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Previous numerical results are extended by using an analytical solution of the temperature-perturbed
Thomas-Fermi equation to obtain boundary and initial parameters corresponding to seven neutral-atom
zero-temperature solutions given by Slater and Krutter. Fitted functions given previously for the solution
parameters in terms of the unperturbed atom radius are revised to include the new data, to obtain a con-
siderable extension in directly-fitted range. Effects of the temperature perturbation on the equation of
state, the internal energy, and parameters related to the equation of state are shown graphically for the

extended range.

N a previous paper! by one of the authors, thermo-
dynamic functions for the Thomas-Fermi atom
model at low temperature were obtained by a pertur-
bation method. In a further paper,? an analytic solution
of the temperature-perturbed Thomas-Fermi equation
of general order was given in terms of quadratures on
the unperturbed Thomas-Fermi function for zero tem-
perature. This quadrature solution yields the boundary
and initial parameters of a solution, which enter the
thermodynamic functions, as explicit integrals on the
zero-temperature function to which the solution refers.
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F16. 1. Solution for the temperature-perturbation function x
as a function of radial distance « in the atom, from data of SK
The solution corresponding to the second parenthetic case in
Table I has been omitted.

* This work was sponsored by the U. S. Atomic Energy Com-
mission.

1 I J. Gilvarry, Phys. Rev. 96, 934 (1954), referred to hereafter
as

2 ] J. Gilvarry, Phys. Rev. 96, 944 (1954), referred to hereafter
as II

From these results, accurate values of the boundary and
initial parameters of the corresponding first-order tem-
perature-perturbed equation were obtained from six
neutral-atom zero-temperature solutions given by
FMT.? The values of the parameters were fitted semi-
empirically by functions of the atom radius having the
proper limiting behavior in the cases of an infinitesimal
and an infinite atom, to make values of the thermo-
dynamic functions readily accessible without the need
for interpolation.

This paper extends the numerical results of IT by
obtaining the values of the boundary and initial param-
eters corresponding to seven neutral-atom zero-tem-
perature solutions obtained by SK,* as tabulated by
Gombas.? The solutions of SK refer to considerably
smaller atomic volumes than do those of FMT; the
smallest volumes approach those corresponding to a
degenerate Fermi-Dirac gas. The fitted functions of II
have been revised to include the values of the solution
parameters derived from the data of both SK and FMT.
With this revision, the fitted functions in the tem-

TasLE I. Boundary and initial parameters from data of SK;
zero-temperature case.

—¢:’ (from SK) 23 xb xb (from SK)
1.00 1.447 1.194, 1.19
1.38 0.946, 1.696, 1.69
1.50 0.6650 2.204 2.20
1.55 0477, 2.804 2.80
1.58 0.2556 4.24, 4.23
1.586 (0.150,)2 (5.864)2 5.85
1.588 (0.073)® (8.5)b 8.59
1.58808 0 0

& The values of SK for ¢ in this case have a discontinuity of jump 0.0037
at the point x =1.46. It was concluded that the error probably lay in the
region x <1.46, since subtraction for x >1.46 of the saltus 0.0037 to make
¢ and its denvatwes continuous yielded a value of ¢» (and of x» and xi’)
not smooth with respect to the other values of the table. The tabulated
boundary values were derived from unchanged data.

b In this case, only two figures are given in the data at the boundary, so
that this point is of low weight. The point is bracketed by two points from
the data of FMT, which yield by interpolation (for the tabulated xs) a
value of ¢» dlffermg by about 4 percent from the tabulated ¢¢> Thls case
was ignored in obtaining the fitted functions of I for ¢» and ¢i’ —¢s,»’.

3 Feynman, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949),
referred to hereafter as FMT.

4J. C. Slater and H. M. Krutter, Phys. Rev. 47, 559 (1935);
referred to hereafter as SK.

5 P. Gombas, Die statistische Theorie des Atoms und ihre Anwen-
dungen (Springer-Verlag, Vienna, 1949), pp. 53, 357.
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TaBLE II. Boundary and initial parameters from data of SK,
temperature-perturbed case.

o

xb —xb —xi
1.194, 0.587; 0.4295
1.696, 1.78; 0.8265
2.20, 418, 1.33,
2.80; 9.32 2.034
4.24, 38.85 4.07,
5.864 (124.7)* (6.735)®
8.5 (51.)" (11.)P

a It was found that the values of x» and xi’ depend very little on the
values of ¢ to the left of the discontinuity noted in Table I for this case,
and hence the saltus in ¢ was removed by fairing the data into the value
unity at x =0. Different but reasonable fairings yielded changes in x» and
xi’ less than their corresponding possible errors. The tabulated values for
this case seem smooth with respect to the other values of the table.

b The values of x» and xi’ are smooth, within less than 0.5 percent, with
respect to the bracketing values from the data of FMT, in spite of the
difficulty noted in Table I.

perature-perturbed case cover the same directly fitted
range of data as do the fitted functions in the zero-
temperature case, as given in L.

The notation used is the same as in papers I and IT;
the subscript 1 is deleted from the symbols correspond-
to the first-order temperature-perturbation function x
and to its boundary value x; and initial slope x.’.

1. NUMERICAL RESULTS

To obtain accurate values of the integrals entering
x» and x;/, the tabulated zero-temperature solutions of
SK (given in all but one case to four figures at the atom
boundary) were used to obtain improved values of the
boundary radius x; (given to-only three figures by SK),
and of the boundary value ¢, (not given by SK). The
computed values of ¢, and x; are tabulated in Table I
against the initial slope ¢’ to which they correspond,
with the values of x, from SK for comparison. Paren-
thetic values in the table involve minor discrepancies, as
noted. With the exception of the second parenthetic
case (in the region of which smoothing was used to
give major weight to the data of FMT), the values of
¢» given in this table are essentially the ones used to
obtain the fitted function® of I for ¢;. As is evident from
the table, the number of significant figures given by SK
for the initial slope ¢;" (or, more important, for the dif-
ference ¢/ —¢; ., where ¢, is the initial slope corre-

TaBLE III. Coefficients? of fitted functions from data
of SK and FMT; temperature-perturbed case.

# Ca m Dm

3 —3.205X 107 1—x2=0.2280 —5.805X10-3
n'=4.215 —2.331X1072 m’=0.7400 —1.925X 10!

5 —2.519XX1073 2 —3.120

a The coefficients are given to four figures to minimize round-off error,

8 Boundary and initial parameters, as given by Gombas, cor-
responding to an eighth solution of SK for large volume, have
been ignored in Table I, because of apparent lack of sufficient
significant figures in the difference ¢;’—¢:,»'. No solution corre-
sponding to these boundary and initial values is tabulated by
Gombas.
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F1c. 2. Fitted functions for x; and x;’ against boundary
radius xp of atom.

sponding to an atom of infinite radius) is not com-
mensurate in general with the number possible in the
other parameters, on the basis of the solutions as
tabulated.

With these boundary parameters for the unperturbed
case, the values of x; and x,;’ corresponding to a tem-
perature perturbation were determined from Egs. (14)
of IT by numerical integration on the zero-temperature
solutions of SK. The results are tabulated in Table II
against the unperturbed radius to which they corre-
spond. The values of x;’ yield, from Eq. (13) of II, the
solutions plotted in Fig. 1 for the temperature-pertur-
bation function x as a function of radial distance x in
the atom. The solutions corresponding to the smaller
values of x; do not differ much from the straight lines
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F16. 3. Perturbation parameters o, 7, and w from fitted
functions, against boundary radius x3 of atom.
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F1G. 4. Scaled pressure and energy perturbations from
fitted functions, against scaled volume in cubic angstroms.

characteristic (as noted in I) of the Fermi-Dirac limit.

The results of Table IT from the data of SK, combined
with the results of II from the data of FMT, have been
fitted by expressions of the form

Xb= Zn Cnxbna Xi,= I:Zm D'mxb_.m]—ly (1)

in which =3, #/, 5 and m=1—X,, m/, 2, where
Ae=%(735—7) and #’, m’ are disposable exponents. As
in II, the pair of coefficients C3, D, and the pair Cs,
D1-x, are chosen with their corresponding exponents to
yield the proper asymptotic behavior of the fitted
functions in the two limits x,— 0 and x,— «, re-
spectively, so that C,s and D,, are the only disposable
coefficients. The values of the disposable coefficients
and exponents are tabulated in Table ITI with the
values of the others from II. The corresponding fitted
functions reproduce the data of Table II, and the data
of Table I in IT, within 2.3 percent in x; and 1.5 .percent
in x,/. The change in the disposable exponent and coef-
ficient in the fitted function for x; or x, is relatively
small compared to the corresponding value of II. The
fitted functions are shown in Fig. 2, with data points
from this paper and from IL.

Values of the perturbation parameters ¢ and w from
Egs. (16) of II, computed by means of these fitted
functions and the fitted function for ¢ given in I, are
shown in Fig. 3 with directly computed values from
this paper and from II for comparison. The perturbation
parameter 7 is shown likewise from results of I. In
Fig. 4, the effect of the first-order temperature per-
turbation on the equation of state is shown graphically
by plotting Z283(kT/R)-2(P—p), where R is the
Rydberg, against the scaled volume Zv; the ordinate
is independent of temperature. The energy perturbation

Fi1G. 5. Scaled perturbations in parameters er and v from fitted
functions, against scaled volume in cubic angstroms. The scaled
temperature Z~3T/R must be small relative to the quantity
shown by the dashed curve.

U—u» in units of R is shown similarly; the value of
Z'"3(kT/R)7LS in R/°K, where S is the entropy, differs
from the plotted quantity by the numerical factor
1.27X107%. In Fig. 5, the dimensionless parameters
er— €0 and y—1y, associated with the equation of state
are shown in similar manner; data points corre-
sponding to er— ey (for which fitted functions must be
used to obtain the necessary derivatives) are omitted.
The dimensionless quantity 8(2/9x2)!/3¢;/x, shown in
Fig. 5 represents a limit relative to which the scaled
temperature Z7*/3 RT/R must be small, for validity of
the perturbation method.

2. CONCLUSION

The large extension in directly fitted range of the
fitted functions, obtained by inclusion of results from
the data of SK, is obvious from the figures.

As pointed out by Umeda,” and noted in connection
with Table I, minor inconsistencies exist between the
data of SK and FMT. The discrepancies point to the
existence of small systematic errors in one or both sets
of data. Extensive numerical solutions of the Thomas-
Fermi equation obtained by Dr. R. Latter yield the
same conclusion. As a consequence, limits of accuracy
quoted for the fitted functions refer only to the data
employed; the actual error may be larger.

The authors wish to thank Miss E. Force for the
computational work. In connection with I and II, one
of the authors owes acknowledgments to Dr. R. Bellman
for valuable discussions.

7K. Umeda, Phys. Rev. 83, 651 (1951).



