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The eigenvalues of the Schrédinger equation have been obtained for the Thomas-Fermi and Thomas-
Fermi-Dirac atomic potentials. Electron self-interactions were taken into account by modifying the po-
tentials to give asymptotically the field of a unit charge. All levels were treated from 1s to 7d for a range
of Z-values sufficient to permit easy interpolation. It was found that the energies, for either the Thomas-
Fermi or Thomas-Fermi-Dirac potentials, agree in general as well with experimental ionization energies
as the Hartree or Hartree-Fock approximations. Applications of the statistical potential to other atomic

problems are indicated.

I. INTRODUCTION

UANTITATIVE estimates of atomic behavior

rely heavily upon the self-consistent field method
of Hartree! and Hartree-Fock? for the determination of
atomic states. These methods provide the best solution
for the atomic ground state in terms of a separable
wave function in the sense that this solution is derived
from a variational principle which minimizes the total
energy. This extremum property cannot be claimed,
in general, for excited states since they must be or-
thogonal to all lower states, and this orthogonality
may require a superposition of product type wave
functions.

The numerical complexity of the Hartree and Hartree-
Fock methods makes it difficult to obtain an overall
picture of atomic behavior. At present only isolated
solutions of the self-consistent field equations are
available, and these mainly for ground state configur-
ations. The difficulty in the methods lies primarily in

the lengthy numerical iterations which lead to the

self-consistent solutions. Straightforward iterations in
the Hartree procedure are not necessarily convergent
so that in practice additional numerical complications
arise.

It is suggested, however, that these numerical diffi-
culties in the Hartree, or Hartree-Fock, procedure will
not be circumvented without loss of accuracy, at least
for the ground state configuration. For the excited
states it may be possible to find a mathematically
simpler method without loss of accuracy since in this
case the Hartree procedure is not necessarily optimal.
For the ground state, though, the method does give,
in principle, the best possible value for the total energy
of the atom, subject to the limitation of separable wave
functions. Even if the total energy of the atom has
been determined accurately, it does not follow that all
single electron term values have been accurately deter-
mined. In fact, the lowest one-electron term value will
be weighted most heavily in the total energy determi-
nation for the atom, and presumably is very accurate.

*This study was supported by the U. S. Atomic Energy
Commission.
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Higher single electron term values, which contribute
less importantly to the total atom energy, may be only
roughly determined. In view of these features of the
Hartree, or Hartree-Fock, approximation, consideration
has been given to simpler approximations which could
be applied to atomic systems in their ground states.
An approximation with this general applicability is
furnished by the use of the Thomas-Fermi,? or Thomas-
Fermi-Dirac,? statistical potential as a central field for
the atomic system. Some term values for circular orbits
and for the 5f level have been determined by previous
investigators®® with this potential, but a general explo-
ration of the results to be obtained has not previously
been carried out. The results of such an exploration
will be presented here for the isolated, zero-temperature
atom for all atomic numbers and for the one-electron
term values from 1s to 7d.

II. THEORETICAL CONSIDERATIONS

The description of the many-electron atom which
uses an equivalent central potential, such as a sta-
tistical potential, is familiar in spectroscopy as the
central-field approximation.” In this approximation, an
equivalent central potential is used to generate a set of
energy levels and wave functions under the assumption
that the electrons are independent. The one-electron
wave functions and energy levels so obtained may be
taken as the zero order basis to which corrections can
be applied by perturbation theory. The one-electron
eigenfunctions and eigenvalues are given by solution of
the Schrodinger equation,

[— (#/2m)A—eV (7) Jpi= eidys, ¢y

where V(r) is the effective central potential for the
atom. In the present discussion, this potential is either
the Thomas-Fermi, or the Thomas-Fermi-Dirac, sta-
tistical potential. In this zero order, the total energy

3 E. Fermi, Atti. accad. nazl. Lincei 6, 602 (1927); 7, 342, 726
(1928) ; L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927).
4P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

5 F. Rasetti, Atti accad. nazl. Lincei 7, 915 (1928); Z. Physik
49, 546 (1928); R. Géspar, J. Chem. Phys. 20, 1863 (1952).

6 Maria G. Mayer, Phys. Rev. 60, 184 (1941).

7E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1951).
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of the atom is given by

E=Y ¢, (2)

{7}

and the wave function for the atom, without anti-
symmetrization, is

{4

where {7} denotes the set of occupied one-electron
levels. This form for the total energy, or for the total
wave function, is assumed to apply to the ground state
as well as to excited configurations. The analytic
simplicity resulting from this assumption is evident
and is a consequence of using a fixed potential for all
configurations. With the aim of obtaining similar
simplicity in the Hartree methods, Roothaan® has
proposed that the Hartree ground state potential be
used as the fixed potential with which excited configur-
ations are determined. This simplification of the Hartree
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Fi16. 1. The potential distribution for the Thomas-Fermi atom.

procedure carries with it, however, the numerical
difficulties associated with the determination of the
Hartree ground state.

The important error in this application of a fixed
central field arises just from the use of the same po-
tential for all configurations of the atom. This error
clearly grows with increasing excitation of the atom
above the ground state. It will be apparent from the
results to be presented here that the statistical po-
tentials give acceptable values for ground state energies
and presumably will therefore give semiquantitative
predictions for states of low excitation. If highly excited
atomic states are determined in this way, the pertur-
bation corrections to the energies and wave functions
will certainly become important. These perturbation
corrections are determined by the perturbation energy

8 C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).
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F16. 2. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universal function of Eq. (9) for Z=2.

operator,

Zeé e
Hperbzz eV(n)-———i-% Z —-+Z E(rl)LlSZ ) (4)
i r i

P N o] %

where customary notation” has been used. In the present
paper, however, the evaluation of term values is limited
to the zeroth order even for excited states.

III. DETERMINATION OF THE ATOMIC POTENTIAL

The effective central field potential used in the
present calculations is estimated from the statistical
model of Thomas-Fermi and from the statistical model
including exchange as developed by Dirac. More spe-
cifically, these statistical potentials are taken for the
isolated atom at absolute zero temperature so that the
ground state potential of the atom is the potential
under discussion. The potential distribution for the
Thomas-Fermi atom, without exchange, has been calcu-
lated by Miranda,’ and has been recalculated with
improved accuracy by the author.® The analytic fit to
this potential function was used for the present calcu-
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Fic. 3. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universal function of Eq. (9) for Z=35.

9 C. Miranda, Mem. Acc. Italia 5, 285 (1934).
10 Unpublished calculations.
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Fic. 4. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universal function of Eq. (9) for Z=10.

lations:
rV(r

b (r/u)= )=[1+o.02747(r/#)%+1.243(r/u)

4

—0.1486 (r/) 402302 (r/1)?
—1
+0.007298(r/u)5/2+0.006944(r/u)3] , (5

where ©=0.8853a¢/Z% and a, is the Bohr radius. The
maximum error in this fit to the numerical values is
less than 0.3 percent. The potential of Eq. (5) includes
the electrostatic self-interaction of the electron whose
term value is to be determined, and consequently it
leads to significant errors in the higher term values. A
number of modifications in the Thomas-Fermi po-
tential have been suggested! to remove this source of
error in applications to the atomic term-value problem.
The Thomas-Fermi ion potential and the Fermi-Amaldi
correction have been proposed as more correct fields.
These latter have the practical disadvantage of requir-
ing a new solution of the Thomas-Fermi equation for
each value of Z. A procedure which does not have this

10
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F1G. 5. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universal function of Eq. (9) for Z=40.

1 P. Gombas, Die Statistische Theory des Atoms (Springer-
Verlag, Berlin, 1949).
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disadvantage replaces the V (r) of Eq. (5) by
V() =[(Z—1ed(r/u)+e]/r, (6)

where ¢ (7/u) is the universal Thomas-Fermi!? function
for the neutral atom of atomic number Z. The pre-
dictions of the potential of Eq. (6) for the behavior of
the 47 and 5f electrons have been obtained by Mayer.®
More extended calculations by the present author with
this potential indicated that it over-corrected appreci-
ably for the self-interaction; it consequently gives too
large binding energies.

The potential which was used in the present calcu-
lations was

voy=z2P i vt
r r (7
V(r)=0, otherwise,

and as shown in Fig. 1. This form of potential, which
provides the correct asymptotic behavior, was adopted
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Fi6. 6. The potential distribution for the Thomas-Fermi-Dirac
atom is shown with the solid line; the dashed line shows the
approximation of the universal function of Eq. (9) for Z=92.

for reason of simplicity. It does not make any modi-
fication in the field for self-interaction in the interior
of the atom, but over most of this region this neglect
should be relatively unimportant.

The Thomas-Fermi potential of Eq. (7) estimates
only the electrostatic interaction of the electrons for
the atomic ground state. The Dirac extension of the
Thomas-Fermi model provides an approximate pro-
cedure for including exchange effects. If ¢ex(r/u) is the
solution for the Thomas-Fermi-Dirac equation,’® then
the effective central field* for the one-electron

2P, Gombas (reference 11). The function ¢ (r/u) used here is
the same as Gombas’ ¢ (x).

18P, Gomas (reference 11). The function ¢ex(r/u) used here is
the same as Gombas’ ¥ (x).

14 The physical implications of the discontinuity in the V(r)
of Eq. (8? have been discussed by N. H. March, Phil. Mag. 45,
325 (1954).
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Schrédinger equation is

/) = $ux(r/1) 170

Vex(r)=Zr,
7
Z% 3V2 7o 3 ¢ex(7/.“) 3
XY o
7o 2w Qo 1’/1’0
for r<r,,
Vex(r)=0, for r>r,

where 6= (3/32n2)¥(1/2%)(ro/r):. It should be noted
that ¢ex(7/u) is the solution of the Thomas-Fermi-Dirac
equation for prescribed Z which corresponds to zero
pressure at the boundary of the atom; 7, is the finite
radius of the atom required as a consequence of the
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zero-pressure boundary condition. The first term of
Eq. (8) is the electrostatic potential and the second
term is the effective exchange potential. As is familiar,
the electronic self-interactions are correctly eliminated
within the framework of the Thomas-Fermi-Dirac
model. In the present application, where the Thomas-
Fermi-Dirac potential of Eq. (8) is used as the atomic
central field in the Schrédinger equation, it does not
properly account for the electron self-interaction since
it does not possess the correct asymptotic behavior.
The potential was therefore modified by the same
procedure as was used to get the potential of Eq. (7).
The practical difficulty still remains that separate
solutions of the Thomas-Fermi-Dirac equation for
Gex (r/u) are required for each value of Z. This difficulty

TaABLE I. Term values in Rydbergs computed with the Thomas-Fermi potential of Eq. (7).

V4 is 2s 2p 3s 3p 3d 4s 4p 4d 4f Ss 5p
2 1.250 X100 2.775 X107t 1.190 X101 6.578 X102
3 2.665 3.606 2.516 X1071 1.402 7.419 4.582 X102
4 5.701 4.329 2.553 1.568 1.129 X107t 3.241 6.331 X102
5 612
6 1.628 X10! 6.321 2.781 1.950 1.207 1.111 X1071 9.374 6.668 5.494 4.216 X102
7 3.146 1.321 7.137
8 3.307 1.312 X100 4.220 1.560 1.139 X101 6.358 4.871
9 1.976 7.078 2.940 1.840 1.226 8.937
10 5.637 2.871 1.231 X100 3.231 2.027 5.554
11 7.053 3.992 1.986 3.527 2.152 1.113 1.378 9.950 7.314
12 3.871 2.254
13 1.040 X102 6.957 4.195 4.323 2.357 1.114 1.563 1.063 X1071 6.265 X102 8.021 6.039
14 4.970 2.480 1.104
15 1.158 6.450
16 1.671 1.334 X101 9.379 7.344 2.925 2.028
17 1.603 9.317 1.350 7.211
18 4.251 .
19 2.462 2.227 1.703 X101 1.516 X10° 5.654 1.118 2.548 1.637 6.294 1.112 X101 8.213
22 1.386 X100 3.012 1.939
23 3.482 1.128 6.354 9.463
24
25 1.149 6.518
26 4.934 5.392 4.556 5.713 3.445 1.240 3.902 2.216 7.522 1.461 1.013 X101
27 2.773 1.060 X101
28 5.951
29 6.268 7.245 6.269 8.667 5.777 1.005 X100 5.378 2.522 1.103 6.250 X102 1.730 1.113
30 1.499
31 2.930
32 3.273 2.056
33 3.768 1.387
35 5.244 1.363 X100 5.388 1.122 2.359 1.561
37 1.063 X103 1.373 X102 1.238 X102 2.054 X10!
38 1.752 X10! 8.572 2.114 1.131 2.639
40 1.394 X100 1.142 2.836 1.902
41
42 1.168 3.067
44 1.320 3.359 2.054
45
46 3.021 3.760
47 1.777 2.517 2.332 4.475 3.751 2.404 X10! 5.934 3.767 4.652 6.250 4.021 2.218
50 5.163 2.470
52 1.797 X100 2.754
53 2.957
54 7.961
57 2.679 4.046 3.813 8.070 7.072 5.190 1.350 X10! 9.996 3.981 6.251 %égi X100 4.524
60 .
61 6.251 7.838
63 6.251
65 3.537 5.558 5.285 1.186 X102 1.064 X102 8.308 2.252 1.785 X101 9.461 g%gi 2.529 1.314 X100
66 .
67 3.391 X101
68 7.735 1.849
70 1.789 X100 2.274
72 2.995
74 4.648 7.571 7.253 1.717 1.568 1.283 X102 3.632 3.020 1.894 X10t 4.391 g;gi; 3.299
76 .
77 4.231
78 7.758 6.795
82 5.765 9.642 9.284 2.285 2.111 1.779 5.212 4.462 3.065 1.191 X10! 8.692 6.125
84
87 1.826 1.150 X101 8.478
88
92 7.334 1.261 X103 1.220 X103 3.127 2.922 2.530 7.690 6.760 5.007 2.594 1.482 1.133 X101
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TABLE I.—Continued.

z 5d 5F 5¢ 6s 6p 6d 6f 6g 6h 7s 70 7d

2

3 3.108 X102 2,246 X10-2

1

5

6 3.605 2.903 X102 2.546 2.120 X10-2

7

8 4.053 3.269 2.344

9 2,911

10

11 4.531 3.731 3.080 2.620

12

13 3.890 2.783 X10~2 3.267 2.713 2.044 X102
14

15

16 5.584 4.265

s

19 4.026 X102 4.948 2.794 3.994 3.307 2.051
22

23 4.063 6.968 5.516 2.817 3.612 2.067
24 4.091 2.835 2.079
25 4.169 2.887 2.114
26 4.887 3.352 4.692 2.418
27 6.009 3.872 2.702
28 6.152 3.946 2.745
29 6.203 8.611 6.255 3.974 5.140 4.001 2.762
30
31 6.252

32 6.268
33
35 1.058 X101 7.931 4,037 6.004 4.811
37 2.814
38 6.371 4.072
40 6.444 4.116 2.850
41 6.510 4,158 2.877
42 6.628 1.260 9.298 4.235 6.848 5.440 2.926
44 7.886 4.986 3.373
45 9.667 5.646 3.688
46 1.041 X101 5.915 3.819
47 1.069 4.000 X102 1.487 1.017 X107 6.033 7.721 5.832 3.881
50 1.097 .6.175 3.957
52 1.830 1.175 8.898 6.498
S
57 1.121 4.000 2.176 1.456 6.307 2.778 X1072 9.987 7.537 4.033
60 4.001 6.366
61
63 1.145 4.001 6.460 2.778 1.112 X101 4.124
65 1.161 4.001 2.691 1.809 6.577 2.779 1.152 8.758 4.196
66 4.004 2.782
67 1.197 6.249 6.848 4.000 4.363
68 1.238 6.250 7.165 4.000 1.220 9.099 4.555
70 1.529 6.251 8.808 5.307
72 2.724 1.014 X101 4.001 5.792
;g 4.755 6.251 4.000 X10~2 3.704 2.128 1.058 4.001 2.778 X1072 2,778 X102 1.410 9.854 5.978
77

78 1.077 X100 6.251 2.359 1.089 1.591 1.059 X101 6.132
82 1.931 6.251 4.000 6.365 2.788 1.104 4.001 2.778 2.778 1.797 1.175 6.212
84 2.455
87 4.020 1.380 6.293
88 3.713
92 5.265 6.252 4.000 1.460 X100 6.609 1.135 4.002 2.778 2.778 2.268 1.573 6.393

may be obviated by the observation that the Ve (r)
of Eq. (8) may be approximated by a universal po-
tential of the following form:

7 V2 Z3% 7 3
oy B 30 2 L0/0)

b

T
r 47 ap? 7%

for Vex(r)>e/r.

Vex(r)=e/r, otherwise,

where ¢ (7/u) is defined by Eq. (5), and where the proper
cut-off behavior has been included. This universal
exchange potential deviated from the Thomas-Fermi-
Dirac potentials by less than 5 percent for 5<Z<92;
for values of Z<S5 the error increases. A comparison

of (9) with the Thomas-Fermi-Dirac potentials is shown
in Figs. 2-6 for Z=2, 5, 10, 40, and 92.

IV. NUMERICAL PROCEDURE

The calculations for the term values with the po-
tentials of Egs. (7) and (9) were carried out by numer-
ical integration of the Schrédinger equation on an
IBM 701 Defense Calculator. If the wave function ¢;
is written as

bi=[¥:()/r1V 1 (0,9), (10)
then y; satisfies the differential equation
2me; 2me 10+1)
"__ o A T
r-| =0, v
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TaBLE II. Term values in Rydbergs computed with the Thomas-Fermi-Dirac potential of Eq. (9).

VA 1s 2s 2P 3s 3p 3d 4s 4p 4d 4f 5s 5p

1.613 X100 3.048 X1071 1.284 X107t 6.881 X102
3.818 3.886 2.569 X101 1.472 7.677
7.471 4.770 2.729 1.669 1,188 X107t 8.398 6.585 X102

2
Z 4.709 X102 4,055 X102
5 9.366

6 1.917 X101 9.540 4.208 2.304 1.530 1.113 X107 1.044 X107t 7.892 5.964 4.807

7 6.709 . 8.698

8 3.711 2.166 X100 1.100 X100 1.953 ’ 1.226 6.699

9 3.082 1.715 3.293 2.097 1.318 9.772

0 3.743 2.241 5.872

1 7.633 5.540 3.546 4.387 2.420 1.120 1.563 1.083 X107 7.982

12 5.336 2.680
13 1.110 X102 8.956 6.268 6.692 3.099 1.124 1.895 1.264 6.330 X102 9.100 6.861
14 8.518 3.789 1.389
15 1.517 6.376 7.775
16 1.759 1.604 X10t 1.224X10! 1.369 X10° 6.403 2.385

1.898 1.707 1.144 1.732 6.460 1.110 X101 8.510
18 1.096 X100 6.539
19 2.567 2.570 2.070 2.554 1.403 1.176 2.922 1.907 6.694 1.216 9.117
20 : 1.229 7.131
21 . : 1.475 8.745

22 2.668 2.500 3.843 2.205, 1.024 X101 1.436
23 5.018 4.351 1.070

24 1.091

25 1.004 X100 1.104

26 5.083 5.912 5.117 7.632 5.282 6.682 3.121 1.113 1.818 1.244
27 1.839

28 2.363

29 6.434 7.842 6.915 1.098 X10t 8.042 2.961 1.057 X100 4.958 1.137 6.251X1072 2,103 1.469
30 3.639

31 7.032 1.158

1.056 X101

32 8.348 2.469

33 9.860 1.194

34 1.229

35 8.265 2.392 1.350 X100 1.293 2.759 1.826
36 1.432

37 1.085 X103 1.454 X102 1.325X102 2.393 1.745

38 2.114 X10' 1.212 X10! 3.383 2.319 3.309 2.019

40 2.662 4.250 3.862 2.185

42 7.148 4.655 2.427
44 5.672 2.793

7
47 1.805 2.625 2.450 4.964 4.257 2.918 7.949 5.656 1.883 X100 6.253 7.808 3.720
50 1.068 X10° 5.270
52 3.776 6.711
53 7.558
54 . 1.588

57 2.701 4.182 3.960 8.715 7.744 5.886 1.634X10' 1.284 X10* 6.509 g%gg 2.085 1.186 X10°
58 .

6.275
60 2.667 X101
61 2.913 1.777
63 1.297 X100
6; 3.576 5.716 5.456 1.264 X102 1.145 X102 9.153 2.616 2.149 1.288 X101 2.195 3.944 ggf%
6 .
68 : 3.859

70 5.184 5.558 3.816
74 4.692 7.554 7.451 1.809 1.664 1.384 X102 4.086 3.480 2.340 8.371 7.133 g(z)?g
77 .

78 ©1.230 X10t 8.994

82 5.814 9.848 9.507 2.390 2.222 1.896 5.750 5.010 3.605 1.701 1.115 X10' 8.445

87 1.114 X10!
88 2.560

92 7.390 1.285 X103 1.246 X103 3.249 3.050 2.666 8.336 7.420 5.668 3.240 1.785 1.435

where V (r) is either the potential of Eq. (7) or of Eq. ing integral equation:

(9). The scheme adopted for the numerical integration r

of Eq. (11) is similar to one recently suggested by .(r)=y/ (0)r+ f (r-r’)[
Blanch.!s Equation (11) was converted into the follow- 0

2me; 2me ,
T

h2

10+1)
16 G. Blanch, Math. Tables and Other Aids to Computation +_“‘“]\//i(7")df', (12)
6, 219 (1952). 72
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TaBLE II.—Continued.

zZ 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 7P 7d
2

i 3.179 X1072 2.810 X102 2.290 X102 2.061 X102

5

2 3.851 3.233 2.690 2.322

8 4.237 3.574

9 2.595

10 3.136

11 4.872 3.935 2.740

12

13 5.387 2.807 X102 3.546 2.951 2.060 X102
14

15 4.074 X102 4.739

16 3.892 3.292

17 4.125 6.253 2.856 2.092
18 4.17 2.887 2.113
19 4.273 4.000 X102 6.698 5.359 2.951 4.224 3.529 2.155
20 4.554 3.128 2.271
21 5.330 3.540 2.514
22 5.852 3.789 2.653
23 6.046 7.892 6.001 3.888 4.802 3.868 2.711
24 6.145 3.942 2.743
25 6.210 6.479 3.978 2.765
26 6.262 4.001 4.007 5.263 4.247

27 2.798
28 2.815
23 6.404 4.001 9.810 7.578 4.090 5.670 4.640 2.833
3

31 6.533 4.166 2.880
32 6.631 8.245 4.224 6.065 2916
33 6.773 4.308 5.046 2.968
34 7.007 4.446 3.051
32 7.428 1.179 X101 8.835 4.677 3.185
3

37 9.091 5.383 6.880 3.548
38 9.776 9.492 5.641 5.528 3.676
39 1.020 X10! 5.808 3.761
40 1.046 5.922 3.820
41 1.064 6.005 3.865
42 1.077 1.563 1.075 X107 6.071 7.960 6.074 3.900
44 1.163
46

47 1.121 4.002 1.878 1.314 6.309 9.021 6.807 4.034
50 1.148 6.466 4.124
52 1.173 2.189 1.543 6.617 1.002 X101 7.815 4.211
53 6.722 4.271
54 1.212 6.861 4.350
55 1.244 7.050 4.454
56 1.290

57 1.361 4.005 2.578 1.737 7.700 2.781 X102 1.120 8.508 4.782
58 1.480 4.006 2.783

59 1.672 4.039 8.731 2.831 5.213
60 6.248 3.999

61 2.366 3.055 1.910 9.614 1.246 9.114 5.553
62 5.672
63 3.502 1.013 X101 4.003 5.766
6; 5.069 6.254 3.831 2.154 1.044 4.003 1.406 9.910 5.907
6

68 4.709 1.074 1.539 1.072 X101 6.056
70 1.092 X100 6.255 2.722 1.090 1.136 6.136
72 - 6.381 4.004

;‘; 1.778 6.256 4.000 X1072 7.456 3.605 1.118 4.005 2.778 X1072 2.778 X1072 1.801 1.278 6.291
78 2.686 1.012 X10° 5.052 1.152 1,972 1.414 6.484
80 3.229 6.257 1.176 6.620
Si 3.237 6.258 4.000 1.355 7.098 1.209 4.007 2.778 2.778 2.155 1.533 6.812
84 4.511

85 6.262 1.299 7.304
87 6.277 1.901 1.084 X100 1.422 4.028 1.673 7.860
88 6.071 6.385 1.523 6.108 2.503

89 2.071 X101 8.565
90 3.608 6.247

91 5.340 2.082 6.250 9.214
92 7.930 7.263 4.000 2.597 1.579 2.372 6.252 2.778 2.778 2.839 1.828 9.474

where the boundary condition ¥;(0)=0 has been used.
For the numerical work, the integral equation was
replaced by a difference equation. To insure stability
of the difference equation, the integral which is the
coefficient of » was evaluated by Cote’s rule and the
remaining integral was evaluated by Simpson’s rule.
Division points for the numerical integration were based

on a scale of 7}, rather than on 7, since the former scale
makes the variations in the functions y; more uniform.
Improvements on initial guesses of the eigenvalues
were obtained by a convergence procedure coded into
the machine. This procedure automatically selected
new guesses for the eigenvalues based on the require-
ment that the eigenfunction had the prescribed number
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Fic. 7. The square root of the term values of Table I for the
Thomas-Fermi atom is shown as a function of Z.

of zeros and had a zero at a point distant from the
origin where it was estimated to have a value less than
1077 of its maximum value. The solution ¥; will contain
a small amplitude contribution from the irregular solu-
tion as a result of inevitable truncation and rounding
errors in the numerical scheme. This error in the
eigenfunction precludes the possibility of the solution
being zero at the prescribed point. The accuracy of the
eigenvalue determination is not affected by this diffi-
culty. When the eigenvalue is known, this error in the
eigenfunction may be avoided by integrating both
inward and outward, and then joining the solutions at
a point where the irregular solution is known to be
negligible. This latter procedure is now in use in
computations of eigenfunctions.

V. RESULTS AND CONCLUSIONS

The results of the present calculations for the one-
electron term values 1s to 7d with the Thomas-Fermi
potential of Eq. (7) are summarized in Table I. Simi-
larly, the results for the same one-electron term values
with the Thomas-Fermi-Dirac potential of Eq. (9) are
shown in Table II. The values computed for Tables I
and II include the minimum number of term values
necessary to give a survey of the periodic table and
also to permit easy graphical interpolation for those
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F16.¥8. The square root of the term values of Table II for the
Thomas-Fermi-Dirac atom is shown as a function of Z.

term values not tabulated. The numerical values of
Tables I and IT are shown graphically in Figs. 7 and 8,
respectively. A more detailed presentation of the results
is given in Figs. 9-12!6 which also include those Hartree,
or Hartree-Fock, values which are available in the
literature.l” These figures also give a comparison of the
computed values with experimental ionization energies
taken from Landolt-Bornstein.!®

The following conclusions are drawn from the compu-
tations with the statistical potentials:

1. There is a discrepancy at large binding energies
between experimental term values and computed values
whether computed with the statistical potential or with
the Hartree procedure. This discrepancy is attributed
to relativistic effects. An approximate correction for
these relativistic effects was made by using the known

16 The levels 5g, 6g, and 6% are not included in these. figures
since these levels have hydrogenic term values.

17 A survey of the existing results is given by D. R. Hartree,
Repts. Progr. Phys. 11, 8 (1946-47) and by Landolt-Bornstein
(reference 18).

18 Landolt-Bornstein, Atom—und Molekularphysik (Springer-
Verlag, Berlin, 1950), Part I.

Note added in proof.—Recently J. C. Slater [Phys. Rev. 98,
1039 (1955)] has published a revised table of experimental one-
electron term values for free atoms with atomic numbers below 41.
Some of these term values show large deviations from those of
Landolt-Bornstein which are presented in Figs. 9-12. However,
these differences do not essentially affect the qualitative compari-
sons with the theoretical results.
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relativistic hydrogenic energy with an effective Z
determined from the uncorrected computed term value.
The corrections were always in the proper direction but
not sufficiently large to remove the entire discrepancy.
The residual error is presumed to arise at least in part
from correlation effects.

2. For terms lying below the 3s-level, the predictions
of the Thomas-Fermi-Dirac potential are on the whole
closer to the Hartree, or Hartree-Fock, values than are
the predictions of the Thomas-Fermi potential. For
these terms which lie below the 3s-level, the Thomas-
Fermi-Dirac values agree on the average as well with
experiment as do the Hartree values. For terms above
the 3s-level, the Thomas-Fermi values are on the whole
closer to the Hartree values than are the Thomas-
Fermi-Dirac values; since the experimental ionization
values do not vary smoothly for these levels, it may be
said that the values from any of the three theoretical
possibilities considered here are equally acceptable. It
may be remarked that, on a purely empirical basis, an
improved overall agreement with experimental values
can be obtained by taking the Thomas-Fermi values
for atomic number Z+43 to give the term values for
atomic number Z.
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F16. 9. The square root of the computed s-levels are shown
with the solid line for the Thomas-Fermi atom and with the
dashed line for the Thomas-Fermi-Dirac atom. The circles (O)
are the values computed by the Hartree method; the squares ([1)
are the values computed by the Hartree-Fock method. The
crosses (X) are the experimental values.

RICHARD LATTER

3. As can be inferred from the figures, the f series of
terms exhibits unusually abrupt alterations in energy.
This behavior is observed at the same Z-value for all
members of the f-series. For example, at the Z-value
for which the 4f-electron enters the atom, the 5f- and 6f-
levels simultaneously have a sharp rise in binding
energy. This type of behavior for the f-series was
predicted by Mayer,® who also pointed out the result
verified by the present calculations, that the 5f-term
value would take on the 4f-hydrogenic term value and
the 6f-term value would take on the 5f-hydrogenic value
at the Z-value for which the 4f-electron enters the atom.

It is to be recognized, of course, that term values
alone are not a sensitive test of the accuracy of an
effective central field. The uniformity, however, with
which the statistical potentials agree with observed
binding energies may be taken as indicating that these
central fields furnish reasonably good descriptions of
atomic behavior. More sensitive tests of these fields
consist in the determination of wave functions and
matrix elements. For this reason, these wave functions
are now being computed and photo-absorption coeffi-
cients will then be evaluated. The accuracy of the term
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F1c. 10. The square root of the computed p-levels are shown
with the solid line for the Thomas-Fermi atom and with the
dashed line for the Thomas-Fermi-Dirac atom. The circles (O)
are the values computed by the Hartree method; the squares
() are the values computed by the Hartree-Fock method. The
crosses (X) are the experimental values where the doublet
energies have been averaged.
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Fi1c. 11. The square root of the computed d-levels are shown
with the solid line for the Thomas-Fermi atom and with the
dashed line for the Thomas-Fermi-Dirac atom. The circles (O)
are the values computed by the Hartree method; the squares
(0O) are the values computed by the Hartree-Fock method. The
crosses (X) are the experimental values where the doublet
energies have been averaged. )

values for the statistical potentials suggests further
that the perturbation expansion will converge rapidly.
It may reasonably be expected, therefore, that the first
order perturbation correction to the present zero order
term values will comprise the principal part of the
residual errors. The verification of this conjecture by
calculation of the matrix elements of the perturbation
operator of Eq. (4) is now in progress.

The statistical model, with the potential that it
determines, makes possible the approximate calculation
of other kinds of atomic states. For example, the
energies and wave functions of ionized atoms may be
computed. One may also treat atoms under pressure
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Fic. 12. The square root of the computed f-levels are shown
with the solid line for the Thomas-Fermi atom and with the
dashed line for the Thomas-Fermi-Dirac atom. The circles (O)
are the values computed by the Hartree method; the squares
(C1) are the values computed by the Hartree-Fock method. The
crosses (X) are the experimental values where the doublet
energies have been averaged.

and atoms at nonzero temperature. For the latter
problem, the generalization of the statistical model
developed by Feynman, Metropolis, and Teller!? gives
a potential distribution which may be used as an
effective central field. This central field approximates
the effective field in the atom averaged over the thermal
fluctuations of the electron cloud. The term values and
one-electron eigenfunctions computed with this po-
tential are averages which neglect the effects of thermal
fluctuations. It may be expected that this approach to
the effects of temperature on the atom will be particu-
larly useful in computations of opacity and equations
of state. These computations are now in progress.
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