), Ig~—I23—Iaaf s(1,2,3) ~. (31)

In the next section we will consider the relation between
this energy shift and that given by (28) for two particles
outside a core.

III. INTERPRETATION OF THE %AVE FUNCTION;
RELATION TO CONFIGURATION MIXING

In this section aN in Sec. II we shall restrict ourselves
to consideration of the simplified predictions of the
coherent model. We shall erst consider the nuclear

-wave function and its relation to the shell-model wave
function. We will then consider the energy shifts
derived in the previous section and show that these
are equivalent to the energy shifts which would be the
result of introducing a perturbing potential into the
shell-model states.

A. Structure and interpretation of the Wave
Function

For simplicity we will consider a nucleus correspond-
ing to one particle and a closed-shell core in the shell-
model picture, since the problems we wish to discuss
are all present in such a nucleus. In particular, we will
discuss the relation between the nuclear wave function
4' and the shell-model wave function C, and see how

D. Three Particles and Core

The same techniques as those used in the preceding
paragraphs can be applied to a nucleus containing
(A+3) nucleons. If the approximations associated with
the closed-shell nucleus of A nucleons are still valid for
three particles additional to the core, it will still be
possible to neglect coupling via the core. However there
will now be three-body correlations involving only the
three outer particles and these must be taken into
account in the fine structure related to the state of
these three particles. Then we have to include part of
the last term in (13) and the energy E(A+3) will be
given by

E(A+3) =E(A)+E&+E2+E3+((tp)2+$.23+43i))

1 1
+ ( I„I„I, (+psr—sss—tstioss)+ . (29)

E e e
A

F) =1+—Q I);+. (33)

Thus F~ introduces correlations between the nucleon 1
and all the core nucleons through the incoherent
operators I~;. This means that Fgg(1) appears to depend
strongly on the state of the core nucleons, and cannot
be simply regarded as a single-particle state. This
contrasts with the shell-model interpretation that a
particle outside a closed shell appears to move simply
in a single-particle state (for the closed shells 0" and
Ca4')

The complicated relation between the extra nucleon
and the core can be described as a polarizing effect on
the core due to the strong short-range forces between
the extra nucleon and the core nucleons. Therefore the
nucleus would appear to consist not only of a sym-
metrical core plus a single-particle state but also will
contain appreciable admixtures of higher excited states
of the core and single particle.

We shall now attempt to relate this result to the
predictions of the shell model for a "closed shell plus
one" nucleus. There is no difficulty about the assign-
ment of total angular momentum and parity, as these
are invariant under the F~ transformation. The prin-
cipal difhculty of interpreting our result that the
presence of the extra nucleon must lead to appreciable
mixing between the single-particle and core states
arises in connection with magnetic moments. If we are
to avoid qualitative disagreement with experiment we
must show at least that this mixing need not appreciably
acct the magnetic rnornent.

We note first an essential difference between the
Hamiltonian operator from which we deduced the
mixing of states and the magnetic moment operator
which seems to indicate the purity of states. The
Hamiltonian is a very singular operator and slight
departures from the true wave function will cause very

far the differences between the wave functions a8ect
our interpretation of the model.

The most profound difhculty which prevents identi-
fication of + with the independent-particle wave func-
tion C arises from the existence of strong short-range
interactions between nucleons. As a consequence of
these strong interactions a product wave function like
C is nowhere near to being an approximate solution of
the Schrodinger equation for the nucleus. Conversely,
even for a closed-shell core it is not possible to write 4
approximately as a product of a single-particle wave
function and a core wave function and still have an
approximate solution of the Schrodinger equation.
Thus, if we write

@(A+1)=: F,g(1)+(A), (32)

we can obtain an approximate solution of the Schro-
dinger equation only by taking F~ to be an operator
of the form Lsee Eq. (6)]:
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large deviations in the energy; in contrast, the magnetic
moment operator is not singular and will be relatively
insensitive to the use of an approximate wave function.

Since the magnetic moment does not depend on these
very 6ne details of the wave function, it is sufhcient to
consider why it may be little affected by mixing of
shell-model states, rather than trying to look at de-
partures from the actual nuclear wave function. In the
framework of the shell model the following argument
has been pointed out to us by C. A. Levinson. An
examination of the spins and parities of the core states
of Ca", for example, shows that even if the actual wave
function for 41 nucleons contains appreciable admix-
tures of excited core states, there will be no first order
effects on the magnetic moment. This can be con-
trasted with the situation for the doubly magic Pb"'
plus one nucleon where core admixtures are not only
appreciable, but as has been shown by Blyn-Stoyle and
Perks, ' the mixture leads to 6rst order corrections to
the independent-particle magnetic moment, bringing it
to a position approximately midway between the
Schmidt lines. We note also that the foregoing argu-
ment is probably reinforced by various other special
eRects, including (for Ca" or 0"plus one nucleon) the
greater orthogonality of core and particle states and
also the large denominators which reduce the inQuence

of distant excited states.
The foregoing qualitative discussion indicates that it

is not unreasonable to assume that the mixing of states
which is required for the actual nuclear wave function
to satisfy the Schrodinger equation may, for certain
nuclei, have only a slight inhuence on the independent-
particle magnetic moment. However, in using the
methods discussed in the paper to compare neighboring
nuclei, it would be very desirable to reinforce the afore-
mentioned arguments that the magnetic moment of Ca"
should lie on the Schmidt lines by direct observation.
Then one could use the empirical knowledge of the
magnetic moment somewhat analogously to the empiri-
cal energy levels for predicting the properties of Ca4'.

We shall now proceed to consider the relation of the
results of Sec. II to the methods of con6guration

mixing, and in our discussion we will assume that the
single-particle states outside the core can be regarded
as nucleon states to the extent that they have the same

magnetic moments. This does not in&Ply that the Particle

states and nucleon states are riot quiche diferent with regard

to other obserw, bles.

B. Relation to Con6guration Mixing

In Sec. II we have derived formulas for the energies
of nuclei containing A+1, A+2, and A+3 nucleons

in an approximation depending to some extent for its
validity on the nucleus with A nucleons being a closed
shell. These approximations have indicated that only

6 R. J. Blyn-Stoyle and M. A. Perks, Proc. Phys. Soc. (London)
A67, 885 (1954).

the direct particle-to-particle interaction need be con-
sidered for the particles outside the core corresponding
to the closed-shell nucleus. This particle-to-particle
interaction leads to energy shifts in comparing the
states of two and three particles outside the core with
the corresponding one-particle states. These energy
shifts have been derived in a form which we will now
proceed to show is equivalent to the energy shift
coming from introducing a perturbing potential into
shell-model states.

We consider 6rst the energy shift due to the mutual
interactions for two particles moving in the average
field of a core. The two-particle Schrodinger equation is

where
(Hp+»p)Q=EP,

2 2

Hp=g T;+Q V;,
i 1 i=1

(34)

(35)

and V, denotes the effective core fields at the points xi
for the model. We compare this with the equation with
vl2 absent,

(Hp+ AE)fp =EPp.

Provided that
~E= (A,»p1t),

the solutions are related by

Q=QPp,

where the operator 0 is de6ned by the equation

Q=1+(E—Hp) ' '»pQ.

The energy shift hE is given by

(36)

(37)

(38)

(39)

where

AE= Q p, »pQPp)

(1t p)11 p)q

p12+ V12 (E Hp)

(4o)

(41)

Consequently the energy shift AE given by (41) is the
same as the energy shift AE, given by (28) provided
that (1) the potentials V; in (35), are equal to the
single-particle potentials given by (20), and (2) the
shell model wave function Pp in (41) is taken to be the
same as the model wave function P, (1,2) in (28). With
these potentials and wave functions we see that the
transformation methods of Sec. II lead to an energy
shift equal to that given by introducing a two-particle
interaction into the shell model for two particles outside
a closed shell.

In addition, the wave function P given by Eq. (38)
can be explicitly constructed by solving Eq. (39) for the
transformation operator Q. This solution will give the
admixtures of other states than the lowest independent-
particle state on the wave function and can be used to
determine for example the expectation value of the
magnetic moment.

We consider next the formal derivation of the energy
shift coming from the mutual interactions of three
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3 3

Hp=g T,+Q V;, (43)

and we compare the equations

particles moving in the average field of a core. For this
system we take

total shift predicted when all matrix elements of the
interaction are considered. This can be regarded as
some evidence in favor of the conclusion that two-body
correlations dominate over the higher order effects.

IV. CORRECTIONS TO THE ENERGY SHIFTS
OF THE COHERENT MODEL

(Hp+2 &'~)4 =El.
In this section we shall make a more careful examina-

(44) tion of the energy level fine structure in which we do
not omit the various correction terms which were

(Hp+AE)fp Egp. —— (45)

Then the energy shift dE will be given correctly if the
wave functions f and Pp are related by

Q=QQo={1+(E—Hp) 'Q &';Q)fp, (46)

where 0 is defined by the set of equations

Q=1+(E—Hp) 'Q t;;Q;,,

(48)Q;, =1+(E—Hp)
—' Q t)„Q(„,

lm&i j

t;, =v, ,+v;;(E Hp) t;;, — — (49) II and III.

neglected in Sec. II. These corrections are of three
types; (1) those which vanish as 1/A compared with
the main terms in the energy, (2) those which arise
from changes in the propagators as particles are added,
and (3) those which arise from high-order correction
terms in the energy expressions. The latter are the
manifestation of third (and higher) order incoherent
interaction among three (or more) particles and give'
the largest perturbation on the energy levels of the
coherent model. We shall consider the cases of one, two,
and three particles plus core and show how the correc-
tions arise and to what extent they require changes in
the formalism and interpretation of the results of Secs.

and the energy shift is

AE= (Pp, Q v;,Qfp),
i&7

= (~., 2 t', Q',~.),

= (Pp, P t,,Pp)

(50)

(51)

A. One Particle and Core

We consider first the interaction of a single particle
with a core of A particles. The total potential energy of
the system including the correction terms previously
omitted is, to third order in the incoherent scattering
matrices,

Vp(A+1) = (C, Q t„,C)+ (C, Q r, ,F;,4)

1 1
+ Z ] Pp, r;, r, k r.,yp ~+", (52)

(E—Hp) (E—Hp) j
where I;; is as before the nondiagonal part of t,,

We see at once that this expression for AE corre-
sponds to the series whose first two terms are equal to
hE, ' given by the last two terms in (29). The leading
term in (57) is simply a sum

AE,"'=($,(1)2,3)) {tgp+tpp+tpg)$, (1,2,3)). (53)

This term can be identified by comparing it with the
diagonal elements in the two-particle-plus-core system.
The remaining terms in (52) or in (29) can be inter-

preted as arising from three-particle correlations, they
are correction terms to the energy shifts for two-particle
correlations which can be obtained from (53). Another

way of stating this is that (53) allows for the same
amount of configuration mixing in the three-particle
system as in the two-particle system. An estimate of
the relative importance of the three-particle correlations
has been made by C. A. I.evinson, who finds that taking
diagonal matrix elements only in Ca4' [this corresponds
to (53)] would lead to an error about 20 percent of the

—
~

~, pr,;t„, r;,c ~, (54)-
where the first term is the "coherent" energy pre-
viously discussed in Secs. II and III, the second term
arises from higher order incoherent terms in the energy,
and the last term is a "1/A" correction to the total
energy which can be neglected in determining the
properties of the entire system but not necessarily in
the fine structure of the energy levels. The sum over i,
j is over all of the A+1 nucleons.

For convenience in comparing this expression for the
energy of core plus one particle, we next break the sum

up into two terms, one involving a sum only over the
core particles and the remainder involving the extra
particle. To make the separation possible, we take only
the first nonvanishing term in the expansion of the
second term of Kq. (54), i.e., we use

1 1
(c, p r;,p;,e)=:I c, pr, , r,„r„,c ~,

--
it%

(55)

where the restriction is. to be imposed on this sum that
i~ j/k. It is now easy to carry out the desired separa-
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tion into core and particle energies; we 6nd for the core
potential energy:

( 1 1
Vo(A)=(c, gt.;,c)+P) c, I;, I,„-I„c-(

e e i
1 1—g ( c, I,, ~„, I,,c-~, (56)

e, r', core &

and for the potential energy of the extra particle in the
field of the core

Vo(1)=(c, p t,i,c)
s, core

(+ Q ~
C, I~,—I;,—I;rC ~+permutations

r'r', core

1 1—2 I c, Ii;~.~. I~.c I
-(57)

4, core Ir g e j
In this expression for the energy of the extra particle,
the first term represents the potential energy of the
particle in the field of the core which is associated with
coherent propagation without core excitation via the

I;; couplings; the second term involving the third-order
combination of the I;; couples the motion of particle 1

incoherently to the core with resulting excitation of the

i,j pair in the core. These results are correct to all
orders in the dominant coherent interaction and to
third order in the incoherent interaction terms.

We note that the eGects of all such correction terms
as those we have considered here are automatically
included if we use the empirical energy levels of the
single particle plus core. Consequently the change in
the formalism of Secs. II and III which arises from
proper inclusion of the corrections gives rise to com-
plication only if we wish to make a precise determina-
tion of the expected single-particle energy levels from
first principles.

B. Two Particles and Core

We next consider two particles and a core and try to
bring the expressions for the energy to a form in which
the energies of the separate noninteracting nucleons in
the Geld of the core is separated from the interaction
terms coupling the two particles together. The latter
terms act to remove the degeneracy in the energy levels
of the noninteracting particles. This form for the total
energy is particularly useful since it allows us to make
use of the empirical observations of the one-particle
levels to determine the principal contribution to the
level positions and spacing.

As in the case of one extra-core particle, we start with
the result for the potential energy:

V, (Ag2)=(c', P t.; c')+(c', g'I, ,'I'„'c')

1 1—
~

C', P'I; ~„,' I; C' (, (58)-

where the primes indicate that in general (1) the wave
function has changed as, for example, by a change in
the nuclear volume and shape; (2) the primed sum
over i, j includes the additional particle "2"; (3) the
operators t,' and I; are changed from the similar
operators in the one-particle case. Again we consider the
last two terms as perturbations and replace in these the
primed t' and I; by the unprimed since the diGerence
is of higher order than we are considering.

We evaluate 6rst the principal term in the potential
energy, the coherent potential energy. It is apparent
in this that part of the energy shift compared with the
one-particle case can come from the change in the wave
function 4—&O'. This effect, arising from volume and
shape changes of the nucleus, has been qualitatively
discussed in Sec. II. This effect is not obviously small
since it can aGect all of the A core particles. It also is
extremely complicated in origin since it involves an
understanding of the precise manner in which the core
adjusts itself to the presence of the extra particle. Part
of the net effect corresponds to a core polarization, but
here we will examine only the eGect of the change in
the nuclear volume. Let us first consider the somewhat
unphysical eGect of fixing the nuclear volume of the 3
particles and adding the (2+1)th. The effect on the
energy of this 1/rf change on the volume per particle
can be estimated from a knowledge of the rate of change
of the total energy of the system with volume. It will

be only a second order e8ect since the system saturates
at the minimum of the energy versus density curve, and
can be estimated using the saturation results of refer-
ence 1. For a nucleus of 40 nucleons it gives an energy
shift for the entire nucleus which is approximately

8 Mev. Thus the eGect in this approximation is very
small, furthermore it will resul. t only in a uniform shift
in all energy levels (at least those over a narrow region)
and does not acct the relative level spacing which is
our primary interest here.

The aforementioned argument can be reinforced if we
observe the way in which the actual physical nucleus
will react to the presence of an extra particle. The
saturating character of the forces means that the core
will change its density to keep the energy per particle
constant; since the addition of the additional particle
at fixed volume is equivalent to an increase in the den-

sity, the core will adjust itself to a radius su%ciently
larger to compensate for the slight change in energy
resulting from higher density. Consequently the already
small (uniform) shift in the levels can be expected to be
reduced further and can be neglected. Thus we shall

in the following neglect the effects of changes in the core

energy, but it will be noted that this is in no way the
same as neglecting the interaction between the extra
particle and the core.

In this approximation we need examine only the
effects on the energy of the changed propagators in the
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t,;.We break the sum up into 3 terms,

i, corei j,core
P't. ; = E t + ~ (t,l'+t, 2')+t»'. (59)

The last two terms then give rise to the lowest order
shift in the core energy due to the simultaneous presence
of two particles. Consequently we can write for the
change in the core energy:

The first term in this sum is the very large core poten-
tial energy; we wish to see to what extent the core
energy is affected by the simultaneous presence of two
nucleons. A shift in the core energy arising from this
effect would be equivalent to an additional particle-
particle interaction arising from coupling through the
core.

The change in t resulting from the presence of two
particles is due to the change in the propagator; we have

(60)

it' 1 1 )1
6R=P 'V,' —

~
e2—el+ el—82

~
t;—

eI e e )e (69)

This term is of fourth order and therefore of higher
order than the terms we have retained elsewhere; we
still need to examine its structure, however, to show
that the presence of the double sum over A'/2 pairs of
core particles does not result in an appreciable con-
tribution to the energy.

The term e~ can be written

where

and

e+ 4 1+e2+ ~12

i, core i(j,core

~1 +1 21 Q t 1,
i, core

812 E12 3 12

e=Eg PT,— P tc—...

(61)

(62)

(63)

(64)

81=81 Tl Q t 41
k, core

(70)

81 Q [3 21 t 21]
k, core

(71)

which vanished acting on the ground state. In addition,
since ~;; and t;; depend only on core particles, T; com-
mutes with them and has the value T~' acting on the
ground state. Thus we can write

t;;=a;,+v, ,
e e~

(65)

To develop the relation between t; and t;;, we note
some simple properties of the propagators; first, we
have written the total energy E of the system as a sum
of energies

We wish to relate this typical term in the core energy
to the energy in the presence of only one particle for
which a typical term is 1

Q 1"—P(t.ll' —t.l.l),
ij t, It:

(72)

the contribution will be zero unless i or j is equal to k,
the operator fI,~ otherwise commuting with v;; to act
on the ground state. Consequently the sum over i, j,
k reduces to (we consider only one of the typical terms)

whereby t; we mean the value that t;; has acting on
the ground state. We now observe that in a term such as

&=&~+K+K+K~, (66) (73)
where E& is the energy of the undisturbed core, E& and
E2 are the total energies of particles 1 and 2, and E~~
is the energy resulting from the interaction between
particles 1 and 2. A consequence of this separation is
that the term e» will always be zero since the operators
e;; and t;; act only on core particles, and t,~2 which
commutes with these operators gives E~~ acting on the
wave function of the system. We treat the remaining
correction by expanding the propagator about the
point where e2 is zero, i.e., we use the identity

1 1 11
82 + . .

e+el+e2 e+el e+el 4:+el
(67)

This separation is not yet complete since the second
term contains in part the energy of the core in the
presence of particle 2. A further expansion gives1111111

+ ——+ —el—e2—+(1~2) . (68)
e+el+ e2 e+4,'1 e+e2 e e e e

e

The dependence on the total number of particles can
now be estimated; each term in v;; or t;; introduces a
factor 1/n (v the nuclear volume); the summation over
a single intermediate state implied in the matrix product
gives, when replaced by an integration, a factor of v.

The double sum over core states gives a factor of A'.
Thus the dependence on A is of the form

A 2(v/lt4) A'/A'= 1/A, (74)

which is the same as that of the principal energy splitting
term t,12 1/A. This additional correction term is of
fourth order and in addition is small because of the
cancellations occurring between t, and t,'. Conse-

quently, to the order we are calculating, we can neglect
the change in the energy of the core due to the simul-

taneous presence of the two extra nucleons. The same
arguments allow us to replace t„l' by t„l in Eq. (59).

The remaining smaller correction terms can be easily
broken up into terms referring to the core and particle-
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core and particle-particle interactions. Finally, com-
bining the resulting terms which can be identihed with
the single-particle energies and calling them Ej and E2,
we obtain for the energy of the A-plus-2-particle system

( 1 1
&(&+2) K—K—=&,»

~
c', I12—~.12-I»c'

~

e e

tr 1 1
+ P ~

C, I12—I;2—I;1+permutations C ~, (75)
r', oore ( e e

which is correct to third order in the I;; operators. The
relative simplicity of this result is a consequence, of
course, of the absorption of many of the complicated
energy corrections into the single-particle energies.
Each of the terms removing the degeneracy of the
single-particle levels, i.e., the last three terms of Eq.
(75), has the same dependence on the total number of
particles, i.e., a 1/3 dependence.

This result differs from the results of Sec. II almost
entirely from the presence of the last term, the second
term having a negligible effect on the energy. The last
term is a coupling of particles 1 and 2 through the ith
core particle, summed over the core. The resulting
interaction will depend on the coordinates of particles 1
and 2 and in general be largest when the particles are
close together. The interaction will also depend on the
state of the core and of the extra-core particles. It can
be expected to have a nonlocal character when ex-
pressed in coordinate space; in addition its spin and
isotopic spin dependence will bear no simple relation
to the two-body potential v~2 which generates t~2. This
term is in some sense analogous to the particle-particle
coupling which, according to Bohr and Mottelson, is
the result of interaction with the surface of the core.
We shall in the next section carry out an explicit evalu-
ation of the correction to the two-body interaction
which arises from this type of particle-core coupling
and show that its effect is very small.

We would now like to point out that insofar as the
effects of a particle-core particle coupling can be re-
placed by those of an equivalent short-range two-body
interaction, the net effect of the direct and core-particle
interactions can be represented by a phenomenological
2-body potential. Consequently, a study of the energy-
level fine structure which neglects the particle-core
couplings and attempts to 6t the experimental data in
such an approximation will lead to an effective two-
body potential which in general will differ (although
possibly only slightly) from the free two-particle inter-
action. Stating this more recisely, if we combine all of
the level splitting terms into one effective reaction
matrix de6ned by

( 1 1
G.»=~.12—

~
~', I12-~.12-I12C'

~

e e )
1 1

+ p
~

C, I»—I2,—I1;+permutations ~, (76)
i, core e e

then we can expect to 6nd an approximately local
"potential" g~2 which will generate 6~2 according to the
equation

G12 g12+g12G12.
8

The effective potential g~2 will then be expected to
differ somew'hat from ~~2. As we shall see in the next
paragraphs, the phenomenological introduction of such
an eRective potential to describe the net particle-
particle coupling including core effects can be expected
to lead to a considerable improvement in accuracy if
an attempt is made to predict the energy levels of a
three-particle-plus-core system making use of empirical
knowledge of the core-plus-one-particle and core-plus-
two-particle systems.

C. Three Particles and Core

The same techniques as those used in the preceding
paragraphs can be used for the case of three extra-core
particles. We shall not go through the details of the
analysis since these very closely parallel the analysis
of the one- and two-particle systems. The result is

+(2+3) E1+E2++3+G 12+G 13+G 23

I|' 1 1
+I e I12 I23 I314 ~+permutatio», (78)

e e )
where the operators 6„;are defined by equations similar
to Eq. (77). Thus, if we proceed phenomenologically
from the case of two extra-core particles to the three
extra-core particle case, the only new terms which arise
are the last of Eq. (78), those arising from incoherent
coupling of the three extra-core particles. The effect of
these new terms is relatively small, although not neg-
ligible, as has been pointed out in Secs. II and III. It
also should be pointed out that these final correction
terms in the three-particle case can be computed with
sufficient accuracy from the "effective potentials" g;;
defined by Eqs. (76) and (77). Thus one can expect to
get a high degree of accuracy in the final results if one
not only uses the empirical energy levels in the one
particle case but also determines the effective particle-
particle coupling by examining the fine structure of the
two-particle case. The errors in this procedure are
quite small since they are of higher order than the
leading (and dominant) terms we have considered.

V. EVALUATION OF PARTICLE-CORE
COUPLING EFFECTS

We shall in this section determine the size of the cor-
rection terms defined in the previous section which
originate in particle-core coupling. These terms are

(
AE„.= Q ~

C, I12 I2, I1,4[——
i, oore 0 e e

+5 permutations of (12i) . (79)
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In evaluating this correction to the interaction of par-
ticles 1, 2, we shall make certain simplifying assump-
tions which will allow us to make a fairly straight
forward evaluation of the effect. These are: (1) the
exclusion principle will be included only by requring
that transitions occur to states above the Fermi limit
and that particles interact only in allowed states of
relative orbital momentum, (2) the wave function will

be approximated by a degenerate Fermi gas of plane
waves rather than the actual independent particle
states of a spherical nucleus, and (3) the incoherence
operators I;; will be approximated by the incoherent
Born approximation scattering from a Yukawa well

with Serber exchange mixture. We will also approximate
to the result by evaluating only a typical one of the six
correction terms in Eq. (79) and multiplying the result

by six.
We consider the 6rst term of Eq. (79), written now

explicitly in momentum space.

~E„,= P P P P(k&k3l~lk4'k3')
i, core Ry' k2' ks'

X (k 'k, (I (k k, ')
»+&3—Ei' —E3'

(k,'k, 'i xi k,l,). (80)»+ jV,

For the I's, in the approximation described above, we

have

(23r Vo i
(k3k4( I

~

kyk3) =B(kl+k3, k3/k4) ]4@vi

X[j(k +k4)+3f(k,+k3)], (81)

where

' (23rVp) '
~

(~*)3
(27r)' 4 pv j J

X Lf(ki —k4')+ f(k3 —k3')]

XLf(k3—k, ')+f(k;—k,)]
X [f(k4—ki')+ f(k, —k4')]

X
LAP+ 43' —kg" —(k4+k3 —kg')']

[i3P+k '—kP —(kg+k3 —kg')']

with the restriction arising from the exclusion principle
that

/k]'/ ~&kpy /k3'/ = /ky+k3 —ky'[ &~kg,
(84)

f
k

f

=
t
kg+k, —kg'

J
& kr.

We will also approximately include the eGects of the
exclusion principle by multiplying this result by the
apriori probability that particles interact in even states
of orbital momentum, namely 33(~&X4 for the r4-p pairs
plus —,'X4 for the like particle pairs).

We are particularly interested in the interaction
between particles in the same states; thus we shall in
the integral of Eq. (83) set k~=k3. In addition we
consider particles moving in the last state filled in the
Fermi gas and set

~
k~~ =kg. We shall also introduce a

further approximation at this stage. We note that the
momenta which enter the integrals are all quite large
and that since f(x) is a rapidly decreasing function of
x for large x, the only term in the integrand which will
contribute appreciably is that in which terms of the
form f3(x) appear. A term for example of the form

f (x)f(x+k,) will be much smaller since it is not simul-
taneously possible for f3(x) and f(x+k;) to be large.
Consequently we drop such terms and obtain (with a
change in variable in the integral)

f(x) = (p'+x')-', (82) 1 v' 2n. Vp '
t '(x)

— )~*3 'dl;dx
2 (24r) E pv ) ~ x'(x' —k~ x—k; x)

(85)

[x—k&i ~&kr, ix+kii &~kg, ix—k;i &kg. (86)

and Vv is the well depth, 1/p is the well range, and
v= (4/3)3rr33jf is the nuclear volume.

For the energies of the particles moving in the nuclear
~ ~ with the restrictions

well, we use the result derived in reference 1, that

E=k3/2M*+ V,

where V is a constant well and M* is an effective
nucleon mass which is modified from the nucleon mass
to include the eGects of the quadratic momentum de-
pendence of the actual well. In this approximation, and
replacing the sums by integrals (and making use of the
Kronecker delta functions over total momentum), we
find

The integration over the core variable i is, except for
these restrictions, extended over the Fermi sphere of
momentum. This integral cannot be carried out com-
pletely in closed form; an excellent approximation
(introducing errors of less than 20 percent), however,
leads to the result

(23rV3) '
AEv, = (

—
~

(M*)'(23r)' f3(X)XdX. (87)
(2~)'& pv 2
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We compare this (after multiplication by six to include
the other terms arising from permutations of the par-
ticles) with the diagonal term for interaction between
the two surface particles,

The ratio is
AE= 4rr Vp/y'v.

AE„3 i M*Vpq '

DE 16m' ( y' )

(88)

(89)

VI. CONCLUSIONS

We have considered the formalism developed in
treating other problems of nuclear structure and nuclear
saturation, and shown how it may be extended to the
more detailed problem of energy-level fine structure.
We have taken as our starting point a nuclear Hamil-
tonian containing as interaction terms only strong
short-range two-body potentials. We have then shown
how the relationships among the energy levels of neigh-
boring nuclei can be very accurately determined if use
is made of empirical knowledge of energy levels of one
of the nuclei and a particle-to-particle coupling is
introduced. This coupling is shown to be the result to
a very good approximation of direct interaction through
the two-body nucleon potential, effects of coupling
through the nuclear core being evaluated and shown to
be small. Thus we have demonstrated the relationship
between the treatment of the original many-particle
Hamiltonian and the determination of details of the
energy-level structure by the methods of, for example,
Flowers4 and Ford and Levinson. '

Taking &*=05435, Vp/p=0. 252 (corresponding to a
bound state at zero energy), the ftnal result is

hE„./hE= 0.016. (90)

Thus the contribution to the particle-particle interac-
tion energy which arises from particle-core-particle
coupling is quite small. As pointed out in the previous
section, this can be readily included by a slight modi-
fication of the effective two-body interaction or a more
detailed analysis of the type carried out in this section
can be made to give its effect explicitly.

The remaining problem which we have considered
more briefly is the character of the nuclear wave func-
tion and the effects of particle-particle and particle-core
configuration mixing. These unavoidab1y appear in the
actual nuclear wave function as a consequence of the
assumed strong two-body interactions and in general
will affect markedly such quantities as the nuclear mag-
netic moment. The conhguration mixing among par-
ticles outside a simple doubly-magic core (such as Ca4'

or 0") is known to provide an explanation of the
anomalies in magnetic moments; it is not obvious,
however, that additional large effects will not appear
due to the particle-core coupling. We have given
qualitative reasons for the smallness of such effects on
the magnetic moment; these reasons are (1) relative
insensitivity of the magnetic moment to short-range
correlations in the wave functions, (2) absence in Ca"
and 0"of core states which when mixed into the single-
particle wave function can give linear changes in the
magnetic moment, and (3) relatively large excitation
energies and consequent nonpolarizability of the core
of a doubly magic nucleus. We have also ',remarked,
however, that the apparent purity of a state as shown

by a magnetic moment on the Schmidt line cannot be
regarded as evidence for a simple independent-particle
nuclear wave function, but only that admixtures of
other states can in certain quite special circumstances
have little effect on the magnetic moment. In these
special cases it also appears that arguments can be
made in favor of working with a nonsingular two-body
potential to perturb the shell-model states since the
respulsive core of the actual two-body potential does
not affect the parts of the wave function which domi-
nate in determining energy level splitting and magnetic
moments. This result is obviously related to a similar
situation which exists in nucleon-nucleon scattering
where, over sizeable energy intervals, many equivalent
potentials give almost identical predictions of scattering'

The authors would like to acknowledge many helpful
discussions with Professor K. W. Ford and Dr. C. A.
Levinson.

See for example the discussion of the e6'ects on high-energy
processes of correlations in the nuclear ground-state wave function
by Brueckner, Eden, and Francis (to be published).


