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In this paper we propose a new model for the description of irreversible processes, which permits the
construction of a Gibbs-type ensemble and the employment of the general techniques of statistical
mechanics. The internal dynamics of the system that is engaged in the process is assumed to be described
fully by its Hamiltonian. Its interaction with the driving reservoirs is described in terms of impulsive inter-
actions (collisions). The reservoirs themse]ves possess de6nite temperatures, are inexhaustible, and free of
internal gradients. The ensemble obeys an integro-differential equation in F space, containing both the
terms of the Liouville equation and a stochastic integral term that describes the collisions with the reservoirs.
It is shown in this paper (1) that the ensemble will approach canonical distribution in the course of time
in the presence of a single driving reservoir, (2) that it will approach a stationary nonequilibrium distribution
in the presence of several reservoirs at different temperatures, and (3) that in the latter case, and for small
temperature diGerences, Onsager s reciprocal relations are satisfied by the stationary distribution.

I. INTRODUCTION

'HE purpose of this paper is to propose a statistical-
mechanical model for nonequilibrium processes

that leads naturally to the existence of a stationary
state, approached by an ensemble in the course of time,
which is independent of the initial ensemble distribu-
tion. In the stationary state, the ensemble is not in
thermodynamic equilibrium. It remains in its state only
because its surroundings maintain gradients inside the
thermodynamic system; in the simplest case, these are
temperature gradients.

In statistical mechanics, the concept of temperature
is based on the canonical distribution with respect to
the energy of the whole system. If the ensemble is not
canonical, temperatures may still be de6nable on
canonical or quasi-canonical distributions of partial
energies; we speak of local temperature, kinetic tem-
perature, temperature of the nuclear spins, etc. The first
pioneering work in the theory of irreversible processes
was based on the assumption that such partial tempera-
tures could be de6ned significantly. ' 'Other workers suc-
ceeded in formulating general rules by adopting modi6ed
versions of Boltzmann's assumptions: That is that cer-
tain fluctuating variables are always statistically uncor-
related to each other. ' Later re6nements of Boltzmann's
"Stosszahlansatz, " in which the single-particle occu-
pation numbers are assumed to be uncorrelated, make
similar assumptions about higher (ts-particle1 distribu-
tion functions. ' None of these theories clarifies com-
pletely the nature of irreversibility of a process which
in its internal dynamics obeys deterministic laws of
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motion. Some of the assumptions made, i.e., Boltzmann's
original assumptions, are demonstrably inconsistent
with the classical laws of motion. It appeared impos-
sible, with a closed system, to overcome Zermelo's clas-
sical argument, either in classical or in quantum me-
chanics, according to which the solutions of Liouville's
equation are either periodic or almost periodic and,
hence, cannot exhibit true irreversibility. The argument
that Poincare cycles have such enormous periods that
in practice they cannot be observed is not wholly
unsatisfactory. Nevertheless, the fact that a Poincare
cycle may be longer than the total period since the
development of the present physical universe (10' to
10"years) does not entitle us to the positive conclusion
that the speci6c assumptions made by various workers"
will lead to valid approximations for realistically ob-
servable periods of time.

The most satisfactory approach, so it appears to us,
is to construct models that permit treatment in terms of
Gibbs-type ensembles, in which the openness of the
system, and with it the possibility of true irreversible
behavior, is explicitly introduced. Klein and Prigogine
have considered such a model, ' which represents a
perfect one-dimensional crystal. In this model the mean
free path of phonons is in6nite; hence there can be no
internal gradient. The spectral distribution of phonons
is everywhere the same; hence the Klein-Prigogine
model does not lend itself to a study of internal gradients
and internal dissipation. Our paper will present a new
and somewhat more general attempt to construct a
system that interacts with its surroundings, in such a
fashion that Gibbsian ensembles can be constructed;
their development in the course of time, i.e., their
dynamics, becomes the subject of mathematical inves-
tigation.

For a truly stationary process to be possible, the
reservoirs that maintain the gradients within the system
must be inexhaustible. They must possess an in6nite

4 P. and T. Ehrenfest, Encykl. d. Math. Wiss. 4, 2ii, September,
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number of degrees of freedom, in such a manner that
they present to the system to be considered always the
same appearance. Hence their canonical coordinates
cannot be fully included in the description of the
process in phase space (or in Hilbert space, in a
quantum description). What should be included is the
(Ructuating) interaction between system and reser-
voirs. Again, if in this interaction we disregard the
effects of Quctuations, i.e., if we simply add to the
internal Hamiltonian of the system the interaction
energy with the reservoirs, averaged at each point of
system-phase space over the possible values of the
reservoir coordinates, then the resulting Liouville
equation in system-phase space will not differ from one
with fixed external forces, and no disspation will result.

How, then, is the action of the reservoir(s) to be
introduced? There appear to be two possibilities. They
represent, respectively, continuous and. impulsive inter-
action. In both it is assumed that any part of the sur-

roundings that will interact with the system will be
statistically independent of the state of the system at
the beginning of such interaction. But once the inter-
action has begun, the statistical independence will be
lost; in fact one can show that with a continuous inter-
action Hamiltonian the correlation function between
system and reservoir(s) satisfies a number of differential
equations that preclude continued statistical inde-
pendence. At any instance the interaction term in the
Hamiltonian will depend on the previous history. We
have been unable as yet to discover a simple mathe-
matical scheme that would represent such finite inter-
action.

The second possibility is to treat the interaction
impulsively. If the reservoir interacts for brief spans
of time only, but then strongly, it may be assumed that
the net eGect of such impulsive interaction will be to
move the representative point in system-phase space a
finite distance, that depends both on its original location
and on the state of the reservoir just prior to interaction.
If we further simplify the reservoir by assuming that it
consists of a sensibly infinite number of disconnected
and similar parts, that each such part interacts with
the system but once, and that prior to interaction there
is statistical independence between that reservoir com-
ponent and the system, then we can average over the
possible states of the reservoir (i.e., of that portion of
the reservoir about to interact impulsively with the
system). The result of this averaging operation will

be the determination of a contingent probability
E(x',x)dx'dt, which tells 'us the probability that the
representative point of the system, known to be at the
location x (in system-phase space) will be thrown into
the volume element dx' (a finite distance from x)
within the time interval dh. Once we know the function
E, then the Liouville equation for the probability

density p in system-phase space will take the form

Bp(x, t)+ (IJ,,H),

" $E(x,x')Ii(x') —K(x',x)p(x)]dx'. (1.1)

The remai. nder of this paper will be concerned with an
investigation of the structure of the function E (Sec. 2),
with the approach toward thermal equilibrium in the
presence of a single reservoir at a definite temperature
(Sec. 3), with a proof that in the presence of several
reservoirs ensembles obeying Eq. (1.1) approach a
stationary state in the course of time (Sec. 4), and with
the Onsager reciprocal relations (Sec. 5).

Before we enter these somewhat more detailed dis-
cussions, it may be in order to justify further the form
of Eq. (1.1). We are well aware of the fact that impul-
sive interaction represents an asymptotic limit, which
is not always realistic. But it is possible to construct
model interactions that approach this limit arbitrarily
closely. By assuming this particular form of interaction,
and by suppressing the influence that the several com-
ponents of the reservoir exert on each other, we are
able to introduce into the mathematical formulation
the notion of the inexhaustible reservoir. We need not
neglect recoil (i.e., the reaction of the system back on
the reservoir); and we are able to maintain the reser-
voirs at definite temperatures (or other thermodynamic
potentials) without allowing for thermal or other
gradients within the reservoirs.

2. STOCHASTIC KERNEL

The expression E(x',x) in Eq. (1.1) represents a
transition probability density in the phase space of the
system. It is a so-called contingent probability, dealing
with the rate of transitions from the state x to the state
x' (we shall always write the arguments of such transi-
tions going from right to left) on the assumption that
the system is known to be initially in the state x. Hence
the value of E will be independent of the probability
distribution of the ensemble of systems in the system
phase space.

The likelihood of such a transition will depend on the
distribution of the reservoir (or reservoir components)
as well as on the intrinsic probability of a collision
(something like the collision cross section) if both
system and reservoir are known to be in suitable states
for a collision of the type considered. We shall have to
consider both these factors.

As for the distribution of the reservoir, we shall con-
sider it as part of the basic concept of reservoir that
its parts are in a canonical distribution, characterized
by a definite temperature. Considering the components
of such a reservoir in their own phase space (i.e., the
phase space of any one of the infinitely many identical
reservoir components, usually called the p space of



580 P. G. BERGMANN AND J. L. LEBOWITZ

~
—Er/kT ~

—PEp

Z. Z.
(2 1)

The subscript r indicates that these quantities belong
to a reservoir component (and not to our system).

Next, we come to the much more delicate problem
of the intrinsic reaction constant (or collision cross
section). All microscopic laws, both classical and
quantum theoretical, are reversible with respect to the
direction of time. That is to say, there exists a trans-
formation involving (in a suitable coordinate system) a
change in the signs of the time coordinate and of all
the momentum coordinates with respect to which these
laws are invariant. In classical mechanics, the Harnil-
tonian is an even function of the canonical momentum
components; in quantum mechanics (in a wave me-
chanical representation), the same transformation is
accomplished if we change the sign of the time coor-
dinate and at the same time replace the wave function
by its complex conjugate. Hence, under this trans-
formation the Hamiltonian remains the same function
of its arguments. Each point of phase space (or of Hilbert
space) is mapped on another point. We shall denote
this mapping or transformation by a bar: x —+ S'. Given
a point in classical phase space with the coordinates x
(standing for both ~~ and pI,), there will be a point x. If
a trajectory in phase space is given by the function
x(t), then x( t) is a t—rajectory, also consistent with the
equations of motion.

Microreversibility must also apply to the impulsive
interactions between system and reservoir. If a certain
initial state of the system x, and initial state of the
reservoir x„go over into a final state x,', x„' through dis-
continuous impulsive interaction, then the initial state
S,', x„' must go over into the final state S„S„bymeans
of the exactly reversed impulsive interaction, and the
cross sections for these two corresponding processes
must be equal, We may assume that the energy of the
reservoir component associated with the point x„equals
the energy associated with the point S„, and likewise
the energies at the two points x„' and S„' equal each
other. We may, therefore, conclude that the ratio
between the transition rates from x to x' and from x'
to x, (contingent on the initial state of the system but
not on that of the reservoir) equals exp+(E„'—E,)$,
because of Eq. (2.1). But impulsive interactions con-
serve the energy; hence the difference in reservoir
energies equals the negative difference in system ener-
gies. Accordingly, we shall find that the ratio of the
contingent proabilities of transition of the system from
x, to x,' and transition from S,' to x, equals
exp[P(E, —E,')j,
K (x',x) = ee&e "K(x,x'), E,=E„ E,'= E,'. (2.2)

such a composite), we may write this distribution in
the standard form

1 1

This result appears unexceptionable, but it is insuf-
ficient to achieve our purpose. We have, therefore, gone
one step further and assumed that microreversibility
(i.e. , equal cross sections) holds not only for the transi-
tion from x to x' and the "properly reversed" transition
x' to S, but also for the "directly reversed" transition
x' to x. This additional assumption is sufficient to
assure the monotonic decrease of the Helmholtz poten-
tial of a system in thermal contact with a single tem-
perature reservoir until the ensemble of systems
becomes canonical. However, our assumption may not
be necessary for this result to hold. In fact though one
can conceive of many forms of interaction in which the
strengthened form of symmetry between a transition
and its "direct reverse" holds, because of some special
geometric symmetry of the model, it appears likely that
the assumption made in this paper will have to be
generalized, i.e., weakened, so that the approach pro-
posed here is applicable to a wider class of models and
phenomena. This possibility is now being investigated.

In what follows we shall accept the strongest form of
symmetry of interaction, that is to say, equality between
the cross sections of any transition and its direct
reverse. If there are several reservoirs present, each
with its own peculiar coupling to the system, then the
kernel K of Eq. (1.1) will be the sum of such individual
kernels E„

K=+,K„ (2.3)

This condition on the stochastic kernel introduced into
the Liouville equation (1.1) represents the point of de-
parture of this paper. In the next section we shall show
that with only one reservoir present the assumption
(2.3) brings about the monotonic approach of the sys-
tem governed by Eq. (1.1) toward the canonical
distr'1bu tlon.

3. APPROACH TO THERMAL EQUILIBRIUM

We shall first consider an ensemble of systems each
of which is in thermal contact with a reservoir at a
definite temperature T. In that case the Liouville
equation (1.1), with (2.4), assumes the form

Bp—+(t,B)= "Pe«"&t (x') —ee &*&t (x)7L(x,x')Zx'.
a~

(3.1)

We shall now examine the solutions of this integro-
diGerential equation with arbitrary initial conditions.

each representing the effects of one (the ath) reservoir.
The kernel E, will correspond to both the requirements
of strong microreversibility (equality between the cross
sections of direct reverses) and of canonical distribution
of each reservoir. It will satisfy the equality. '

K.(x,x') =e~ ~~~"& ~&'~~K.(x',x),
(2.4)

K.(x,x') =ee ~&*'&L.(x,x'), L,(x,x) =L.(x'x) &~0.
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F= U ST= ~tj,—(H+P 'lnp, )dx, (3.3)

which is to decrease monotonically in the course of time.
We shall now proceed to prove this assertion.

The form of Eq. (3.1) suggests that instead of the
variable p, we introduce v,

v= pe&~.

In terms of v, Eqs. (3.1) and (3.3) read

Bp
+(v,H) =—e~~ fv(x') —v(x)/L(x, x')dx',

8t

(3.4)

Of course, we cannot require that the entropy of the
system will always increase as a result of its interaction
with the reservoir. After all, energy is being exchanged;
depending on initial conditions, it is quite possible that
the system on the average transfers energy to the
reservoir. We shall show, instead, that as the result of
the interaction the total entropy, i.e., the sum of the
entropies of the system and the reservoir, will increase.
True, we have no detailed description of the reservoir.
But as our reservoir is inexhaustible and, at the same
time, possesses a definite temperature, it is to be
assumed that the change in its entropy equals the
amount of energy transferred to it, divided through by
its absolute temperature. In other words, the rate of
change of total entropy equals

dS„,.i/dt =e=S -kP U— (3 2)

Of course, the Hamiltonian of the system is assumed to
be explicitly time-independent, i.e., no work is being
performed on the system.

Our conjecture is, then, that the quantity (S—kPU)
will increase monotonically with time. If we multiply
this expression by T and reverse the sign, we obtain the
Helmholtz potential F,

1
8F= H+ (lntJ+1) 8pdx—, (3.9)

phase space, provided only the variables under the
integrand satisfy reasonable boundary conditions (the
analogous statement in quantum mechanics is that the
trace of a commutator vanishes). All we need to do then
is to carry out the obvious transformation of the
integrand

e e~(lnv+1)(H, v)= (—(Invji)H e ~~v)

= ((lnv+1)H, p), (3.7)

and the desired result follows as a matter of course.
The rate of change in the Helmholtz potential is there-
fore determined wholly by the first integral on the
right-hand side of Eq. (3.6). By interchanging the role
of the two sets of variables of integration, x and x',
and by adding the resulting expression to the original
form of the integral, we obtain this expression for

fF= (2P)
—'

~ flnv(x) —lnv(x')$

X/v(x') —v(x) jL,(x,x')dxdx' (3.8)
~&p.

The integrand on the right is manifestly negative-
definite. Thus we have shown that the Helmholtz
potential is bound to decrease with time. This decrease
will be nonzero as long as there is any stochastic inter-
change between any two regions in phase space at
which the ratio of the densities has not yet assumed
the canonical value corresponding to the temperature
T= (pk)

—'
It remains to be shown that the Helmholtz potential

assumes its absolute minimum for this canonical dis-
tribution. To examine the expression (3.3) for minima,
we form its variation,

F=P ' e e~vlnvdx,
aJ ~

bid@=0. (3.10)

(3.5) but subject to the restriction that the variations are
not to violate the normalization requirement,

respectively. The time derivative of the Helmholtz
potential then becomes

F=P ' e e~(lnv+1)vdx

=P-~
i Dnv(x)+ IXv(x') —.(x))L(x,x')dx'dxJ.J,,

+P ' e e~(lnv+1) (H, v)Cx. (3.6)

It follows that the only distributions stationary with
respect to the variation (3.9), (3.10) are proportional,
and therefore equal, to the canonical distribution. We
can form the second variation as well, in order to deter-
mine whether the stationary solution represents a
maximum, minimum, or saddle point. We have

8'F= ~P(H+P 'in@)5'IJ, +P '(8IJ,)'$dx

It can be shown immediately that the second integral
on the right-hand side vanishes. We make use of the fact
that the integral over a Poisson bracket can be con-
verted into a surface integral through integration by
parts and hence vanishes when extended over the whole

=p'3 (~w)' —lnZ5-'w1dx

=P ' (5p)'dx)0.

(3.11)
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The absence of any additional stationary solutions
guarantees that the canonical distribution is not only a
relative but the absolute minimum. The value of this
minimum is, of course P= —P 'lnZ.

Our conclusion is, then, that the Helmholtz potential
decreases monotonically in the course of time and that
its absolute minimum corresponds to the canonical
distribution at the temperature of the (single) reservoir.
This result is not quite equivalent to the assertion that
the canonical distribution is reached asymptotically.
It is possible, first of all, that certain regions of phase
space do not interact with each other through the
stochastic kernel. Such a contingency is equivalent to
the existence of quantities that are absolute constants
of the motion, in the sense that they change their value
neither under the inhuence of the internal forces nor
under the impact of collisions with the surroundings.
Such absolute constants of the motion are known, e.g. ,
the symmetry character of the wave function with
respect to indistinguishable particles in quantum
mechanics. The existence of such absolute constants of
the motion will make it possible to subdivide the phase
space into invariant subspaces, each of which is ergodic
with respect to the motion of Eq. (3.1).

Another possibility is that the stochastic kernel I.
converges to zero near certain points or regions and
that there is insuS. cient non-stochastic Aux into them,
(see the discussion at the end of Sec. 4). This possibility
is well known in a special case, namely the interaction
of a Knudsen gas with the walls. Molecules of very low
velocity take a long time to reach the wall. If the
number of collisions per second drops too rapidly with
velocity, then the approach to canonical distribution
will not be uniform or even certain. Apart from these
two possibilities, our system will approach the canonical
distribution.

distribution tt(x, 0), we then have

ts(x, t) = P(x, x'/t)p, (x',0)dx', (4.3)

P(x, x'/t)) 0, )I P(x, x'/t)dx=1, t) 0. (4.4)

The probability that at the time t the system will be
in some particular region in phase space A (i.e., A
might be the region between two energy surfaces Ej
and E&) will be denoted by tt(A, t); it is given by

The integral

P(A, x'/t) = P(x, x'/t)dx
A

(4.6)

= ~" "P(x, x'/t)P(*', x"/r)ts(x", 0)dx"dx'
J a

represents the (contingent) probability that a system,
initially at the point x', will be found in the domain A
at the time f. It is usually called a transition prob-
ability. Obviously P(I', x'/t)=1 for all t. It follows
from the time independence of the Hamiltonian, and
of the kernel IC( ,xx)in Eq. (1.1) obeyed by ts(x, t), that
tt(x, t+r) is determined by ts(x, r), again through Eq.
(4.3); i.e.,

tt(x, t+7) = t P(x, x'/t)ts(x', r)dx'
r

4. APPROACH TO STATIONARY NONEQUILIBRIUM
STATES

P(x, x"/t+r)ts(x", 0)dx" (4 7)

lim ts(x, t) =ts, (x) (4.1)

Our proof will be based on 3, general theorem by
Doeblin, '~ which applies to all Marko%an processes.

If the initial distribution of the ensemble in phase
space corresponds to a definite location, at the point x',

tt(x, 0) =5(x—x'), (4.2)

we shall denote the distribution at any subsequent
time t by the symbol P(x, x'/t). For an arbitrary initial

' W. Doeblin, Ann. Sci. Ecole Norm. Sup. (3) 57, 61 (1940).
s J. L. Doob, Stochastic Processes (John Wiley and Sons, Inc.,

New York, 1953).

In this section we shall prove that for a wide class of
kernels E'( , x)xthe distribution ts(x, t) will approach
asymptotically some stationary distribution tt, (x),
which is independent of the initial distribution tt(x,0),

Because tt(x",0) is arbitrary, it follows that

P(x, x"/t+r) =
)"P(x, x'/t)P(x', x"/ )dx'. (4.8)

Equation (4.8) is a special case of the Chapman-
Kolmogorov equation, 'which holds for all stationary
Markov transition functions:

P(A, x"/t+r) = t P(A, x'/t)P(dx', x"/r) (4.9).
r

In this equation, P(dx', x"/r) is the probability that
the system will pass from the initial point x" to the
"infinitesimal" set (x', x'+dx') in time r, and the
integral is a Lebesgue integral. In the case where a
transition density exists, P(dx', x"/t) =P(x', x"/t)dx'.

If the Hamiltonian of Eq. (1.1) were explicitly time-
dependent, then we should have a nonstationary
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P(A, x'/s) &1—e,

whenever 0'(A) & e, for all x', then the limit

lim(P(A, x'/t))

(4.10)

exists. The convergence is uniformly exponentially fast.
YVhen the above conditions for the existence of the

limit are satisfied for some time s, then they will also
be satisfied for all times t&s, because

Markov process, for which Eqs. (4.7), (4.8), and (4.9)
do not hold. In that case, there could be no approach
to stationary equilibrium in the strict sense, though it
is not excluded that in the presence of a periodic Hamil-
tonian (e.g. , spin resonance in the presence of dissipative
processes) the solution of Eq. (1.1) may approach
periodic behavior. In this paper we are not concerned
with that possibility.

We shall now state Doeblin's theorem for the function
P(A, x'/t) that satisfies Eq. (4.9): If there exists an
e)0, an s) 0, and a set measure %(A) in F space, nor-
malized so that%'(F) = 1, and if these quantities can be
chosen so that

Then
1

lim P(A, x'/t) =,t exp( —-', x')dx. (4.13)
~~oo (2 )I J

This convergence is not uniform in x': if A is any finite
set, P(A, x'/t) can be made arbitrarily small for any t,
by choosing x' suSciently large. Hence the conditions
under which Doeblin's theorem was proved are not
satisfied in this case.

We shall now turn to the conditions to be satisfied
by the transition rate E(x,x'), Eq. (1.1), in order that
Doeblin's theorem be applicable to the distribution
P (A, x'/t) whose time dependence obeys the generalized
Liouville equation (1.1), We shall expand P(x, x'/t)
into a series with respect to the number of collisions
between the reservoir and the system during the time t.

The system can pass from x' to x in time t without
any collisions only if x=x&', where x&' is the position
at time t of a system initially at x', according to its
Hamiltonian equations of motion. The probability of
zero collisions, q(x', t), is

P(A, x'/t) = P(A, x"/s)P(dx", x'/t —s)
(

rt(x', t) =exp~ — ~ p(x, ')ds ~,J,
(4.14)

Intuitively, the conditions on P(A, x/t) in Doeblin s
theorem require that the stochastic process spread dis-
tributions that are concentrated initially in regions of
measure zero into domains possessing a nonvanishing
measure. This requirement excludes, for instance, the
case of an isolated system, one that does not interact
with a random reservoir. The ensemble distribution of
such a system in its phase space obeys the unmodified
Liouville equation, which maps distributions initially
concentrated in a point on another point without
spreading. Such a distribution, as is well known, will
never become stationary if it is not stationary to begin
with.

The requirement in Doeblin's theorem that P(A)
be normalized means that the measure of infinitely far
regions in phase space is zero with respect to P. Hence
with any transition function P(A, x'/t) which satisfies
the Doeblin conditions we must be able to find a finite
region 8 in I' space such that the probability of finding
the system in 8 at any time t) s is uniformly bounded
away from zero (i.e., the bound is independent of the
initial state of the system).

The assumptions made in Eq. (4.10) are sufhcient
but not necessary conditions for the asymptotic
approach to a stationary distribution. As an illustration
of this point we may use an example cited by Doob~
for this purpose. Let

(x—p'x )~
P (A, x'/t) = /2m (1—p")$

—* exp- dxq
2(1 p2~)

(4.12)
0&p(1.

p(x') = t E(y,x')dy
r

(4.15)

P'(x, x'/t) = exp~—
t

p(x, ')dx
~

S(x—x,'). (4.16)

The probability that the system will experience
exactly one collision in the interval k, given that at the
beginning of the interval the system was at x' and at the
end of the interval at x, will be a product of the follow-
ing three probabilities: (1) there was no collision up to
some time X, 0(X&t, which is given by it(x', X);
(2) there was a collision during the time interval

(X, X+dX), which caused the system to make a discon-
tinuous jump from x&,

' to x~z g& Lthe probability for this
event is E(x&&, o, xq')ding; (3) there was no collision
between (t—X) and t, rt(x, X—t) =g(x&q o, t—X). Since
'A is arbitrary, we have to add the different possibilities.
Hence

p0

P&'~(x, x'/t) = ~ dX exp — p(x.)dsJ,

&(E(xq ~, xq') exp —
~

p(x, ')ds . (4.17)
0

By analogous reasoning we find the probability for
the system to have two collisions with the reservoir to

is the rate at which collisions with the reservoir occur
at the point x'. Hence
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be

P&'&(x x'/t)

t—p 0

= I'd, "
dt,

I'
p(x, )ds

of E(x,x'). The same type of perturbation theory is
commonly used in quantum mechanics for the wave
function P(q, t) which, like p(x, t), obeys a first-order
differential equation in time. Let us rewrite Eq. (1.1)
in an operator form thus

at /at= (Hg )—p(x)t +)' E(xx')t (x')dx'

= (X+V)p, (4.20)
where

&& E(y,xz') exp —
~

p (x,') ds . (4.18)
0

Xti = (H, tj,) P(x)t—i, Vti = E(x,x') p(x') dx'.

Following up this analysis, we can get all the terms
P&"'(x, x'/t). The total transition density P(x, x'/t) is
the sum of all these different possibilities

P(x, x'/t) =P P&"&(x, x'/t).
a=0

(4.19)

This expansion can also be obtained by means of an
entirely different, nonprobabilistic, scheme. It is the
result of a perturbation expansion of ti(x, t) in powers

The operator 3C is singular, but V is regular, bounded,
and positive definite, hence we shall expand p(x, t) as
a power series in V. For this purpose we shall first
convert the integro-differential equation for p, (x, t) into
an integral equation,

t (x,t)=exp(tX)t (x,o)y) exp[(t —Z)Xjvt (x,Z)u, .

(4.21)
Expanding now in V we get

ti(x t)=exp(tX)ti(x 0)+~ dX{exp[(t—X)XjU exp(XX)}ti(x 0)
0

QV

dy exp[(t —y)Xj V D, [exp((y —X)X)V exp(liX)] p(x,0)+ . (4.22)

Now exp(tX)f(x, 0)=f(x, t) is the solution of the equa- It now follows from (4.17), (4.18) that
tion

8f(x,t)/Bt = (H,f) p(x) f. —

More explicitly, this solution has the form

(4.23) P& &(x, x'/t)(M .(x, ,)dr=Mt. (x),

(4.26)

t

f(x,t)=exp —~ p(x. i)ds f(x i,0). (4.24)
0

Substituting this expression back into Eq. (4.21) for
the case when p (x,0) =8(x—x') and hence ti (x,t)
=P(x, x'/t), we see that the expansions of Eqs. (4.22)
and (4.19) are identical.

We can now prove that if E(x,x') is bounded by an
integrable function s(x) 8

(Mt)'
P&'~(x, x'/t) (- ~(x),

2f

and in general

(Mt)"
P&"&(x, x'/t) ( v(x), n &1.

e!
Hence, from (4.19),

P(x, x'/t) (exp — p(x, ')ds 5(x—x,')
J0

(4.27)

E(x,x') (Mi (x), I v(x)dx=1,
~r

(4.25) + (e~'—1)e(x). (4.28)

then our P(x, x'/t) satisfies the Doeblin conditions.
There are no additional restrictions imposed on E(x,x')
if n(x) is made a function of H(x) alone, v(x) = v(H(x)).
This last assumption implies that v(xi) = v(x) for all t

This condition is somewhat more restrictive than absolutely
necessary but it simpli6es the proof considerably.

In order that our system should approach a stationary
state independent of its initial position, g, in phase
space, we must, of course, assume that there are no
trajectories in F space on which the system can move
without ever getting into a region where it can collide
with the reservoir. Otherwise if the system is initially
in a state x' which lies on such a trajectory, it would
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behave as if there were no reservoir, and the density
t&(x, t) would always be 8(x—xi') without ever becoming
stationary. More precisely, we assume that there exists
a time t&, such that for any time t&t&, the system will
spend at least an interval r, r=n(t —ti), n) 0 in such
a region in phase space where the probability per unit
time, p(x), of its undergoing a collision is greater than
some positive number m. Hence

E(x, x'/t) &exp[—m (t—t,)$S(x—x,')
+(e~'—1)&(x), t)ti, (4.29)

and

energy U is equal to the sum of the Rows

gp, & a

Bt

'X, dx'[ee'~&"'t&(x') —ee'~ "t&(x)j&(x)L (x x')

dxp(x) , dx' ee*~"L,(x x')[H(x') —&(x)j,
(5.3)

where

I'(A, x'/t) &exp[—mn(t —t,)$+ (eM' 1)@(A—), (4.30)
dxti(x) dx'ee' & 'L, (x x')[II(x') —&(x)j

g g'

+(A) =
& (x)dx. (4.31) = ~dxti(x) f;(x) (5..4)

When@'(A) &e, then

P(A, x'/t) &exp[—mn(t —ti)$+ (e~' 1)e, —(4.32)

which is less than (1—e) whenever

e&e ~'(1 exp[—mo. (t—ti) j)—, t) ti. (4.33)

It can be shown by methods analogous to those used
in the derivation of Eq. (3.8) that o ~)0. The equality
can hold only if all the P, are equal to each other.

When the ensemble becomes stationary, Bt&/@=0,
the internal entropy remains constant, 8=0, and Kq.
(5.4) reduces to

Thus whenever E(x,x') satisfies (4.25), 8(A, x'/t)
satisfies (4.10); Doeblin's theorem applies, and 0= —k Q p;J;&~0.

i=1
(5.5)

lim E(A, x'/t) =P(A,x')

exists, The limiting distribution I'(A, x) will be inde-
pendent of x' if there are no noninteracting regions in
phase space. Otherwise, the stationary state will depend
on the initial distribution between these invariant
subspaces. This requirement of ergodicity is the same
as in the case of a single reservoir discussed at the end
of Sec. 3.

(5.6)U=Q J;=0.

Here we may solve for some particular Row J in terms
of the other Rows

(5 &)

(4.34)
Since in the stationary state the mean energy U is
constant, it follows that

5. STATIONARY STATE WITH SEVERAL RESERVOIRS:
ONSAGER RELATIONS

into Eq. 5.5, we get
We shall now consider an ensemble of systems in

contact with e reservoirs at temperatures T,= (kp, ) ',
i= 1, , n. Equation (1.1) then assumes the form i Wfn

(5 8)

Bp—+(IJ,,I1)=Q ~ [eef~&"&ti(x') —ee*~&'&p(x)$
Bt

XL,(*,*')dx'. (5.1)

o.=S—kg p;J;, (5 2)

The rate of entropy production cr will be given, in

analogy with Eq. (3.2), by

where the Ji are now independent Rows.
It follows from this expression for the total entropy

production that in our model, the Ji and the y;, are the
currents and the forces respectively, which are used in

the Onsager theory. ' Onsager's reciprocal relations state
that in the linear approximation the dependence of J~
on yI, is the same as that of Jl, on y~. In other words,
when the reservoir temperatures are close to each other
(i.e., where the y, 's are small), when we can set

where Ji is the average rate of energy Row from the ith
reservoir to the system. The rate of change of the mean

A=&' ~«v«,
I&:Qm

(5.9)
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then over F) we get
(BJ y (BJ y (s.1.0)
(B'rg) y~=o E B'r&) 7+=Q JH fk {x)pl(x)dx

We shall now prove the validity of Eq. (5.10) for our
model. Since the J chosen in Eq. (5.7) was arbitrary,
the symmetry relations should be independent of that
choice. They will be if and only if

t BJ&(P) & )BJ.(P;) i
(s.11)

BP& )p=p ( BP& Jp, p

=Z) eP~ &*}p((x) (p},(x),H(x) )

Z(x x')eP& & }+ & '}'p},(x')}«g(x)dx'

+p&(x)p&(x)q(x)eP~& } dx. (5.15)

for /, k=1, , m, - e. We shall, therefore, prove Eq.
(5.11) rather than Eq. (5.10). Generally, J&z ———A p„
l kWm.

From Eq. (5.3), we get

Hence

J.i Jn—=Z "ee"&'}I
} i(x) (} ~(x),H(x))

—
}}1&,(x) (p&(x),H(x))]dx

(5.16)
-Bp(x)=, i dx fi(x), l,Wk,

BP} ". - BP}
(5.12) =2Z f eel((p}„H)dh

since fi(x) depends only on }8~. Solving for Bp/BP}„ in
the stationary state, from the time independent form
of Eq. (5.1), we get

BII, t Bp(x'
,I ep &H & z'}

k BP}, J '=», I BP},

Bp(x)
I
& L;(x,x')dx'

~ I

BLg, i

+ p(x')ee &"' H(x')L},(x,x')+
w~

—p(x)eP}P'& } H(x)L&,+ dx'. (5.13)
B, I

We shall now evaluate this equation when all the P s
equal to p. Under these conditions }M(x)= (1/Z)e p~& },
as derived in Sec. 3, and Eq. (5.13) reduces to

O'Zj—(pe&,,ep )dx

J},(—Jg; =2Z ~t&E&(OI„H)+0)(Ep,H) ]ep~dx
~r

= 2Z 30& (e~~E&,H) 0& (eP~E&,H) ]dx—.

(5.18)

The last term vanishes. In order to evaluate the re-
mainder in (5.16), it is convenient to separate p, (x) into
a symmetric and an antisymmetric part with respect
to the momentum variables of the system:

p;(x) =E;(x)+0;(x), E;(x)=E;(x), 0;(x)= —0,(x).
(5.17)

A Poisson bracket between even functions is odd, and
between an even and an odd function even, etc. Because
H is an even function, its Poisson bracket with E;(x)
is odd, and with 0;(x) even. Since the integral of an
odd function over the whole phase space vanishes, it
follows that

(p~,H) =
) LZ(x,x')e"&"}},(x')]dx' —q(x)p~(x) We can now solve for (eP~E&,H) from Eq. (5.14),

remembering that it follows from the way we arrive at
pJj & }f 0( ) (5 14)

Eq. (2.3) that L (x,x') =L (x,x') . Thus

z
where

t'» & n

pg=
I I, Z(x,h') =/I L;(x,x')]p, p

——g(x', x),
(BP}jp =p

q(x)= t Z( , x)xe ~ P* &}'d=hP( )Ixp, =p.

(d'~Ep, H) = Z(x,x')eP&~& }+~&"}~0},(x')dx'

—eP~&*'q(x)0},(x). (5.19)

(5.20)Jgi —Jg, =0.

Substituting (5.19) into {5.18) we arrive at our desired
result,

This derivation of the Onsager relations requires no
Multiplying Eq. (5.14) by Zee~& }}«&(x)and integrating reference to fluctuation theory, nor does it involve an
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assumption that the laws connecting the macroscopic
variables are MarkoS. an.

0. CONCLUSION

In this paper we have developed in classical (non-
quantum) mechanics a model for a stationary irrevers-
ible process that is capable of being treated with the
methods of statistical mechanics due to Gibbs. Our
model is based on the assumption that no essential
features of the real process are lost if the interaction of
the system with the driving reservoirs is pictured in
terms of instantaneous impulsive interactions. The
reservoirs themselves are described as infinitely large
composites consisting of identical noninteracting com-
ponents in canonical distribution. Thus each reservoir
has a de6nite temperature, in6nite heat capacity, and

vanishing internal heat conductivity. No special as-
sumptions are made concerning the structure of the
system; its internal dynamics are governed by some
nonsingular Hamiltonian.

We have succeeded in showing that our model, with
arbitrary initial ensemble distribution, will approach
the canonical distribution if driven by a single reservoir,
will approach a stationary (noncanonical) distribution
if driven by several reservoirs at diferent temperatures,
and in the stationary state will obey the Onsager rela-
tions if the driving temperature gradients are small.

Further work will be devoted to a more detailed
investigation of the stochastic kernels that represent
the action of the reservoirs, the introduction of more
general thermodynamic forces than temperature gradi-

ents, and the transition to quantum mechanics.
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Lagrangian linear in the first time derivatives are of sufficient importance in physics (particle fields

general relativity in the Palatini formulation, Einstein-Strauss type unified field theory, etc.) to warrant

special consideration. Our treatment is patterned after Dirac's more general exploration of Lagrangians

leading to algebraic relations between the canonical variables In our case the number of such constraints

at least as large as the number of configuration coordinates. The secondary constraints are free of canonical

momentum densities. We have examined all the possibilities that may arise —incompatibility of the fie

equations, proper Cauchy-Kowalewski problems, and the appearance of arbitrary functions in the solutions

Appropriate quantization procedures for the compatible cases will be indicated.

1. INTRODUCTION

"ANY physical theories are derivable from
- ~ Lagrangians that are linear in the first time

derivatives of the field variables. We have investigated
in this paper the compatibility of the field equations of
such a theory, methods of constructing a Hamiltonian
formalism, and quantization procedures. The formalism
developed is capable of handling such diverse theories
as the Pauli-Fierz equations, gravitational theory in the
Palatini form (i.e. , considering the components of the
afline connection as independent variables), the Ein-
stein-Strauss unified field theory, and Maxwell theory
with the vector potentials treated as variables inde-
pendent of E and H.

Our treatment is based on Dirac's' study of theories
for which the momenta canonically conjugate to the
field variables are not all algebraically independent of
the field variables and their spatial derivatives them-
selves. Dirac reduces all cases to Lagrangians that are

*This work was supported by the Office of Naval Research.
t Submitted to the Graduate School of Syracuse University as

a thesis for the master's degree.
i P. A. M. Dirac, Can. J. Math. 2, 129 (1950); 3, 1 (1951).

homogeneous of the 6rst degree in the "velocities"
(derivatives of the field variables with respect to the
chosen time coordinate); any Lagrangian can be given
this form by the device of parametrization. Lagrangians
that are (inhomogeneously) linear in the velocities do

not require this treatment. They can be discussed quite
successfully without the introduction of a parameter.
They are of sufFicient importance in physics that they
warrant a specialized treatment.

There are two general types of linear Lagrangians (in
our sense). They all lead to differential equations that
are free to accelerations and are linear in the velocities.
The 6rst type leads to equations in which the matrix of
the coef6cients of the velocities is nonsingular, the
second to equations in which the same matrix is singular.
The 6rst case can be treated completely and in full

generality. The second case has a number of subcases.
Whenever the matrix of the coeScients is singular, then
there exists a number of linear combinations of the
(Lagrangian 6eld) equations that are free of velocities.
These combinations may be empty; if they are. not,
their time derivatives may be independent of the original
field equations. In the latter case, new combinations


