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Relaxation Processes in a System of Two Spins*

l. SoroMoNt
LymarI, Laboratory, Harvard University, Cambridge, Massachusetts

(Received March 29, 1955)

Abragam and Pound's method for the calculation of the longitudinal relaxation time T1 has been extended
to the transverse relaxation time T2. Explicit calculations have been carried out for a pure dipole-dipole
interaction, showing that for an interacting pair of like spins, or for nuclei in paramagnetic solution, TI is
exactly equal to T2 in the extreme narrow case. For a pair of interacting unlike spins, it is shown that the
longitudinal components of the magnetic moments do not have simple exponential decays. This gives rise to a
steady and transient Overhauser eRect. The transverse components, however, have in all cases, simple
exponential decay defined by a single relaxation time T2. A set of modified Bloch s equations is found, giving
the correct equation of motion of the macroscopic magnetic moments of such a system of pairs of unlike spins.

The equality of T1 and T2 has been verified in paramagnetic solutions, and a nuclear Overhauser eRect has
been observed in anhydrous hydroQuoric acid. If one assumes that the extreme narrow case corresponds to
the actual motion, the experimental results are not consistent with the picture of a pure dipole-dipole
interaction between the hydrogen and fluorine nuclei of a molecule without taking into account the eRect of
the other molecules.

I. INTRODUCTION

~

~E consider a particle of spin I interacting with
another particle of spin S. The Hamiltonian of

such an interacting pair, in a magnetic field Hp along the
s direction is

5c=sesr —&yr&ol* —&ysKS,+x'. (1)

K~ is the Hamiltonian of the motion of the particles and
commutes with the spin operators. The next two terms
are the Zeeman energies of the spins in the constant
magnetic 6eld Hp. X. is the spin-spin interaction term
considered as a perturbation. All the explicit calcula-
tions will be performed in the case of a dipole-dipole
type interaction:

x'= —(h'yrya/b')[3(I r) (S r) —I S])

but any other type of interaction, e.g. , electron-coupled
in.teraction AI S, can be treated in the same way.

We will consider only spins of value ~ so that there is
no quadrupole interaction. Larger values for the spins
would make computations more complicated without
fundamental changes.

In the case of a randomly fiuctuating perturbing
Hamiltonian 5C'(1), this integral has been calculated by
Abragam and Pound. ' When the fluctuations are rapid,
as in liquids and gases, the result is a time-independent
transition probability per unit time. In the present case
of spin —,', we define four eigenstates of the spins by the
following relations:

I*I+)=+s I+&,

s.l+) =+-;I+),
s*l —)= ——:I—),

so that the four unperturbed eigenstates of a pair are
I+&I+), I+&I —), I

—&I+), and
I

—
&I

—) with the
respective occupation numbers E++., S+, E +, and
S

The transition probabilities per unit time mp, m~, xi,
and m2 between these four states, which we are going to
use in the discussion of the motion of the longitudinal
component of the magnetic moment are indicated in
diagram (A) of Fig. 1.

II. TRANSITION PROBABILITIES

If lm, & and lm;) are two eigenstates of the unper-
turbed Hamiltonian with the corresponding energies E;
and E;, the transition probability per unit time between
these two states is, in the 6rst order, given by

with

l~ (~;I3C'(1')
I
rrl, ,&e '"""d&'

p

(0,,= (E; E;)/A. —
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FIG. 1. (A) Transition probabilities between the eigenstates of
the longitudinal components of the spin operators. (8) Transition
probabilities between the eigenstates of the transverse components
of the spin operators.

' A. Abragam and R. V. Pound, Phys. Rev. 92, 953 (1953).
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The equations of motion of the transverse components
of the magnetic moment involve the operators I, (or I„)
and S, (or S„).So, in similarity to set (4) we define four
eigenstates of the spins by

I.l~)=+ p l~&

I.IP&= —l IP&,

s
I )=+ll ),

s.lp)=-lip)
The four ~t~t~s of a pair I&)l&) l&)IP) IP)l&) and

IP& I P) are not eigenstates of the energy. However, these
four states are orthogonal, so it is still meaningful to
speak of the occupation numbers X, X p, Xp, Xpp
and of the transition probabilities per unit time uo, u~,
u~', and u2 between these states as indicated on
Fig. 1(B).

To calculate the transition probabilities, we proceed
as follows:

Consider two orthogonal states
I a) and

I b) that, are
not eigenstates of the energy. They can always be ex-
panded in eigenvectors of the energy.

la&=g;a;Im, &,

lb)=g, b, l~,).
For example, in the present case of spin —', we have:

Ia&= (I/~&)LI+)+ I

—)j,
l~&= (I/~2) CI+)—I

—)j.
(~')

Using the expansion (5) and the fact that (al b) =0, we

get a formula generalizing (3). The transition proba-
bility per unit time between the states

I a) and
I b) is

This integral can be calculated in the same technique as
Abragam and Pound' used and will be shown to be
time independent in the case of rapid motion.

III. EQUATIONS OF MOTION OF THE MAGNETIC
MOMENT

From the dehnltion of the z's, it follows that

dN++/dh = —(wi+ wi'+ wp) N+++ wi'N+

+wiN ++wpN +constant,

dN+ /dt =w, 'N++ (wp+ wi+ w—i') N~

+wpN ++wiN +constant,

dN ~/dt=wiN+++wpN+ (wp+wi+wi')N +-
+wi'N +constant,

dN /dh= wpN+++wiN+ +wi N
—(w,+wi'+ w p) N +constant.

The constants are obtained by considering the system at
temperature equilibrium by inserting the proper Boltz-

(wp wp)S +collstallt
(g)d8, /dh = —(wp —wp) I,

—(wp+ 2wi'+ wp)8*+ constant.

These equations along with the results of identical
calculations for the transverse components I, and S,
lead finally to the following set of equations:

dI,/dt= —(wp+2wi+wp) (Ig Ip)
—(wp —wp) (S.—Sp),

d8,/dh= —(wp —wp) (I,—Ip)
(9)

—(wp+ 2wi+ wp) (S.—Sp),

dIg/dh= —(up+ 2ui+u2)I~ (up up)Sg,
(1o)

dS /dt= —(up —up)I —(up+ 2ui +up)8

Io and So are the equilibrium values of the magnetic
moments of the spins I and S, and make explicit the
values of the constants of Eqs. (8). These equations
show that, in general, the decay of the observed
quantities is not a simple exponential, but rather a linear
combination of two exponentials. There are two cases
that can easily be seen to give simple exponential
decays:

(a) The two spins I and S are alike ("alike" meaning
that yz= ps). Then the only observable quantities are
I,+8, and I,+S,. From the definition it follows that
m&' ——wI and u&'= uI, thus the equation of motion of the
two observable quantities is

(I,+8,) = —2(—wi+wp) (I.+8,—Ip —Sp),

(I.+S ) = —2(u—i+up) (I,+S.).
dt

These are the usual decays with the relaxation times

I/Ti ——2 (wi+wp),

1/Tp ——2 (ui+ up).
(12)

(b) Nuclei relaxed in a paramagnetic solution. The
relaxation of such a nuclear spin I will be almost entirely
the result of the dipole-dipole interaction BC', when
paired with an electronic spin S of a paramagnetic ion.
On the other hand, this interaction 3C' is a negligible
relaxation process for the electronic spin S, so that, in
the time scale of observation of the nuclear magnetic

man's factor, and are unimportant in the computation
of the relaxation times.

The experimentally observable quantities are the
macroscopic magnetic moments I, and S„distinguish-
able by their diferent Larmor frequencies and pro-
portional to:

(N+++N~ ) —(N ++N )=KI„
(N~++N +) (N+—+N )=K=8,. (7)

Inserting the values (7) in (6) we get:

dI,/dt = —(wp+ 2wi+wp)I,
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moment, we may consider to have 8,=So and 8,=0.
Then Eqs. (9) and (10) show that the nuclear spins I
have simple decays with relaxation times:

1/Ti wo+——2wi+ws,
(13)

1/Ts =No+ 2li+ Ns.

IV. BLOCH'S EQUATIONS FOR A TWO-SPIN SYSTEM

Equations (9), which we will rewrite for convenience
as Q2 —Qp= 0. (2o)

transverse components have simple exponential decays:

de/dt = vI~)
(19)

dS+/dt = —v'S+.

So these modified Bloch equations of the transverse
components, obtained by analogy with the Eq. (14) for
the longitudinal components, predict that, in Eqs. (10),
we shall have

with

dI,/dt = p(I,—Io) —o(8,—S'o), —
d8,/dt= —p'(8, —So)—o. (I,—Io),

p= wo+2wi+wo,

p =wo+2wi+ws,

0 =202—'Mp

(14)

v =Io+2Ni+ sts,

v =No+2gi +so, (21)

This will be proven quantum mechanically in the next
section. Then Eqs. (17) represent the correct motion of
the transverse components in all the cases with the set
of values

p, =82—Sp.
are the usual macroscopic Bloch equations' in which we
have added a term representing the spin I—spin S
interaction.

It is less straightforward to compare the equation of
motion (10) for the transverse components with Bloch's
equations because our Eqs. (10) are the equation of
motion of the expectation values of the time inde-
pendent spin operators, and therefore describe the
motion of I, and S, in coordinates rotating respectively
with angular velocity co~ ——ylIIp and co~ ——ygIIp. Never-
theless, let us try to represent the motion of the trans-
verse components of the macroscopic magnetic moment
by a set of Bloch's equations similarly modified b
adding a spin-spin interaction term, These equat
will be in the laboratory coordinates:

dI+'/dt = iiorI~' vI~' pS+-', — —
dSp'/dt = iiosSp' —v'S~' p—I ', —

To summarize, it has been shown in this section, that
the Bloch equations do not hold for a two-spin system.
However, by a slight modification of these, one can still
find a set of equations t'Eqs. (14) and (17)) that repre-
sent the motion of the macroscopic magnetic moment.
It has been seen, too, that unlike the longitudinal

components, the transverse components always have a
simple exponential decay.

V. STEADY AND TRANSIENT OVERHAUSER EFFECT

In any steady-state condition, the first of Eqs. (14)
will give

with

ions —
p (I,—Io)—o.(8,—So) =0. (22)

If we apply an intense rf Geld at the resonance fre-

quency of the spins S, for example, so that we equalize
the populations in state l+) and l

—) ("saturation"),
we will have

Ip' I,'+iI„', ——
S~' S,'+iS-—„'

Now to compare with Kqs. (10) we shall write Eqs. (16)
in the rotating coordinates (I~ I+'e'"r ' and S+-—

+I cites t) ~

dI+/dt= vI+ pe '&"' "—'S~, —
dS~/dt= —v'S pe '& ' "e"I+. —(1/)

(a) In the case of like spins, io e = io r and Kqs. (17) give
simply: (v and v' are obviously equal by symmetry
considerations)

—(I++8+)= —(v+1 )(I++8+).
CP

That is exactly the second of Eq. (11) with

v+p, =2(gi+Ns). (Ig)

(b) In the case of unlike spins, "unlike" meaning that

I d'or
—ops I &», I

oor ops I
&»', —

the last term of Eq. (17) will average out so that the
' F. Bloch, Phys. Rev. 70, 460 (1946).

Now, inserting the value (23) in Eq. (22) we get the
value of I„when 5, is saturated:

I*=Io+ (~/p)So. (24)

This is the eGect first derived by Overhauser, ' and ex-
tended by Bloch4 to the case of dipole-dipole interaction.
It is to be remarked that in the case of nuclear spins,
Eq. (24) could be used to determine the relative signs of
the gyromagnetic ratios of the two spins: The effect
would be an increase of the static magnetic moment if
the two signs are the same, and a decrease if the signs
are opposite.

A solution of Eqs. (14) of particular interest is the one
corresponding to the initial conditions:

(I.—Io) i=o =0,
25

(8.—So),=o——S;.
The solution, in the case p=p', is, (the case pQp'

gives more complicated formulas, without any funda-

s A. Overhauser, Phys. Rev. 89, 689 (1953);92, 477 (1953).
4 F. Bloch, Phys. Rev. 93, 944 (1954).
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mental difference)

I. Ip
—,'S——,f—e (~+—' e —(~ —)'—7

5,[g (i—+~) t+.e (P —~) t7
(26)

These equations show that the relaxation of the spins
S changes the difference of populations of spins I in
time. This could be called a "transient" Overhauser
effect and has been studied experimentally. The results
will be discussed in Sec. VII.

VI. COMPUTATION OF THE TRANSITION
PROBABILITIES

As an illustration of the method given in Sec. II we
are going to compute the transition probabilities when
the perturbing Hamiltonian BC is the dipole-dipole
interaction (2). This perturbing Hamiltonian will be
written as in Bloembergen, Purcell, and Pound's paper':

We shall assume, as usual, that

(p(t)p*(t+r)) =(Ip(0) I'&e-) ~r",

the brackets meaning average among all pairs.
It can be seen' that

(Fps& = 4, k',

(I p. l )=—:.k',

(I p I')= —,', k'.

Now we can calculate the transition probabilities used
in the preceding sections. Equation (3) gives

xp (tr)e i(~1 t—ts) t'd—t'
g2 J

~'=)I,S. sr(I+5 +I—5+)7pp+P+5 +I 5+7Fr
+I I S.+I.5 7pr*+I+5+ps+I —5—Fs*, (27)

with

pt
I

GJ]
tk2 4O

',p, (t')e "-'dt'-
(29)

Fp(t) =kI 1—3 cos'e(t)7,

F, (t) = —spk sine(t) cosg(t)e'«",

Ps(t) = —-', k sin'e(t)e"«"

k =k'yn s/t)'

(28)
1P (tr)e i(ttr+tts) —t'dtr

t~', "o

Equation (6) gives, with the use of the expansion (5'),

1
{(1 11e—i(~r tts) t'+et(car —Gls) v7) p—p(tr) (e

inert'

e
—i—tts t') pr(t')

tk' 4 ~p

+ (etcgrt eirast') p, *(t )--e-'(ttr+-s) t p (tr)-et( r+(est)ot ps*(t )jdt'

1 1
{r (e t(ttr tts) t'— et—(ttr—(us) t')p (tr)+.e inst'p (tr)—

t'h 4 4p

+.et~st'p s(tr) e i(r r+tts) t'p —(tr)+et(ttr+tts) t'p t'(t'))tdt
(30)

1

{( + Le i ul tts) t +ei(ttr Ns) t 7)pp(t )+—
(e ittr t +e ittst )pr(t )

(y2 4g

(eittrt'yeittst')p a(tr)+e i(ttl+tts) t'p —(tr)+et(ttr+tts) t'p ( t))tdrtr

(a) Pairs of Like Spina: ppr=pps o)——

wp= (Fp ),
8A'

7. 1

2)tt' 1+p)sr/
(31)

P Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).

nj' is obtained from n~ by interchanging co~ and cog.

It is seen that, before performing the integration, we
must distinguish the cases where co~=cvg and col/cog.
We will assume that the motion is rapid, so that
7,m&(1 and 7,u«1.

27. 1
(I psl'&

1+4p)sr.'

r, Fp') 2
+(Ips I'&

8A'. 4 1+4p)'r s

7. 2 2
(IF)i') +(Ipsl'&, (32)

8)tt' 1+p)'r s 1+4p)sr s

7, 9 8 2
-(po')+(I pr I'& +(I ps I'&

SA' 4 1+rdsr ' 1+4(p'r.'
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l000

O
(-) lpp-
(f)

I

Q Tj
the extreme narrow case (pp'r, '«1), we 'can see that
~1 T2.

1//Tz= 1/Tp=-P, (5'y4/ bP) r..

(b) Pairs of Unlike Spins

The m's give the straightforward generalization
tzJ

I—

to
Q

ILI
0

I

(ol7 IPie ip l9

NUMBER OF AEONS PER CC
(p20'

Using these values in Eqs. (12) we get the relaxation
times:

FIG. 2. Longitudinal and transverse relaxation times of protons
at room temperature in paramagnetic solutions of ferric ions
(FeNH4(SO4)2+12H20) of diferent concentrations.

7C
tsp= (Fp')

8AP 1+&cpz
—cps)PT P

7 C 1
(IFzl')

2h' 1+pzrPrcP

Vc 1
(IFz I')

2A' 1+(o 'Tee

2T. 1
~ =, (IF I')

ft' 1+ (cpr+pps)'T p

(35)

1 6 A2y4 47.,
2Q bP ]+~PT P 1+4~PT P

+C

1 3 A jt 57c 27c
3r,+ +

2Q bp 1+pppr p 1+4(dpr 2

(33)

In computing the I's, if we suppose that I&or —ppsl

))1/T, so that any integral of the form:

AT
T

F*(t')e z'F (t")e'' s"dt'dt"
T A' ~ "pp

averages out for any macroscopic time of observation
These results are identical to Kubo and Tomita's. ' In T (1/T is of order of magnitude of the I's) we get

No= N2=
r, 1 1 ) 2 2

(Fp'&+
I

+ I& IFz I')+
8AP 4 8 1+(~z ~s)'rc' I (1+pzz'rcP 1+cpsPrc') 1+(cvr+pps)'rc'

1 1 2 2
Ny= (F")+, ,(IF I')+

85' 8 1+(ter pzs)'r' —1+pcs'Tc 1+(+r+cps) Tc'
(36)

7.. 1 1 2 2

&F")+, ,&IF I'&+, ,(IF.I'&

8'' 8 1+(cpr cps) T — 1+cpz'rc' 1+(~r+pps)'rc'

«. I.)= 8DI—. I.-)+ ;(8—, S.)7,— -—
dt'

ZOO= god~

tst ——tsz' ——(3/20) 8, (3'/) —(8,—Sp) = —8L~i (I,—Ip)+ (g,—Sp)7,
dt

(39)
Z02= 58)

3

In the extreme narrow conditions (cpz'TP «1 and (17) become

cprs,
' «1), the above formulas are considerably~sim-

plified:

Np
——Np ——2't/801,

Nt ——Iz'= 13/80,
(38)

dI+/dt = 5I+, —

dS+/dt = —8Si.

with b= It'yr'ys'rc/b'
With these values, the equation of motion (14) and

' R. Knho and K. Tomita, J. Phys. Soc. (Japan) 9, 888 (1954).

And the solution (26) for the longitudinal components

I,—Ip ———',S;Lexp (—

payat)

—exp (——',bt) 7,

S,—Sp ——~pS,
I exp( —pent)+exp( —~~N)7.



564 I. SOLOMON

0.8

0.7

0.6
V)
I

05

0.3

0.2

commercially obtained acid is stored in steel cylinders,
necessitating subsequent distillation. After triple dis-
tillation in transparent Eel-F plastic tubes, the acid
became colorless. The resonance studies were carried out
in small samples of acid sealed in Kel-F tubes. ~

Free precession techniques' ' ("spin echo") were
used, permitting a direct measurement of S„I„I„
and 8,.

The initial conditions (25) were obtained by applying
at the time 3=0 a "180' pulse" at the resonance fre-
quency of the spins S. Then at t=0,

(S.) ~=o = —So.

So the initial conditions (25) are in this case:
O.l

l l l l l l . I

0 I 2 5 4 5 6 7 SECONDS

(I,—Io) ~=o= 0,

S,= (S, So)g=o= —2So.
(43)

Fzo. 3. Motion of the longitudinal component of the magnetic
moment of one kind of nuclei toward its equilibrium value in
hydroQuoric acid. The equation of the solid curve is

(~,—5'o)P, = 2Lexp( —t/L'&)+exp( —t/T&) j,
with T1= 1.27 sec and D1=2.25 sec.

(n ~) &—e (n+~) &j—
8,—So= —Sofe && '&'+e &&+'&'$.

In the extreme narrow case, we have in. Kqs. (14)
p=p'. Even if we are not in the extreme narrow case,
this equality wi11 hold approximately in hydrofluoric
acid, for the I.armor frequencies of hydrogen and fluorine
differ by less than 6 percent. In this condition, solution

(c) Relaxation of Nuclei in paramagnetic Solution (26) with the initial condition (43) is

Inserting the values (35) and (36) in the Eqs. (13) one
(44)

Ys

T, 10 b'

+C

1+ (coz—oos)'r, '

1+~r'r.' 1+(e r+cos)'r'-

Figures 3 and 4 show the experimental results, that are,
as expected from our simple theory, symmetrical with
respect to the hydrogen and fluorine nuclei. The figures
show that the experimental points can be fitted very

@~+I2+8 7c 37 C

4r,+ +
Ts 20bo 1+ (cod cos) ~e 1+co—tories

I I

~ FLUORINE

+ PROTONS—THEORY

6rc 67, 0.2—

1+~s'r' 1+(~r+~s)'r'

In the extreme narrow case, as expected, T& ——T&. O. t

1/Ti= 1/~s= (&'vr'vs'/t')r. . (42)

We have measured the relaxation times of protons in
paramagnetic solutions containing different concentra-
tions of ferric ions. As it is shown in Fig. 2, the predicted
equality between T~ and T2 has been verified within
about 2.5 percent.

VII. EXPERIMENTAL RESULTS

The most sensitive test of the theory outlined above
appears to be the Overhauser effect discussed in Sec. V.
This effect has been observed in anhydrous hydrofluoric
acid HF at room temperature. The boiling point of the
acid, at atmospheric pressure, is 19.4'C. As a result, the

0
0 I.

6
l

SECGNDS

FIG. 4. Motion of the longitudinal component of one kind of spin
after having applied a I80' pulse to the other kind of spin in
hydroQuoric acid. The equation of the solid curve is

(I* Io)P =Le P( t/'D) —exP(——tP') j
where T1 and D1 are the same as in Fig. 3.

~ The 6rst experiments were performed in TeQon. But after a few
days in TeQon, the liquid acid becomes colored and the relaxation
times drop considerably, showing that commercial TeQon is not
completely inert to hydroQuoric acid.

8 E. L. Hahn, Phys. Rev. 80, 58{) (1950).
o H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).
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well by (44) with the values:

Tr 1/(——p+o-) = 1.27 sec,

D,= 1/(p —o) = 2.55 sec.

The estimated error in these times is about 20 percent.
These results show a ratio o/p= —', . The same ratio is
obtained directly from the steady Overhauser e6ect:
Saturation of protons (or fluorine nuclei) increases the
magnetization due to fluorine (or to protons if fluorine
has been saturated) by a factor of about 30 percent. The
static magnetic moments of hydrogen and fluorine being
approximately equal, Eq. (24) gives o./p —s.

This ratio of 3 is, however, in disagreement with the
value ~ calculated for a pure dipole-dipole interaction in
the extreme narrow case LEqs. (39) and (40)j.

The decay of the transverse component is, within
experimental errors, simply exponential with the same
time constant T~ for protons and Quorine nuclei:

T2——0.43~0.015 sec.

This again is in disagreement with Eq. (39), showing
that either the eGect of neighboring molecules needs to be
taken into account, or that the interaction is not a pure
dipole-dipole one, or both. It has been possible to remove
the discrepancy by adding to the pure dipole-dipole
interaction an electron-coupled exchange interaction
AI. S of reasonable amplitude. Further experiments on
purer hydrofluoric acid are being carried out to in-
vestigate this effect.

Figure 5 is an example of the signals obtained: It
shows the increase of the magnetization due to Quorine,
following a 180' pulse for protons. The magnitude of the
longitudinal magnetic moment of fluorine is indicated
by the amplitude of the tail following a 90' pulse for
fluorine.

On the same photograph are superimposed: (a) the
thermal equilibrium value of the magnetic moment of
the Quorine obtained by simply applying a 90' pulse for

i ?

ii

ii L:

FIG. 5. Amplitude of tails of 90' pulses at fluorine frequency
after having applied a 180' pulse at hydrogen frequency in
hydrofluoric acid. a and b represent the amplitude of the tail when
no 180' pulse has been applied; c represents the amplitude of the
tail when the proton resonance has been saturated (steady
Overhauser e8ect).

fluorine (tails a and b). (b) the value of the magnetic
moment of the fluorine when the protons are saturated
(tail c). Similar photographs have been obtained by
interchanging the role of hydrogen and fl.uorine.
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