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Superallowed. Beta Transitions in the N —Z=3 Series*
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A number of fast beta transitions have been found in the N —Z=3 series of radioactive nuclides. King
has suggested that some of these transitions (for A(27) occur within the lowest (4 ~ 421j or [4 432j
supermultiplet; hence are superallowed (or favored). Matrix elements of (

J'e ~' within the [21$ and P2)
supermultiplets are computed with the aid of two-way displacement operators on the eigenvalues of T3, 5„
and I 3,. In the application to 80« the only spin assignments consistent with an LS coupling interpretation
of the fast transition are I;=5/2, I *=-', (S ~ =—,') .These are the value favored by the available experimental
information. The jj coupling value of

I
J'e~ ' for the sO» transition is too large by a factor of Ave.
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The quantum numbers T= s, Ts ——s, S= s, I;=L+

or L——, characterize the initial state. Spin-dependent
forces are held responsible for displacements in energy
making possible a transition within the supermultiplet
from T=T3=-,' to T=T3=-,' as pictured in Fig. 1. In
the following discussion the Gamow- Teller (6-T)
matrix elements for all possible final states are evaluated

using the pure supermultiplet description of nuclear
states. Interesting correlations are observed when these
results are compared with experiment. A comparison
with corresponding matrix elements computed under
the assumption of jj coupling throws light on the type
of intermediate coupling existing in light nuclides.

* Supported in part by the joint program of the U. S. Atomic
Energy Commission and the 0$ce of Naval Research.
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l. INTRODUCTION

LLOWED components with unusually small ft
values have been found in the beta activity of

3Li6 6C9 7N10 8O 1I 10Ne13 1lwa14 and 12Mg15
available experimental information on the fast com-
ponents is shown in Table I. King' has suggested that
some of these transitions are superallowed' (or favored)
in the sense that both final and initial states belong to
the same supermultiplet (characterized by the partition
symbol [4 421j or [4 432]). Figure 1 exhibits the
essential qualitative features of King's interpretation
based on Wigner's analysis of the supermultiplet into
isobaric spin multiplets. ' The orbital angular momen-
tum I (a constant within the supermultiplet) couples
with the spin angular momentum to give the following
isobaric spin multiplets:

2. UPPER LIMITS ON THE GAMOW-TELLER
MATRIX ELEMENTS

The Gamow-Teller matrix element,

IJ-I =El(-I, ; —:,—;IX-.Q.I-.I. .; —:,—:)I, (2)

in which al/ denotes a summation over all possible final
states within the supermultiplet. The application of
closure to the right-hand member of Eq. (3) yields

Z I
J'~l =(~ I'ttt'; k, BIZ o.Q.* 2 «Qtl~*I'm'; s, s)

=9.

Equation (A4) of the appendix is used to reduce the
matrix element occurring in Eq. (4) to the explicit
numerical value.

TABLE I. I ow jt transitions in the )l —Z=3 series.

Transitions Energy (Mev) Partial half-life

8Li6 ~ 48es* '
6Cg ~ 7N8*
7N10 ~ 8O9
8011~ 9F10
9F12 —& 10Ne11* '
10Ne13 ~ llNa12

(7,3&1)
3.5
3.8
2.9
~ ~ ~

1.18

0.17 sec
2.4 sec
4.2 sec

29.4 sec/0. 70
5 sec

40.2 sec/0. 07

ft

(2000—10 000)
3000-4000

6300
21 000

~ ~ ~

6800

11Na14 —+ 12Mg13* 2.7
12Mg15 —+ 13A114* g 1.59

1.75

58.2 sec/0. 45
9.5 min/0. 414
9.5 min//0. 582

56 000
60 000
56 000
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27, 77 (1955).
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Phys. Rev. 75, 1127 (1949); E. Hayward, Phys. Rev. 75, 917 (1941).

d E. Bleuler and W. Zunti, Helv. Phys. Acta 20, 195 (1947).
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is a function of the initial and final values of S, L, and T.
An upper limit on

I
J'tr I' for any choice of these quantum

numbers can be computed by forming the sum

Zl

j'~l'=El�

(~III' 2'f, s IZ ~AQAI~~~' s,s) I', (3)
fall f
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and the relation

Ys,'+ Ys„'——(Ys.—iYs„)(Ys,+iYs„)+S.. (7)

-y2 -(/2

LQ i I/2

f4 t ~ ~ 4$]

tr2

To select quartet final states, the preceding calcu-
lation may be repeated employing the projection
operator

&= s(S'—-')
Then

2 Ifnl'=Elf&nl'
Sf=$ all

=( 'V'; —:,—:IE.g.* I Z g I
II' -',—:)

=(nj,I;;-'„-,''I (6rs—8)I'+4rs —2I (9)

Xn,I;I,) —',,$)

3. EXPLICIT EVALUATION OF THE GAMOW-TELLER
MATRIX ELEMENTS

Fxo. 1. Supermultiplet interpretation of a fast beta transition
by an E—Z=3 parent nucleus. The initial state belongs to the
lowest L4 ~ .421] supermultiplet. Spin-dependent forces split the
supermultiplet into widely spaced isobaric spin multiplets. A
transition within the supermultiplet then becomes energetically
possible.

The third line of Eq. (A4) is easily transformed into
the matrix element relation:

I 2(r-1)7'(P~; T—1, T-2I Y --'Y.-IP'; T, T-1)
—Pr):(P, r 1, r—1I —Y,.—iY,„IP,, r, r)

=2(pf, T 1, T 1I Y—s„lp;;—T, T 1). (10)—
Also

5I'= —,
' (15/4 —T')

The T= ~ Gnal states may be selected by introducing
the projection operator

as a factor multiplying g o&Q& on the left. In this way
the sum over all final states with T= 2 is reduced to

Z lfnl'=ZlfI'nl'
all

=(-;I;I,; —;,—;Is .O.* I Z e I-.I.I,;l,l)
= (n,Ig, ; -'„-',

I (15/2) Ts—2(T,—1) (T'—Ts)

—(4/3) (Ys*'+Ys'+ Ys') In'I'I'; l, l) (6)

(pf, T 1, T 2I Y—r„—iY,„—
I p, i T, T—1)

(Py, T—1, T—1I Yr„iYs —
I P, ; T, T)

(T1T —1lr 1 r 1r—2) p—r 1~-:—
(T1 T —1I T1 T 1T 1) E—T—

(p, ;r 1, r 1IY,. iY,„—Ip;;r—, r)—
=—(2T) l(pf, T 1, T 1I Ys I

p—;; T, —T 1). (12)—
Equation (12) may be combined with well-known

with the help of Eqs. (A4) and (A5) of the appendix sum rules4 to express
I fnl' in the convenient forms:

I frr
I
'z; =r. If =z t =2 TI

I (nr, I —1, I 1; T 1,—T 1
I

—Ys, I
n,—; I, I —1; T, T 1) I

', — —

Ifnisi, =I,=r)o=2TL(I+1)/Ijl(«, I, I; r 1, r—1I Y„ln„;—I, I; T, T

(I+1)(2I+3)
Ifalsl; r, r~-r+r=2=T 1(nf, I+1,I; T—1, T—1I Ys. ln, ;I,I; r, r—1)ls.

2I+1

(13a)

(13b)

(13c)

Similar formulas have been used to evaluate the 0-T
matrix element in the important special cases T;= Tf ——~~

and T;=1.'
The ~He4 transition provides an interesting applica-

tion for Eq. (13c).I.et P, and P& denote the unique nor-

4 K. U. Condon and G. H. Shortley, The Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1935), Chap. 3; E.
Feenberg and G. E. Pake, Quantum Theory of Angular Momentum
(Addison-Wesley Press, Cambridge, 1953), Chap. 5.

s M. Bolsterli and E. Feenberg, Phys. Rev. 97, 736 (1955).

S'(Ys,g ) =2(Ys,f ).
Similarly, Eq. (A5) of the Appendix requires

T'(Ys,gs) = 2 (Ys,lt's).

(14)

(15)

malized wavefunctions belonging to I'= 1, T~=0,
S=S,=O and T=T3=0, S=1, S,=O respectively.
The commutator of S' and Ys, applied to P, yields the
eigenvalue equation:
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Consequently,

The relation

Ys,g =Xfs, Ys,fs (16)

m s (I'+If ~I If'j) =I; or If whichever is smaller:

I; If (I, 1mO~I; 1' m)

L+—' I+,'L-2L+1/2L+3j'
(u) Ys,

~
b) =X'(u, a) =X(b,b) (17)

implies ) '=X since P and Pb are normalized. Further-
more the eigenvalues of V3, are &1 the corresponding
eigenfunctions are given by suitable linear combinations
of P, and Pp.

Ys.(~4-+V~) =+ (~4.+bus),

L+1 L
(L+1)(2L+1)

L sL+—s L2/2L+1j'*.

The following Racah functions are also needed:

(25)

or
ah= &b, bX= &a

2L+3
(19) W(s, +s, s, L+s, L,i)=s

3 (L+1)(2L+1)
yielding

or —1. (20)

Thus, the squared matrix element appearing in the
right hand member of Eq. (13c) has the value 1 in the
sHe4 transition; consequently

~

J's
~

s= 6'.
, In the general case, the matrix elements of F3,

occurring in Eq. (13) can be expressed in terms of
reduced matrix elements and Racah functions. The
Eckart-%signer theorem yields

W(-' L ' —' L+-'—-L,i)= L3(2L+1)]—l

W(-,') L+',
~

—,') L ~
~i L~1)=L3(2L+1)j '

2I.—1

3L(2L+1)

21.—1

(I,m; T,,Ts~ Ys.II,,m; T,,T,)
=(2Iy+1) '(I~ T~,TsllYsIII' T' Ts)

X (I, 1 m 0
~
I; 1 I~ m),

.6 (I.+1)(2L+1)

2L+3

( )
W(k, L+k, k, L—k; L,1)= s

6L(2L+ 1)

(26)

(Sg,m, ; Tf)Ts~ Ysg~S;)m, ) T;)Ts)
= (2Sg+1) l(Sy', Ty, T3~)Y3~~S, ; T,,T3)

X (S; 1 m, 0
~
S, 1 Sy m, ), (22)

expressing matrix elements of I'3, in terms of reduced
matrix elements and vector addition coefficients. The
Racah function appears in the relation

(If; T~T.II Y*III'; T'T.)
= (—1)~'—s'—'&[(2Ig+1) (2I,+1)j'

(S, ; T,T,
I~ Y,IIS, ; T,T,)W(S„I„S,,I, ; I., i),

and also in the derived formula

(I„m; T„T,
~
Y,.~I,,m; T,,T,)

= (—1)~' sf' ~~5(2Ii+1) (2Sy+1)j '

~ (Sf,m, ; Ty, Tsi Ys, iS;,m. ; T;,T,)

(I; 1 m 0
~
I; 1 Ig m)

XW(Sy, Ig,S;,I;;L, 1)
(S; 1 m, 0

i S; 1 Sf m, )

expressing the matrix element of I"3, in the Ins space
in terms of the much simpler matrix element in the Sos,
space.

In the present application we need a number of
vector addition coeflicients (I; 1 m 0

~
I; 1 Iy m) for

' G. Racah, Phys. Rev. 62, 438 (1942) and 63, 367 (1943).

W (-'„L+'„-'„I.+,'; L,-1)=—-
6(L+1)(2L+1)

w( ;, L+-;, —.;, L+--;, L, i) =-;L-2(L+1)~-:,

W(s, L—5, s, L—s; L, i) = kl 2Lj **

6I.(2L+ 1)

Two quantities remain to be evaluated:

Ps= f4 ~ ;,=3 '*(Tg—i—Ts)P„.

=12 *(S,—sSsL(Y»—sYsz)+~(Y1y &Ysv) jlPa.

(27)

(28)
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L+2 L+2

1
J'0 j2

4 2L+3

3 2L+1

TABLz II. Formulas for
f
J'efs. provide an instructive check on this bit of operator

algebra.
The final formulas for

I
J'ir

I

' are collected in Table II.
Some numerical values are exhibited in Table III.

4. DISCUSSION

L+ 3

L+—

8 2L

3 2L+1

L+2
2
L+1

4 2L

3 2L+1

2 L(2L—1)

3 (L+1)(2L+1)

8 2L+2

3 2L+1

42L—1

3 2L+1

2 (L+1)(2L+3)

3 L(2L+1)

In the decay of sO», the assignments I;=5/2, Iy
are strongly favored by the experimental evidence on
beta and gamma transitions involving these states. ~ As
the last column of Table III shows, these are the only
assignments consistent with an 1.5 coupling inter-
pretation of the initial and final states. Also, Sf——

~ is
favored in agreement with King's argument based on
energetic considerations. The good agreement may be
illusory since two effects tending to change

I
J'o ls are

certainly present. These are (i) the occurrence of a
doublet component in the (assumed) predominently
quartet final state and (ii) the mixing of supermulti-
plets. Both effects are expected to occur as conse-
quences of the spin dependent interaction responsible
for the separation of the supermultiplet into energeti-
cally distinct isobaric spin multiplets. The first eGect
may either increase or decrease

I J tr [' while the second
is likely to decrease it.

In jj coupling, the (d,)' configuration yieldss

3
2

4 2L+2

3 2L+1

L—1
2

Now

(bl Y„—iY,.[a)=3—(al (T',+iT,)(Yi.—iY,.) la)

=3--(a[2Y„[a)=3—,

(dl Yi,—1Ys, la) =12 '(al {(Yi.+iYs )
—s(Yi„+tYs,)}(S +iS,) (Yi. iYs.) I

—a)

=12—:(a
I
4T,—4S. [ a) = —(4/3) -:.

(29)

Thus
[J'~['=28/2S, I,=5/2, I,= ss. -

ft[ J'tr[;,'=23 000,

TABLE III. Numerical results.

too large by a factor of 5.
In general, a wide range of values of the nuclear

matrix element is possible depending on the relative
amplitudes and phases of the doublet and quartet com-
ponents in the 6nal state wave function.

The transitions at A =25 and 27 may be excluded
from the superallowed category, because they are only
slightly faster than an average allowed transition and
also because the energies fall outside the fairly regular

Also, by closure, Transition

8O11 ~ 9FIO
f't= 21 000

Consequently,

1(b[Y,.—iY,.I a) I'+
I

(~ I Yi —i Ys*l a) I

'

y[(d[Y,.—iY,.[a) f'

=(al(Yi+iYs)(Yi —iYs)la) (30)
VN10 ~ SO9

= (.
I
2T,[.)=3. ft =6300

L Is

2 5/2

1 1/2

Sf Ig

1/2 5/2
3/2

3/2 7/2
5/2
3/2

t
J'O'(2 yg[j J'0(2

28/15 3/ 000
32/15 45 000
8/3 56 000

16/15 22 000
4/15 S600

22 000
2800

14 000
11 000

1/2 3/2 32/9
1/2 4/9

3/2 3/2 20/9
1/2 16/9

I (~l Yi —iYs [a) I'=3—
s
—4/3

=4/3.

yaMgy, ~,3A1,4* 0 1/2

(31) ft= 6X10'
1/2 1/2
3/2 3/2

2.4+ 105
2.4+10~

Thus,
Es=Els =4/3. (32)

Explicit calculations with three-particle wave functions

7 Jones, Phillips, Johnson, and Wilkinson, Phys. Rev. 96, 547
(1954).

E. Feenberg, The Shell Theory of the E'Ncttels (Princeton
University Press, Princeton, 1955), Chap. 8.



SUPERALLOWE D P TRANSITIONS I N N —Z = 3 SERIES 75

decreasing trend exhibited by the transitions in lighter
members of the E—Z=3 series.

APPENDIX

The function space covered by a supermultiplet is
transformed into itself by the set of operators':

S„=-', P 0„(k), (u=x, y,s),

T =-' Q rv(k)& (2&=1&2&3)&

—1 Q ~ (k)~ (k)

In terms of these operators,

The exact analogy between the 1,2,3 and x,y,s
spaces yields an image relation for every one set down
in Eqs. (A3) to (A5). Thus, for example, the next to
the last line of Eq. (A4) translates into

[Y»&zYzy, Y2,&iY2y]=22T2.

Two-way displacement operators have the property
of displacing two eigenvalues in the set T3', S,', F3,'
up or down by one unit while leaving the third un-
changed. These operators are defined as follows in
terms of two valued indices I, v, m which take on values
+1 and —1 independently:

P Qk
——T1—iT2,

Q Qk Tl+zT2&

Q 0.„'"'Qk——Y,„iY—2„,

Q o. '"'Qk*= Yzw+z Yzw

(A2)

M„„,= (Y»yiu Y2,)+i()(Yzy+iuYzy),

M„. = (T1+iuT2)+uw(F1, +iu Y2,),

M,„„=(S,+iz&Sy)+z)w (Yz,+i()Y2„)

The basic commutation relations are

[M»vo& T2]= uM»vo&

(A6)

A number of useful commutation relations obeyed
by the S, T, I' operators are listed below: [M ... S,)=—z&M „., (A7)

[T1+iT2, T2)= W (T1+iT2),

[T1+zT2 Y3 ) ~(Y1 +zY2 )

[T,+2 T2, T1—2T2] = 2T2,

[Y1 aiY2„, Tz)=W(Y)„aiY2 ),

[Yz„+zY2„& Yz„]=w (T1+zT2)&

[Y,.~z Y2„, T,~zT2]= ~2 Y,„,

[Y1„+zY2„,Y1„iY2 )—=2T2,

[Y»~z Y»& Y)y~zY2y)=22S &v
[Y»+iY2„Sy]=i(Y1,+2F2,),

'

[S2, Y„+'Y„]

(A3)

(A4)

[M ... Yz,]=0,
[M ~& T2]= iuM—„.„,

[M .„,S,]=0,
[M, Fz.]=—wM„

[M„„,T,]=0,
[M.. . S,)= —2&M,.„,

[M,.„, Y2,)=wM.„„,

[M», v, o& Mo, —v, w) = 2u(&wM&&ov&

[M», o w& M w, v, o)= 2u2)WMo vw&

[Mov, w& M&&, o, —, v&] = 2u'vwM&&vo&

(AS)

(A9)

(A10)

= —2(Y»&z Y2,)+22[So(Y)y+z Yzy)

—S„(Y1,&i Y2,)]
= 2 (Y»+i Y2,)+2i [(Yzy&i Y2„)$,

—(Y),aiY2,)Sy), (AS)

[T', Y»&iY2,]
= ~2(T1+zT2) Y»+2(&T2—1) (Y»+z Y2,)
=~2Yzo(T)&iT2)+2(Yg,.&zYzv) (&Tz+1).

[M „., M „.]= (2)T2+uS,)(u u')((& 2&'), — —

[M„,M„]= (w Tz+uF 2,) (u —u') (w —w'), (A11)

[M,„„,M,„„]=(wS,+2&F 2,) (2&
—2&') (w —w').

One of these displacement operators is used in con-
structing fz in Eq. (28). The application of M 1, 1, (& to

transforms a solution with T2 ——2, S,=-', into one
with T3=-„S,=-,'. Since S,=~ is associated with T=-'„
the solution found in this manner belongs to T=2,

3


