Atomic Energy Levels for the Thomas-Fermi and Thomas-Fermi-Dirac Potential*

Richard Latter
The Rand Corporation, Santa Monica, California
(Received January 24, 1955)

Abstract

The eigenvalues of the Schrödinger equation have been obtained for the Thomas-Fermi and Thomas-Fermi-Dirac atomic potentials. Electron self-interactions were taken into account by modifying the potentials to give asymptotically the field of a unit charge. All levels were treated from $1 s$ to $7 d$ for a range of Z-values sufficient to permit easy interpolation. It was found that the energies, for either the ThomasFermi or Thomas-Fermi-Dirac potentials, agree in general as well with experimental ionization energies as the Hartree or Hartree-Fock approximations. Applications of the statistical potential to other atomic problems are indicated.

I. INTRODUCTION

QUANTITATIVE estimates of atomic behavior rely heavily upon the self-consistent field method of Hartree ${ }^{1}$ and Hartree-Fock ${ }^{2}$ for the determination of atomic states. These methods provide the best solution for the atomic ground state in terms of a separable wave function in the sense that this solution is derived from a variational principle which minimizes the total energy. This extremum property cannot be claimed, in general, for excited states since they must be orthogonal to all lower states, and this orthogonality may require a superposition of product type wave functions.

The numerical complexity of the Hartree and HartreeFock methods makes it difficult to obtain an overall picture of atomic behavior. At present only isolated solutions of the self-consistent field equations are available, and these mainly for ground state configurations. The difficulty in the methods lies primarily in the lengthy numerical iterations which lead to the self-consistent solutions. Straightforward iterations in the Hartree procedure are not necessarily convergent so that in practice additional numerical complications arise.
It is suggested, however, that these numerical difficulties in the Hartree, or Hartree-Fock, procedure will not be circumvented without loss of accuracy, at least for the ground state configuration. For the excited states it may be possible to find a mathematically simpler method without loss of accuracy since in this case the Hartree procedure is not necessarily optimal. For the ground state, though, the method does give, in principle, the best possible value for the total energy of the atom, subject to the limitation of separable wave functions. Even if the total energy of the atom has been determined accurately, it does not follow that all single electron term values have been accurately determined. In fact, the lowest one-electron term value will be weighted most heavily in the total energy determination for the atom, and presumably is very accurate.

[^0]Higher single electron term values, which contribute less importantly to the total atom energy, may be only roughly determined. In view of these features of the Hartree, or Hartree-Fock, approximation, consideration has been given to simpler approximations which could be applied to atomic systems in their ground states. An approximation with this general applicability is furnished by the use of the Thomas-Fermi, ${ }^{3}$ or Thomas-Fermi-Dirac, ${ }^{4}$ statistical potential as a central field for the atomic system. Some term values for circular orbits and for the $5 f$ level have been determined by previous investigators ${ }^{5,6}$ with this potential, but a general exploration of the results to be obtained has not previously been carried out. The results of such an exploration will be presented here for the isolated, zero-temperature atom for all atomic numbers and for the one-electron term values from $1 s$ to $7 d$.

II. THEORETICAL CONSIDERATIONS

The description of the many-electron atom which uses an equivalent central potential, such as a statistical potential, is familiar in spectroscopy as the central-field approximation. ${ }^{7}$ In this approximation, an equivalent central potential is used to generate a set of energy levels and wave functions under the assumption that the electrons are independent. The one-electron wave functions and energy levels so obtained may be taken as the zero order basis to which corrections can be applied by perturbation theory. The one-electron eigenfunctions and eigenvalues are given by solution of the Schrödinger equation,

$$
\begin{equation*}
\left[-\left(\hbar^{2} / 2 m\right) \Delta-e V(r)\right] \phi_{i}=\epsilon_{i} \phi_{i} \tag{1}
\end{equation*}
$$

where $V(r)$ is the effective central potential for the atom. In the present discussion, this potential is either the Thomas-Fermi, or the Thomas-Fermi-Dirac, statistical potential. In this zero order, the total energy

[^1]of the atom is given by
\[

$$
\begin{equation*}
E=\sum_{\{i\}} \epsilon_{i}, \tag{2}
\end{equation*}
$$

\]

and the wave function for the atom, without antisymmetrization, is

$$
\begin{equation*}
\psi=\prod_{\{i\}} \phi_{i} \tag{3}
\end{equation*}
$$

where $\{i\}$ denotes the set of occupied one-electron levels. This form for the total energy, or for the total wave function, is assumed to apply to the ground state as well as to excited configurations. The analytic simplicity resulting from this assumption is evident and is a consequence of using a fixed potential for all configurations. With the aim of obtaining similar simplicity in the Hartree methods, Roothaan ${ }^{8}$ has proposed that the Hartree ground state potential be used as the fixed potential with which excited configurations are determined. This simplification of the Hartree

Fig. 1. The potential distribution for the Thomas-Fermi atom.
procedure carries with it, however, the numerical difficulties associated with the determination of the Hartree ground state.
The important error in this application of a fixed central field arises just from the use of the same potential for all configurations of the atom. This error clearly grows with increasing excitation of the atom above the ground state. It will be apparent from the results to be presented here that the statistical potentials give acceptable values for ground state energies and presumably will therefore give semiquantitative predictions for states of low excitation. If highly excited atomic states are determined in this way, the perturbation corrections to the energies and wave functions will certainly become important. These perturbation corrections are determined by the perturbation energy

[^2]

Fig. 2. The potential distribution for the Thomas-Fermi-Dirac atom is shown with the solid line; the dashed line shows the approximation of the universal function of Eq. (9) for $Z=2$.
operator,
$H_{\mathrm{pert}}=\sum_{i}\left\{e V\left(r_{i}\right)-\frac{Z e^{2}}{r_{i}}+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{r_{i j}}+\sum_{i} \xi\left(r_{i}\right) \mathbf{L}_{i} \cdot \mathbf{S}_{i}\right\}$,
where customary notation ${ }^{7}$ has been used. In the present paper, however, the evaluation of term values is limited to the zeroth order even for excited states.

III. DETERMINATION OF THE ATOMIC POTENTIAL

The effective central field potential used in the present calculations is estimated from the statistical model of Thomas-Fermi and from the statistical model including exchange as developed by Dirac. More specifically, these statistical potentials are taken for the isolated atom at absolute zero temperature so that the ground state potential of the atom is the potential under discussion. The potential distribution for the Thomas-Fermi atom, without exchange, has been calculated by Miranda, ${ }^{9}$ and has been recalculated with improved accuracy by the author. ${ }^{10}$ The analytic fit to this potential function was used for the present calcu-

Fig. 3. The potential distribution for the Thomas-Fermi-Dirac atom is shown with the solid line; the dashed line shows the approximation of the universal function of Eq. (9) for $Z=5$.

[^3]

Fig. 4. The potential distribution for the Thomas-Fermi-Dirac atom is shown with the solid line; the dashed line shows the approximation of the universal function of Eq. (9) for $Z=10$.
lations:

$$
\begin{align*}
\phi(r / \mu)= & \frac{r V(r)}{Z e}=\left[1+0.02747(r / \mu)^{\frac{1}{2}}+1.243(r / \mu)\right. \\
& -0.1486(r / \mu)^{\frac{3}{2}}+0.2302(r / \mu)^{2} \\
& \left.+0.007298(r / \mu)^{5 / 2}+0.006944(r / \mu)^{3}\right]^{-1} \tag{5}
\end{align*}
$$

where $\mu=0.8853 a_{0} / Z^{\frac{1}{3}}$ and a_{0} is the Bohr radius. The maximum error in this fit to the numerical values is less than 0.3 percent. The potential of Eq. (5) includes the electrostatic self-interaction of the electron whose term value is to be determined, and consequently it leads to significant errors in the higher term values. A number of modifications in the Thomas-Fermi potential have been suggested ${ }^{11}$ to remove this source of error in applications to the atomic term-value problem. The Thomas-Fermi ion potential and the Fermi-Amaldi correction have been proposed as more correct fields. These latter have the practical disadvantage of requiring a new solution of the Thomas-Fermi equation for each value of Z. A procedure which does not have this

Fig. 5. The potential distribution for the Thomas-Fermi-Dirac atom is shown with the solid line; the dashed line shows the approximation of the universal function of Eq. (9) for $Z=40$.
${ }^{11} \mathrm{P}$. Gombas, Die Statistische Theory des Atoms (SpringerVerlag, Berlin, 1949).
disadvantage replaces the $V(r)$ of Eq. (5) by

$$
\begin{equation*}
V(r)=[(Z-1) e \phi(r / \mu)+e] / r \tag{6}
\end{equation*}
$$

where $\phi(r / \mu)$ is the universal Thomas-Fermi ${ }^{12}$ function for the neutral atom of atomic number Z. The predictions of the potential of Eq. (6) for the behavior of the $4 j$ and $5 f$ electrons have been obtained by Mayer. ${ }^{6}$ More extended calculations by the present author with this potential indicated that it over-corrected appreciably for the self-interaction; it consequently gives too large binding energies.

The potential which was used in the present calculations was

$$
\begin{align*}
& V(r)=Z e \frac{\phi(r / \mu)}{r}, \text { if } \quad V(r)>\frac{e}{r} \tag{7}\\
& V(r)=0, \quad \text { otherwise },
\end{align*}
$$

and as shown in Fig. 1. This form of potential, which provides the correct asymptotic behavior, was adopted

Fig. 6. The potential distribution for the Thomas-Fermi-Dirac atom is shown with the solid line; the dashed line shows the approximation of the universal function of Eq. (9) for $Z=92$.
for reason of simplicity. It does not make any modification in the field for self-interaction in the interior of the atom, but over most of this region this neglect should be relatively unimportant.

The Thomas-Fermi potential of Eq. (7) estimates only the electrostatic interaction of the electrons for the atomic ground state. The Dirac extension of the Thomas-Fermi model provides an approximate procedure for including exchange effects. If $\phi_{\text {ex }}(r / \mu)$ is the solution for the Thomas-Fermi-Dirac equation, ${ }^{13}$ then the effective central field ${ }^{14}$ for the one-electron

[^4]Schrödinger equation is

$$
\begin{align*}
& V_{\text {ex }}(r)=Z e^{\phi_{\text {ex }}(r / \mu)-\phi_{\text {ex }}(r / \mu)\left(r / r_{0}\right)} r r \\
& +\frac{Z^{\frac{1}{2}} e}{r_{0}} \frac{3 \sqrt{2}}{2 \pi}\left(\frac{r_{0}}{a_{0}}\right)^{\frac{1}{2}}\left[\left(\frac{\phi_{\mathrm{ex}}(r / \mu)}{r / r_{0}}\right)^{\frac{1}{2}}+\delta\right], \tag{8}\\
& \text { for } r<r_{0} \text {, } \\
& V_{\mathrm{ex}}(r)=0 \text {, for } r>r_{0} \text {, }
\end{align*}
$$

where $\delta=\left(3 / 32 \pi^{2}\right)^{\frac{1}{3}}\left(1 / Z^{\frac{2}{3}}\right)\left(r_{0} / \mu\right)^{\frac{1}{2}}$. It should be noted that $\phi_{\text {ex }}(r / \mu)$ is the solution of the Thomas-Fermi-Dirac equation for prescribed Z which corresponds to zero pressure at the boundary of the atom; r_{0} is the finite radius of the atom required as a consequence of the
zero-pressure boundary condition. The first term of Eq. (8) is the electrostatic potential and the second term is the effective exchange potential. As is familiar, the electronic self-interactions are correctly eliminated within the framework of the Thomas-Fermi-Dirac model. In the present application, where the Thomas-Fermi-Dirac potential of Eq. (8) is used as the atomic central field in the Schrödinger equation, it does not properly account for the electron self-interaction since it does not possess the correct asymptotic behavior. The potential was therefore modified by the same procedure as was used to get the potential of Eq. (7). The practical difficulty still remains that separate solutions of the Thomas-Fermi-Dirac equation for $\phi_{\text {ex }}(r / \mu)$ are required for each value of Z. This difficulty

Table I. Term values in Rydbergs computed with the Thomas-Fermi potential of Eq. (7).

$Z \quad 1 s$	2 s	$2 p$	3 s	$3 p$	$3 d$	$4 s$	$4 p$	$4 d$	$4 f$	$5 s$	5p
21.250×10^{0}	2.775×10^{-1}		1.190×10^{-1}			6.578×10^{-2}					
32.665	3.606	2.516×10^{-1}	1.402			7.419				4.582×10^{-2}	
45.701	4.329	2.553	1.568	1.129×10^{-1}		8.041	6.331×10^{-2}				
5						8.612					
61.628×10^{1}	6.321	2.781	1.950	1.207	1.111×10^{-1}	9.374	6.668			5.494	4.216×10^{-2}
7		3.146		1.321			7.137				
83.307	1.312×10^{0}	4.220		1.560		1.139×10^{-1}				6.358	4.871
9	1.976	7.078	2.940	1.840		1.226	8.937				
105.637	2.871	1.231×10^{0}	3.231	2.027							5.554
117.053	3.992	1.986	3.527	2.152	1.113	1.378	9.950			7.314	
12			3.871	2.254							
131.040×10^{2}	6.957	4.195	4.323	2.357	1.114	1.563	1.063×10^{-1}	6.265×10^{-2}		8.021	6.039
14			4.970	2.480			1.104				
15							1.158				6.450
161.671	1.334×10^{1}	9.379	7.344 9.317	2.925		2.028					
18				4.251							7.211
192.462	2.227	1.703×10^{1}	1.516×10^{0}	5.654	1.118	2.548	1.637	6.294		1.112×10^{-1}	8.213
22			3.482	1.386×10^{0}	1.128	3.012	1.939	6.354			9.463
24											
25					1.149			6.518			
${ }_{27}^{26} 4.934$	5.392	4.556	5.713	3.445	1.240 2.773	3.902	2.216	$\begin{aligned} & 7.522 \\ & 1060 \times 10^{-1} \end{aligned}$		1.461	1.013×10^{-1}
28					5.951			1.060×10^{-1}			
296.268	7.245	6.269	8.667	5.777	1.005×10^{0}	5.378	2.522	1.103	6.250×10^{-2}	1.730	1.113
30					1.499		2.930				
32							3.273			2.056	
33							3.768				1.387
35					5.244	1.363×10^{0}	5.388	1.122		2.359	1.561
371.063×10^{3}	1.373×10^{2}	1.238×10^{2}	2.054×10^{1}								
38 40				1.752×10^{1}	8.572	2.114	1.394×10^{0}	1.131 1.142		2.639 2.836	1.902
41							1.394×10^{0}				1.902
42								1.168		3.067	
44								1.320		3.359	2.054
45											
$\begin{array}{lll}46 \\ 47 & 1.777\end{array}$	2.517	2.332	4.475	3.751	2.404×10^{1}	5.934	3.767	3.021 4.652	6.250	3.760 4.021	
471.77	2.517	2.332	4.475	3.751	2.404×10^{1}	5.934	3.767	4.652	6.250	4.021	2.218
50										5.163	2.470
52								1.797×10^{0}			2.754
53											2.957
54 57 57	4.046	3.813	8.070	7.072	5.190	1.350×10^{1}	9.996	3.981	6.251	7.961	4.524
60	4.046	3.813	8.070	7.072	5.190	1.350×10^{1}	9.996	3.981	6.251	1.554	4.524
61									6.251		7.838
63									6.251		
653.537	5.558	5.285	1.186×10^{2}	1.064×10^{2}	8.308	2.252	1.785×10^{1}	9.461	6.252	2.529	1.314×10^{0}
66									6.254		
67									3.391×10^{-1}		
68									7.735		1.849
70									1.789×10^{0}		2.274
72 74 4.648									2.995		
74 76	7.571	7.253	1.717	1.568	1.283×10^{2}	3.632	3.020	1.894×10^{1}	4.391	5.188 5.957	3.299
77											4.231
78									7.758	6.795	
825.765	9.642	9.284	2.285	2.111	1.779	5.212	4.462	3.065	1.191×10^{1}	8.692	6.125
84									1.826	1.150×10^{1}	8.478
88										1.150×10	8.478
927.334	1.261×10^{3}	1.220×10^{3}	3.127	2.922	2.530	7.690	6.760	5.007	2.594	1.482	1.133×10^{1}

Table I.-Continued.

may be obviated by the observation that the $V_{\text {ex }}(r)$ of Eq. (8) may be approximated by a universal potential of the following form:
$V_{\mathrm{ex}}(r)=Z e^{\phi(r / \mu)} \underset{r}{r}+\frac{3 \sqrt{2}}{4 \pi} \frac{Z^{\frac{1}{2}} e}{a_{0} \frac{}{\frac{1}{2}}} \frac{[\phi(r / \mu)]^{\frac{1}{2}}}{r^{\frac{1}{2}}}$,

$$
\text { for } \quad V_{\mathrm{ex}}(r)>e / r
$$

$V_{\text {ex }}(r)=e / r, \quad$ otherwise,
where $\phi(r / \mu)$ is defined by Eq. (5), and where the proper cut-off behavior has been included. This universal exchange potential deviated from the Thomas-FermiDirac potentials by less than 5 percent for $5<Z<92$; for values of $Z<5$ the error increases. A comparison
of (9) with the Thomas-Fermi-Dirac potentials is shown in Figs. 2-6 for $Z=2,5,10,40$, and 92.

IV. NUMERICAL PROCEDURE

The calculations for the term values with the potentials of Eqs. (7) and (9) were carried out by numerical integration of the Schrödinger equation on an IBM 701 Defense Calculator. If the wave function ϕ_{i} is written as

$$
\begin{equation*}
\phi_{i}=\left[\psi_{i}(r) / r\right] Y_{l m}(\theta, \phi), \tag{10}
\end{equation*}
$$

then ψ_{i} satisfies the differential equation

$$
\begin{equation*}
\psi_{i}^{\prime \prime}-\left[\frac{2 m \epsilon_{i}}{\hbar^{2}}-\frac{2 m e}{\hbar^{2}} V(r)+\frac{l(l+1)}{r^{2}}\right] \psi_{i}=0 \tag{11}
\end{equation*}
$$

Table II. Term values in Rydbergs computed with the Thomas-Fermi-Dirac potential of Eq. (9).

where $V(r)$ is either the potential of Eq. (7) or of Eq. ing integral equation: (9). The scheme adopted for the numerical integration of Eq. (11) is similar to one recently suggested by Blanch. ${ }^{15}$ Equation (11) was converted into the follow-

[^5]\[

$$
\begin{align*}
\psi_{i}(r)=\psi_{i}^{\prime}(0) r+\int_{0}^{r .}\left(r-r^{\prime}\right) & {\left[\frac{2 m \epsilon_{i}}{\hbar^{2}}-\frac{2 m e}{\hbar^{2}} V\left(r^{\prime}\right)\right.} \\
& \left.+\frac{l(l+1)}{r^{\prime 2}}\right] \psi_{i}\left(r^{\prime}\right) d r^{\prime} \tag{12}
\end{align*}
$$
\]

Table II.-Continued.

where the boundary condition $\psi_{i}(0)=0$ has been used. For the numerical work, the integral equation was replaced by a difference equation. To insure stability of the difference equation, the integral which is the coefficient of r was evaluated by Cote's rule and the remaining integral was evaluated by Simpson's rule. Division points for the numerical integration were based
on a scale of $r^{\frac{1}{2}}$, rather than on r, since the former scale makes the variations in the functions ψ_{i} more uniform. Improvements on initial guesses of the eigenvalues were obtained by a convergence procedure coded into the machine. This procedure automatically selected new guesses for the eigenvalues based on the requirement that the eigenfunction had the prescribed number

Fig. 7. The square root of the term values of Table I for the Thomas-Fermi atom is shown as a function of Z.
of zeros and had a zero at a point distant from the origin where it was estimated to have a value less than 10^{-7} of its maximum value. The solution ψ_{i} will contain a small amplitude contribution from the irregular solution as a result of inevitable truncation and rounding errors in the numerical scheme. This error in the eigenfunction precludes the possibility of the solution being zero at the prescribed point. The accuracy of the eigenvalue determination is not affected by this difficulty. When the eigenvalue is known, this error in the eigenfunction may be avoided by integrating both inward and outward, and then joining the solutions at a point where the irregular solution is known to be negligible. This latter procedure is now in use in computations of eigenfunctions.

V. RESULTS AND CONCLUSIONS

The results of the present calculations for the oneelectron term values $1 s$ to $7 d$ with the Thomas-Fermi potential of Eq. (7) are summarized in Table I. Similarly, the results for the same one-electron term values with the Thomas-Fermi-Dirac potential of Eq. (9) are shown in Table II. The values computed for Tables I and II include the minimum number of term values necessary to give a survey of the periodic table and also to permit easy graphical interpolation for those

Fig. 8. The square root of the term values of Table II for the Thomas-Fermi-Dirac atom is shown as a function of Z.
term values not tabulated. The numerical values of Tables I and II are shown graphically in Figs. 7 and 8, respectively. A more detailed presentation of the results is given in Figs. 9-12 ${ }^{16}$ which also include those Hartree, or Hartree-Fock, values which are available in the literature. ${ }^{17}$ These figures also give a comparison of the computed values with experimental ionization energies taken from Landolt-Bornstein. ${ }^{18}$
The following conclusions are drawn from the computations with the statistical potentials:

1. There is a discrepancy at large binding energies between experimental term values and computed values whether computed with the statistical potential or with the Hartree procedure. This discrepancy is attributed to relativistic effects. An approximate correction for these relativistic effects was made by using the known

[^6]relativistic hydrogenic energy with an effective Z determined from the uncorrected computed term value. The corrections were always in the proper direction but not sufficiently large to remove the entire discrepancy. The residual error is presumed to arise at least in part from correlation effects.
2. For terms lying below the $3 s$-level, the predictions of the Thomas-Fermi-Dirac potential are on the whole closer to the Hartree, or Hartree-Fock, values than are the predictions of the Thomas-Fermi potential. For these terms which lie below the $3 s$-level, the Thomas-Fermi-Dirac values agree on the average as well with experiment as do the Hartree values. For terms above the $3 s$-level, the Thomas-Fermi values are on the whole closer to the Hartree values than are the Thomas-Fermi-Dirac values; since the experimental ionization values do not vary smoothly for these levels, it may be said that the values from any of the three theoretical possibilities considered here are equally acceptable. It may be remarked that, on a purely empirical basis, an improved overall agreement with experimental values can be obtained by taking the Thomas-Fermi values for atomic number $Z+\frac{1}{2}$ to give the term values for atomic number Z.

Fig. 9. The square root of the computed s-levels are shown with the solid line for the Thomas-Fermi atom and with the dashed line for the Thomas-Fermi-Dirac atom. The circles (O) are the values computed by the Hartree method; the squares (\square) are the values computed by the Hartree-Fock method. The crosses (X) are the experimental values.
3. As can be inferred from the figures, the f series of terms exhibits unusually abrupt alterations in energy. This behavior is observed at the same Z-value for all members of the f-series. For example, at the Z-value for which the $4 f$-electron enters the atom, the $5 f$ - and $6 f$ levels simultaneously have a sharp rise in binding energy. This type of behavior for the f-series was predicted by Mayer, ${ }^{6}$ who also pointed out the result verified by the present calculations, that the $5 f$-term value would take on the $4 f$-hydrogenic term value and the $6 f$-term value would take on the $5 f$-hydrogenic value at the Z-value for which the $4 f$-electron enters the atom.

It is to be recognized, of course, that term values alone are not a sensitive test of the accuracy of an effective central field. The uniformity, however, with which the statistical potentials agree with observed binding energies may be taken as indicating that these central fields furnish reasonably good descriptions of atomic behavior. More sensitive tests of these fields consist in the determination of wave functions and matrix elements. For this reason, these wave functions are now being computed and photo-absorption coefficients will then be evaluated. The accuracy of the term

Fig. 10. The square root of the computed p-levels are shown with the solid line for the Thomas-Fermi atom and with the dashed line for the Thomas-Fermi-Dirac atom. The circles (O) are the values computed by the Hartree method; the squares ($\square)$ are the values computed by the Hartree-Fock method. The crosses (X) are the experimental values where the doublet energies have been averaged.

Fig. 11. The square root of the computed d-levels are shown with the solid line for the Thomas-Fermi atom and with the dashed line for the Thomas-Fermi-Dirac atom. The circles (O) are the values computed by the Hartree method; the squares (\square) are the values computed by the Hartree-Fock method. The crosses (X) are the experimental values where the doublet energies have been averaged.
values for the statistical potentials suggests further that the perturbation expansion will converge rapidly. It may reasonably be expected, therefore, that the first order perturbation correction to the present zero order term values will comprise the principal part of the residual errors. The verification of this conjecture by calculation of the matrix elements of the perturbation operator of Eq. (4) is now in progress.

The statistical model, with the potential that it determines, makes possible the approximate calculation of other kinds of atomic states. For example, the energies and wave functions of ionized atoms may be computed. One may also treat atoms under pressure

Fig. 12. The square root of the computed f-levels are shown with the solid line for the Thomas-Fermi atom and with the dashed line for the Thomas-Fermi-Dirac atom. The circles (O) are the values computed by the Hartree method; the squares ($\square)$ are the values computed by the Hartree-Fock method. The crosses (X) are the experimental values where the doublet energies have been averaged.
and atoms at nonzero temperature. For the latter problem, the generalization of the statistical model developed by Feynman, Metropolis, and Teller ${ }^{19}$ gives a potential distribution which may be used as an effective central field. This central field approximates the effective field in the atom averaged over the thermal fluctuations of the electron cloud. The term values and one-electron eigenfunctions computed with this potential are averages which neglect the effects of thermal fluctuations. It may be expected that this approach to the effects of temperature on the atom will be particularly useful in computations of opacity and equations of state. These computations are now in progress.

ACKNOWLEDGMENTS

The author expresses his sincere appreciation to Miss Barbara Batchelder, Miss Ruth Merrill, and Miss Frieda Rosenberg for their capable numerical assistance. The author is indebted to Dr. W. G. McMillan, Dr. A. L. Latter, and Professor M. S. Plesset for many helpful discussions.

[^7]
[^0]: * This study was supported by the U. S. Atomic Energy Commission.
 ${ }_{2}^{1}$ D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).
 ${ }^{2}$ V. Fock, Z. Physik 61, 126 (1930).

[^1]: ${ }^{3}$ E. Fermi, Atti. accad. nazl. Lincei 6, 602 (1927); 7, 342, 726 (1928) ; L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927).
 ${ }^{4}$ P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).
 ${ }^{5}$ F. Rasetti, Atti accad. nazl. Lincei 7, 915 (1928); Z. Physik 49, 546 (1928); R. Gáspár, J. Chem. Phys. 20, 1863 (1952).
 ${ }^{6}$ Maria G. Mayer, Phys. Rev. 60, 184 (1941).
 ${ }^{7}$ E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1951).

[^2]: ${ }^{8}$ C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).

[^3]: ${ }^{9}$ C. Miranda, Mem. Acc. Italia 5, 285 (1934).
 ${ }^{10}$ Unpublished calculations.

[^4]: ${ }^{12} \mathrm{P}$. Gombas (reference 11). The function $\phi(r / \mu)$ used here is the same as Gombas' $\phi(x)$.
 ${ }^{13} \mathrm{P}$. Gomas (reference 11). The function $\phi_{\mathrm{ex}}(r / \mu)$ used here is the same as Gombas' $\psi(x)$.
 ${ }_{14}$ The physical implications of the discontinuity in the $V(r)$ of Eq. (8) have been discussed by N. H. March, Phil. Mag. 45, 325 (1954).

[^5]: ${ }^{15}$ G. Blanch, Math. Tables and Other Aids to Computation 6, 219 (1952).

[^6]: ${ }^{16}$ The levels $5 g, 6 g$, and $6 h$ are not included in these figures since these levels have hydrogenic term values.
 ${ }^{17}$ A survey of the existing results is given by D. R. Hartree, Repts. Progr. Phys. 11, 8 (1946-47) and by Landolt-Bornstein (reference 18).
 ${ }^{18}$ Landolt-Bornstein, Atom-und Molekularphysik (SpringerVerlag, Berlin, 1950), Part I.
 Note added in proof.-Recently J. C. Slater [Phys. Rev. 98, 1039 (1955)] has published a revised table of experimental oneelectron term values for free atoms with atomic numbers below 41. Some of these term values show large deviations from those of Landolt-Bornstein which are presented in Figs. 9-12. However, these differences do not essentially affect the qualitative comparisons with the theoretical results.

[^7]: ${ }^{19}$ Feynman, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949).

