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Atomic Energy Levels for the Thomas-Fermi and Thomas-FeIIlli-Dirac Potential*
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The eigenvalues of the Schrodinger equation have been obtained for the Thomas-Fermi and Thomas-
Fermi-Dirac atomic potentials. Electron self-interactions were taken into account by modifying the po-
tentials to give asymptotically the field of a unit charge. All levels were treated from 1s to 7d for a range
of Z-values suKcient to permit easy interpolation. It was found that the energies, for either the Thomas-
Ferrni or Thomas-Fermi-Dirac potentials, agree in general as well with experimental ionization energies
as the Hartree or Hartree-Fock approximations. Applications of the statistical potential to other atomic
problems are indicated.

I. INTRODUCTION Higher single electron term values, which contribute
less importantly to the total atom energy, may be only
roughly determined. In view of these features of the
Hartree, or Hartree-Fock, approximation, consideration
has been given to simpler approximations which could
be applied to atomic systems in their ground states.
An approximation with this general applicability is
furnished by the use of the Thomas-Fermi, ' or Thomas-
Fermi-Dirac, 4 statistical potential as a central field for
the atomic system. Some term values for circular orbits
and for the 5f level have been determined by previous
investigators' ' with this potential, but a general explo-
ration of the results to be obtained has not previously
been carried out. The results of such an exploration
will be presented here for the isolated, zero-temperature
atom for all atomic numbers and for the one-electron
term values from 1s to 7d.

~~QUANTITATIVE estimates of atomic behavior
rely heavily upon the self-consistent field method

of Hartree' and Hartree-Fock' for the determination of
atomic states. These methods provide the best solution
for the atomic ground state in terms of a separable
wave function in the sense that this solution is derived
from a variational principle which minimizes the total
energy. This extremum property cannot be claimed,
in general, for excited states since they must be or-
thogonal to all lower states, and this orthogonality
may require a superposition of product type wave
functions.

The numerical complexity of the Hartree and Hartree-
Fock methods makes it difFicult to obtain an overall
picture of atomic behavior. At present only isolated
solutions of the self-consistent field equations are
available, and these mainly for ground state configur-
ations. The difficulty in the methods lies primarily in
the lengthy numerical iterations which lead to the
self-consistent solutions. Straightforward iterations in
the Hartree procedure are not necessarily convergent
so that in practice additional numerical complications
arise.

It is suggested, however, that these numerical di%-
culties in the Hartree, or Hartree-Fock, procedure will
not be circumvented without loss of accuracy, at least
for the ground state configuration. For the excited
states it may be possible to find a mathematically
simpler method without loss of accuracy since in this
case the Hartree procedure is not necessarily optimal.
For the ground state, though, the method does give,
in principle, the best possible value for the total energy
of the atom, subject to the limitation of separable wave
functions. Even if the total energy of the atom has
been determined accurately, it does not follow that all
single electron term values have been accurately deter-
mined. In fact, the lowest one-electron term value will
be weighted most heavily in the to
nation for the atom, and presumab

II. THEORETICAL CONSIDERATIONS

The description of the many-electron atom which
uses an equivalent central potential, such as a sta-
tistical potential, is familiar in spectroscopy as the
central-field approximation. In this approximation, an
equivalent central potential is used to generate a set of
energy levels and wave functions under the assumption
that the electrons are independent. The one-electron
wave functions and energy levels so obtained may be
taken as the zero order basis to which corrections can
be applied by perturbation theory. The one-electron
eigenfunctions and eigenvalues are given by solution of
the Schrodinger equation,

L
—(It'/2m) a—e V(r) jd,=.,d;,

where V(r) is the effective central potential for the
atom. In the present discussion, this potential is either
the Thomas-Fermi, or the Thomas-Fermi-Dirac, sta-
tistical potential. In this zero order, the total energy
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of the atom is given by I,O

Z=P e,,
(iI

and the wave function for the atom, without anti-
symmetrization, is

(3)

X Q
N

where {i}denotes the set of occupied one-electron
levels. This form for the total energy, or for the total
wave function, is assumed to apply to the ground state
as well as to excited configurations. The analytic
simplicity resulting from this assumption is evident
and is a consequence of using a 6xed potential for all
configurations. %ith the aim of obtaining similar
simplicity in the Hartree methods, Roothaan' has
proposed that the Hartree ground state potential be
used as the Axed potential with which excited configur-
ations are determined. This simplification of the Hartree

I I I I I I I i I I I I I I I I I I I I I I I I I I I I

O. I
I

4
fs

ri ~j 1'ij

where customary notation' has been used. In the present
paper, however, the evaluation of term values is limited
to the zeroth order even for excited states.

FIG. 2. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universal function of Eq. (9) for Z=2.
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Fro. 1.The potential distribution for the Thomas-Fermi atom.

' C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).

procedure carries with it, however, the numerical
difFiculties associated with the determination of the
Hartree ground state.

The important error in this application of a fixed
central field arises just from the use of the same po-
tential for all configurations of the atom. This error
clearly grows with increasing excitation of the atom
above the ground state. It will be apparent from the
results to be presented here that the statistical po-
tentials give acceptable values for ground state energies
and presumably will therefore give semiquantitative
predictions for states of low excitation. If highly excited
atomic states are determined in this way, the pertur-
bation corrections to the energies and wave functions
will certainly become important. These perturbation
corrections are determined by the perturbation energy

I.O

O.I
I

2 4

FIG. 3. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universai function of Eq. (9) for 2= 5.

s C. Miranda, Mem. Acc. Italia 5, 285 (1934).
'0 Unpublished calculations.

III. DETERMINATION OF THE ATOMIC POTENTIAL

The eRective central field potential used in the
present calculations is estimated from the statistical
model of Thomas-Fermi and from the statistical model
including exchange as developed by Dirac. More spe-
cifically, these statistical potentials are taken for the
isolated atom at absolute zero temperature so that the
ground state potential of the atom is the potential
under discussion. The potential distribution for the
Thomas-Fermi atom, without exchange, has been calcu-
lated by Miranda, ' and has been recalculated with
improved accuracy by the author. "The analytic fit to
this potential function was used for the present calcu-
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l.O disadvantage replaces the V(r) of Eq. (5) by

V (r) = [(Z—1)eg(r/ts)+ ej/r,

&as N
I

O.l

FIG. 4. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universal function of Kq. (9) for Z=10.

lations:
rU(r)

p(r/ts) = —= 1+0.02747 (r/tt) *'+1.243 (r/tt)
Ze

—0.1486 (r/tt) l+0.2302 (r/tt)'

where g(r/tt) is the universal Thomas-Fermi" function
for the neutral atom of atomic number Z. The pre-
dictions of the potential of Eq. (6) for the behavior of
the 4g and 5f electrons have been obtained by Mayer. '
More extended calculations by the present author with
this potential indicated that it over-corrected appreci-
ably for the self-interaction; it consequently gives too
large binding energies.

The potential which was used in the present calcu-
lations was

(7)

V(r) =0, otherwise,

and as shown in Fig. 1. This form of potential, which
provides the correct asymptotic behavior, was adopted

+0 007298.(r/tt) "'+0 006944.(r/tt)', (5)

where tt=0.8853as/Z' and as is the Bohr radius. The
maximum error in this fit to the numerical values is
less than 0.3 percent. The potential of Eq. (5) includes
the electrostatic self-interaction of the electron whose
term value is to be determined, and consequently it
leads to significant errors in the higher term values. A
number of modifications in the Thomas-Fermi po-
tential have been suggested" to remove this source of
error in applications to the atomic term-value problem.
The Thomas-Fermi ion potential and the Fermi-Amaldi
correction have been proposed as more correct fields.
These latter have the practical disadvantage of requir-
ing a new solution of the Thomas-Fermi equation for
each value of Z. A procedure which does not have this

f.O
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FIG. 6. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universal function of Eq. (9) for 8=92.
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FiG. 5. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universal function of Eq. (9) for Z=40.

"P. Gombas, Die Statistische Theory des Atoms (Springer-
Verlag, Berlin, 1949).

for reason of simplicity. It does not make any modi-
6cation in the 6eld for self-interaction in the interior
of the atom, but over most of this region this neglect
should be relatively unimportant.

The Thomas-Fermi potential of Eq. (7) estimates
only the electrostatic interaction of the electrons for
the atomic ground state. The Dirac extension of the
Thomas-Fermi model provides an approximate pro-
cedure for including exchange effects. If P,„(r/tt) is the
solution for the Thomas-Fermi-Dirac equation, " then
the effective central 6eld" for the one-electron

» P. Gombas (reference 11). The function p(r/p) used here is
the same as Gombas' @(x).

's P. Gomas (reference 11). The function p,„(r/p) used here is
the same as Gombas'

hatt (x).
"The physical implications of the discontinuity in the V(r)

of Eq. (8) have been discussed by N. H. March, Phil. Mag. 45,
325 (1954).
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Schrodinger equation is

Z'e 3%2 ( ro) '* i'Q, (r/p) ) '*

I +~,
ro 2' &us) I r/rs )

for r &ra,
V, (r) =0, for r)rs,

where 8=(3/32m')'(I/Z:)(r /si)i'*It. should be noted
that P, (r/p) is the solution of the Thomas-Fermi-Dirac
equation for prescribed Z which corresponds to zero
pressure at the boundary of the atom; ro is the finite
radius of the atom required as a consequence of the

zero-pressure boundary condition. The first term of
Eq. (8) is the electrostatic potential and the second
term is the effective exchange potential. As is familiar,
the electronic self-interactions are correctly eliminated
within the framework of the Thomas-Fermi-Dirac
model. In the present application, where the Thomas-
Fermi-Dirac potential of Eq. (8) is used as the atomic
central field in the Schrodinger equation, it does not
properly account for the electron self-interaction since
it does not possess the correct asymptotic behavior.
The potential was therefore modified by the same
procedure as was used to get the potential of Eq. (7).
The practical difhculty still remains that separate
solutions of the Thomas-Fermi-Dirac equation for
p,„(r/ii) are required for each value of Z. This difficulty

TABLE I. Term values in Rydbergs computed with the Thomas-Fermi potential of Eq. P).

Z is

2 1.250 X100
3 2.665
4 5.701
5
6 1.628 X10&
7
8 3.307
9

10 5.637
11 7.053

6.321

1.312 X10o
1.976
2.871
3.992

2.781
3.146
4.220
7.078
1.231 X100
1.986

1.950

2.940
3.231
3.527

1.207
1.321
1.560
1.840
2.027
2.152

2$

2.775 X10 i 1.190 X10 ~

3.606 2.516 X10 i 1.402
4.329 2.553 1.568 1.129 X10 & 6.331 X10 2

9.374 6.668
7.137

1.139X10 &

1.226 8.937

1.113 1.378 9.950

6.578 X10 2

7.419
8.041
8.612

1.111X10 t

4d

4.582 X10 2

5.494

6.358

7.314

4.216 X10 &

4.871

5.554

12
13 1.040 X102
14
15
16 1.671
17
18
19 2.462
22
23

6.957 4.195
3.871
4.323
4.970

2.254
2,357
2.480

1.114

1.334 X10' 9.379
1.603

7.344
9.317

2.925

2.227

1.1283,482

4,251
1.703 X10t 1.516 X10o 5.654 1.118

1.386 X100

1.563

2,028

2.548
3.012

1.637
1,939

6.294

6.354

1.063 X10 t 6.265 X10 2

1.104
1.158

1.350

8.021 6.039

6.450

7.211

1.112 X10 & 8.213

9.463

24
25
26 4.934
27
28
29 6.268
30
31
32
33

5.392

7.245

4.556

6.269

5.713

8.667

3.445

5.777

1.149
1.240
2.773
5.951
1.005 X100 5.378
1.499

2.216

2.522

2.930
3.273
3,768

6.518
7.522
1.060 X10 &

1.103

1.461

6,250X10 2 1.730

2.056

1.013 X10

1.113

1.387

35
37 1.063 X103
38
40
41
42

45
46
47 1.777 2.517 2.332 4.475

1.373 X10~ 1.238 X10~ 2.054 X10'
5.244

1.752 X10t 8.572

1.363 X100 5.388 1.122

2.114

3.751 2.404 X10» 5.934 3.767

1.168
1.320

3.021
4.652

1.131
1.394 X100 1,142

6.250 .

2.359

2.639
2.836

3.067
3.359

3.760
4.021

1.561

1.902

2.054

2.218

50
52
53
54
57 2.679
60
61
63
65 3.537
66

4.046

5.558

3.813

5.285

8,070 7.072 5.190

1.186 X102 1.064 X10& 8.308

1.797 X100

3.981

2.252 1.785 X10' 9.461

1.350 X10~ 9.996 6.251

6.251
6.251
6.252
6.254

5.163

2.529 1.314 X100

2.470
2.754
2.957

7.961
1.124 X100 4,524
1.554

7.838

67
68
70
72
74 4.648
76
77
78
82 5.765
84
87
88
92 7.334

7.571 7.253 1.717

9.642 9.284 2.285

1,261 X103 1.220 X10g 3.127

1.568

2.111

2.922

1.779 5.212

2.530 7.690

1.283 X10& 3.632 3.020

4.462

6.760

5.188
5.957

1.849
2.274

3.299

4.231

3,065
7.758 6.795
1.191X10t 8.692 6.125

5.007

1.826

2.594

1.150 X10& 8.478

1.482 1.133 X10&

3.391 X10 &

7.735
1.789 X10o
2.995

1.894 X10~ 4.391
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TABLE I.—CoetAsled.

2
3
4
5
6
7
8
9

10
11

5d Sf 6s

3.108 Xip 2

3,605

4,053

4.531

2.903 Xip ~

3.269

3.731

6f 6g 7$

2.246 X10 ~

2.546

2.911

3.080

2.120 X10 2

2.344

2.620

7d

12
13
14
15
16
17
18
19 4.026X10 2

22
23 4.063

24 4.091
25 4.169
26 4.887
27 6.009
28 6.152
29 6.203
30
31 6.252
32 6.268
33

5.584

6.968

8.611

3.890

4.265

4.948

5.516

6.255

2.783 X10 2

2.794

2.817

2.835
2.887
3.352
3.872
3.946
3.974

3.267

3.994

4.692

5.140

2.713

3.307

3.612

4.001

2.044 X10 2

2.051

2.067

2.079
2.114
2.418
2.702
2.745
2.762

35
37
38 6.371
40 6.444
41 6.510
42 6.628
44 7.886
45 9.667
46 1.041 X10 1

47 1.069 4.000 Xip 2

4.037

1.260

1.487

4.072
4.116
4.158
4.235
4.986
5.646
5.915

1.017 X10 & 6.033

9.298

1.058 X10 & 7.931 6.004

6.848

7.721

4.811

5.440

5.832

2.814

2.850
2.877
2.926
3.373
3.688
3.819
3.881

50 1.097
52
53
54
57 1.121
60
61
63 1.145
65 1.161
66

4.000
4.001

4.001
4.001
4.004

1.830

2.176

2.691

1.175

1.456

1.809

6.175

6.307
6.366

6.460
6.577

2.778 X10 &

2.778
2.779
2.782

8.898 6.498

9.987 7.537

1.112 Xip &

1.152 8.758

3.957

4.033

4.124
4.196

6.249
6.250
6.251

67 1.197
68 1.238
70 1.529
72 2.724
74 4.755 6.251
76
77
78 1.077 X10o 6.251
82 1.931 6.251
84 2.455

4.000 6.365

4.000 Xip 2 3.704 2.128

2.359
2.788

1.089
1.104 4.001

6.848 4.000
7.165 4.000
8.808
1.014X10 & 4.001
1.058 4.0pi

1.220

2.778 2.778
1.591
1.797

2.778 Xip 2 778 Xip 1.410

9.099

9.854

4.363
4.555
5.307
5.792
5.978

1.059 Xlp 1 6.132
1.175 6.212

87
88 3.713
92 5.265 6.252 4.000

4.020

1.460 X1po 6.609 1.13S 4.002 2.778 2.778 2.268

1.380

1.573

6.293

6.393

IV. NUMERICAL PROCEDURE

The calculations for the term values with the po-
tentials of Eqs. (7) and (9) were carried out by numer-

(9) ical integration of the Schrodinger equation on an
for V,„(r))e/r IBM. 701 Defense Calculator If the w.ave function @;

is written as

3' Z-:e Ly(r/&) j
V,„(r)=Ze +

r 4m ap& r&

V, (r) =%, otherwise,

may be obviated by the observation that the V, (r) of (9) with the Thomas-Fermi-Dirac potentials is shown
of Eq. (8) may be approximated by a universal po- in Figs. 2—6 for Z=2, 5, 10, 40, and 92.
tential of the following form:

where @(r/p) is defined by Eq. (5), and where the proper
cut-off behavior has been included. This universal
exchange potential deviated from the Thomas-Fermi-
Dirac potentials by less than 5 percent for 5&Z(92;
for values of Z&5 the error increases. A comparison

2856 2828 l(l+1)
V(.)+ P;=0,

A2 g2A2

~'=9'()/ 3V -(f,~),
then f; satisfies the differential equation
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TAnLE Il. Term values in Rydbergs computed with the Thomas-Fermi-Dirac potential of Eq. (9).

is 2$ 3s 4s 4d

2 1.613)(10o
3 3.818
4 7.471
5
6 1.917)&101
7
8 3.711
9

10
11 7.633

9.540

2 166 )&10o
3.082

5.540

4.208 2.304
6.709
1.100 &10o
1.715 3.293

3.743
4.3873.546

1.530
1.772
1.953
2.097
2.241
2.420

3.048)(10 & 1.284)&10 &

3.886 2.569 )(10 & 1.472
4.770 2.729 1.669 1.188 )&10 1

1.120 1.563

6.881 &(10 2

7.677
8.398
9.366

1.113)(10 j 1.044)&10 &

1.226
1.318

6.585 &(10 2

7.892
8.698

9.772

1.083)&10 1

5.964

6.699

7.982

4.807

5.872

4.709 X10 & 4.055 )(10 &

12
13 1.110)(102
14
15
16 1.759
17
18
19 2.567
20
21

8.956 6.268
5.336
6.692
8.518

2.570 2.070 2.554

1.604 &(101 1.224 &(10' 1.369
1.898 1.707

2.680
3.099
3.789

1.124

&10o 6.403
1.144

1 096 X10o
1.403 1.176

1.229
1.475

1.895

2.385

2.922

1.264
1.389
1.517

1.732

1.907

6,330)&10 ~

6.376

6.460
6.539
6.694
7.131
8.745

9.100 6.861

7.775

1.110)&10 1 8.510

1.216 9.117

22
23
24
25
26 5.083
27
28
29 6.434
30
31

5.912

7.842

5.117

6.915

5.018
2.668

7.632 5.282

1.098 )(101 8.042

2.500
4.351

3.843 2,205,

3,121

1.057 )&10o 4.958

7.032

1.004 &(10o
6.682

1.839
2.363
2,961
3.639

1.024 bio-1
1.070
1,091
1.104
1.113

1,137

1.158

1.436

1.818

6.251)(10 & 2.103

1,056+10 1

1.244

1.469

32
33
34
35
36
37 1.085 )(10~ 1.454)(102 1.325 )(102 2.393
38
39
40
41

8.265 2.392

2.114)(101 1.212 )(10' 3.383

8.348
9.860

2.662 4.250

1.194
1.229

1.350 )(10o 1.293
1.432
1.745
2.319

2.469

2.759

3.309

3.862

1.826

2.019

2.185

42
44
46
47 1.805
50
52
53
54
55
56

2.625 2.450 4.964 4.257 2.918 7.949 5.656

7.148

1.883 )(10o 6.253

3.776

4.655
5.672
7.016
7.808
1.068 )(10o

1.588

2.427
2.793

3.720
5.270
6.711
7.558

57 2.701
58
59
60
61
62
63
65 3.576
67
68

70
72
74 4.692
77
78
80
82 5.814
84
85
87

4.182

5.716

7.554

9.848

3.960

5.456

7.451

9.507

8.715 7.744 5.886 1.634 )(101 1.284 )(101 6.509 6.256 2.085
6.257
6.275
2.667 &(10 '

1 186 )(10o

1.264 )(10& 1.145 )(102 9.153 2.616 2.149

1.777

2.552
3.017

1.809 1.664 1.384 )(10& 4.086 3.480 2.340

3.859

5.184 5.558

8.371 7.133

1.230 )(10& 8.994

3.816

5.093
6.219

2.390 2,222 1.896 5.750 5.010 3.605 1.701 1 115)(101 8 445

1.114X10'

2.913

1,297 )&10o
1 288 &(101 2 195 3 944

88
89
90
91
92 7.390 1.285 X10o 1.246 &(103 3.249 3.050 2.666 8.336 7.420 5.668

2.560

3.240 1.785 1.435

where V(r) is either the potential of Eq. (7) or of Eq.
(9). The scheme adopted for the numerical integration
of Eq. (11) is similar to one recently suggested by
Blanch. "Equation (11) was converted into the follow-

ing integral equation:

2' E; 2mB
V(r')

A' A'

'5 G. Blanch, Math. Tables and Other Aids to Computation
6, 219 (1952).
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TABLE II.—Cont&sued.

2
3
4
5
6
7
8
9

10
11

5g 6s

3.851

4.237

3.233

3.574

4.872 3.935

3.179 X)0 2 2.8)OX)0 &

6g 7$

2.690 2.322

3.)36
2.595

2.740

2.290 X)0 2 2.06) X)0 ~

12
13
14
15 4.074 X)0 2

16
17 4.125
18 4.173
19 4.273
20 4.554
21 5.330

22 5.852
23 6.046
24 6.145
25 6.210
26 6.262
27
28
29 6.404
30
31 6.533

4.000 X)0 &

4.001

4.001

5.387

6.253

6.698

7.892

9.810

4.739

5.359

6.001

6.479

7.578

2.807 X)0 2

2.856
2.887
2.951
3.128
3.540

3.789
3.888
3.942
3.978
4.007

4.090

4.166

3.546

3,892

4.224

4.802

5.263

5.670

2.951

3.292

3.529

3.868

4.247

4.640

2.060 X)0 2

2.092
2.113
2.15S
2.271
2.514

2.653
2.711
2.743
2.765

2.798
2.815
2.833

2.880

32 6.631
33 6.773
34 7.007
35 7.428
36
37 9.091
38 9.776
39 ).020 X)0 i
40 1.046
41 1.064

8.245

).)79 X)0 & 8.835

9.492

4.224
4.308
4.446
4.677

5.383
5.641
5.808
5.922
6.005

6.065

6.880

5.046

5.528

2.916
2.968
3.051
3.185

3.548
3.676
3.761
3.820
3.865

42 1.077
44
46
47 1.121
50 1.148
52 1.173
53
54 ).212
55 1.244
56 1.290

4.002

1.563

1.878

2.189

1.314

1.543

6.309
6.466
6.617
6.722
6.861
7.050

1.075 X10 t 6.071
1.163

7.960 6.074

9.021 6.807

).002 X)0 i 7.815

3.900

4.034
4.124
4.211
4.271
4.350
4,454

57 1.361
58 1.480
59 1.672
60
61 2.366
62
63 3.502
65 5.069
67
68

4.005
4.006
4.039
6.248

6.254

2.578

3.055

3.831

4.709

1.737

1.910

2.154

7.700

8.731

2.781 X)0 &

2.783
2.831
3.999

9.614

1.013 X10 & 4.003
1.044 4.003

1.074

1.120

1.246

1.406

1.539

8.508

9.114

9.910

4,782

5.213

5.553
5.672
5.766
5.907

1.072 X)0 ' 6056

88 6.071
89
90
91
92 7.930

6.385
2.071 X)0 i
3.608
5.340
7.263

70 1.092 X)0o 6.255
72
74 1.778 6.256
77
78 2.686
80 3.229 6.257
82 3.837 6.258
84 4.511
85
87

2.722

3,605

1.090

1.118

4.000

1.012 X)00 5.052

1.355 7.098

1.152
1.176
1.209

1.901
1.299

1.084 X)09 1.422

1.523

4.000 2.597 1.579
2.082
2.372

6.381
4.000 X)0 2 7.456

4.004
4.005

4.007

4,028

6.108

6.247
6.250
6.252

2.778 2.778 2.155

2.503

2.778 2.778 2.839

2.778X)0 2 2.778X10 2 1.801

1.972

1.136

1.278

1.414

1.533

1.673

1.828

6,136

6.291

6.484
6.620
6.812

7.304
7.860

8.565

9.214
9.474

where the boundary condition P;(0)=0 has been used.
For the numerical work, the integral equation was
replaced by a difference equation. To insure stability
of the difference equation, the integral which is the
coefFicient of r was evaluated by Cote's rule and the
remaining integral was evaluated by Simpson's rule.
Division points for the numerical integration were based

on a scale of r', rather than on r, since the former scale
makes the variations in the functions f; more uniform.
Improvements on initial guesses of the eigenvalues
were obtained by a convergence procedure coded into
the machine. This procedure automatically selected
new guesses for the eigenvalues based on the require-
ment that the eigenfunction had the prescribed number
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relativistic hydrogenic energy with an eGective Z
determined from the uncorrected computed term value.
The corrections were always in the proper direction but
not sufFiciently large to remove the entire discrepancy.
The residual error is presumed to arise at least in part
from correlation effects.

2. For terms lying below the 3s-level, the predictions
of the Thomas-Fermi-Dirac potential are on the whole
closer to the Hartree, or Hartree-Fock, values than are
the predictions of the Thomas-Fermi potential. For
these terms which lie below the 3s-level, the Thomas-
Fermi-Dirac values agree on the average as well with
experiment as do the Hartree values. For terms above
the 3s-level, the Thomas-Fermi values are on the whole
closer to the Hartree values than are the Thomas-
Fermi-Dirac values; since the experimental ionization
values do not vary smoothly for these levels, it may be
said that the values from any of the three theoretical
possibilities considered here are equally acceptable. It
may be remarked that, on a purely empirical basis, an
improved overall agreement with experimental values
can be obtained by taking the Thomas-Fermi values
for atomic number Z+-,' to give the term values for
atomic number Z.

3. As can be inferred from the figures, the f series of
terms exhibits unusually abrupt alterations in energy.
This behavior is observed at the same Z-value for all
members of the f-series. For example, at the Z-value
for which the 4f-electron enters the atom, the Sf and-6f
levels simultaneously have a sharp rise in binding
energy. This type of behavior for the f-series was
predicted by Mayer, ' who also pointed out the result
verified by the present calculations, that the Sf-term
value would take on the 4f-hydrogenic term value and
the 6f-term value would take on the Sf-hydrogenic value
at the Z-value for which the 4f-electron enters the atom.

It is to be recognized, of course, that term values
alone are not a sensitive test of the accuracy of an
effective central 6eld. The uniformity, however, with
which the statistical potentials agree with observed
binding energies may be taken as indicating that these
central fields furnish reasonably good descriptions of
atomic behavior. More sensitive tests of these fields
consist in the determination of wave functions and
matrix elements. For this reason, these wave functions
are now being computed and photo-absorption coeffi-
cients will then be evaluated. The accuracy of the term

IOO I 1 I I I I I I

IOO I I I I I I I I I I I I I I I

IO

I.O—
I.O

0
I.O IO

z
IOO

O. I

I.O
I I I I I I I I

10
Z

I I I I I I I

IOO

FzG. 9. The square root of the computed s-levels are shown
with the solid line for the Thomas-Fermi atom and with the
dashed line for the Thomas-Fermi-Dirac atom. The circles (Q)
are the values computed by the Hartree method; the squares (Q)
are the values computed by the Hartree-Fock method. The
crosses (gl are the experimental values.

Fn. 10. The square root of the computed p-levels are shown
with the solid line for the Thomas-Fermi atom and with the
dashed line for the Thomas-Fermi-Dirac atom. The circles (Q)
are the values computed by the Hartree method; the squares
(Q) are the values computed by the Hartree-Pock method. The
crosses (g) are the experimental values where the doublet
energies have been averaged,
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FIG. 12. The square root of the computed f-levels are shown
with the solid line for the Thomas-Fermi atom and with the
dashed line for the Thomas-Fermi-Dirac atom. The circles {Q)
are the values computed by the Hartree method; the squares
(H) are the values computed by the Hartree-Fock method. The
crosses (X) are the experimental values where the doublet
energies have been averaged.

0
I.O

I I I I I I I I

IO

Z
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Fn. 11. The square root of the computed d-levels are shown
with the solid line for the Thomas-Fermi atom and with the
dashed line for the Thomas-Fermi-Dirac atom. The circles (Q)
are the values computed by the Hartree method; the squares
(0) are the values computed by the Hartree-Fock method. The
crosses (X) are the experimental values where the doublet
energies have been averaged.

values for the statistical potentials suggests further
that the perturbation expansion will converge rapidly.
It may reasonably be expected, therefore, that the first
order perturbation correction to the present zero order
term values will comprise the principal part of the
residual errors. The verification of this conjecture by
calculation of the matrix elements of the perturbation
operator of Eq. (4) is now in progress.

The statistical model, with the potential that it
determines, makes possible the approximate calculation
of other kinds of atomic states. For example, the
energies and wave functions of ionized atoms may be
computed. One may also treat atoms under pressure

and atoms at nonzero temperature. For the latter
problem, the generalization of the statistical model
developed by Feynman, Metropolis, and Teller" gives
a potential distribution which may be used as an
effective central field. This central field approximates
the effective field in the atom averaged over the thermal
fluctuations of the electron cloud. The term values and
one-electron eigenfunctions computed with this po-
tential are averages which neglect the eGects of thermal
fluctuations. It may be expected that this approach to
the e6ects of temperature on the atom will be particu-
larly useful in computations of opacity and equations
of state. These computations are now in progress.
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