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Electronic Energy Bands in Iron*)
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The method of orthogonalized plane waves has been used to calculate the energy band structure of
valence electrons in iron. Application of the results is made to the energy band theory of ferromagnetism.
The exchange splitting of the energy bands and the tendency to ferromagnetism at absolute zero have been
calculated.

INTRODUCTION

A CALCUIATIOX of electronic energy bands in
iron is of interest for the information it may re-

veal about the theory of ferromagnetism. The form of
iron considered here is o. iron, which has the body-
centered cubic lattice. ' The band structure of this
form of iron was first calculated by Manning, 2 who
used the cellular method. The results reported here
bear little quantitative resemblance to those of Manning.

The calculation was performed principally by the
orthogonalized plane wave (OPW) method. ' ' In this
method, the wave function for the states of interest is
expanded in orthogonalized plane waves, which are
plane waves made orthogonal to the assumed known
eigenfunctions of the core electrons. The states of
interest here are those formed from the 3d and 4s
atomic levels. The OPW method requires solution of a
determinantal equation of high order and would be im-

practical if high-speed electronic computing facilities
were not available. Success of this method depends on
the core functions to which the plane waves are made
orthogonal being reasonably close approximations to
eigenfunctions of the crystal potential. Because of the
inclusion of exchange in the crystal potential where the
core functions are formed from a Hartree free atom
6eld, this condition is not satisfied. Consequently the
OPW method failed for states of S-like symmetry and
these had to be treated by the cellular method. ' Also, a
modification of the OPW method had to be made to
obtain reasonable convergence of the expansion for
states of D-like symmetry since these are orthogonal by
reason of symmetry to all the core eigenfunctions. This
is accomplished by adding to the expansion a function
having the character of an atomic d function close to
any nucleus. 4

* Preliminary results were presented at the New York Meeting
of the American Physical Society, January 27, 1955 [Phys. Rev.
98, 1150 (1955lj.

t Part of material contained in a thesis submitted to the faculty
of Princeton University in partial fulfillment of the requirements
for the degree of Doctotor of Philosophy.

f National Science Foundation Predoctoral Fellow, 1953—1954.
' The lattice parameter is taken to be 2.86645&(10 cm. The

radius of the atomic sphere is then 2.667 Bohr units. D. E.Thomas,
J. Sci. Instr. 25, 440 (1948).

~ M. F. Manning, Phys. Rev. 63, 190 (1943).
' C. Herring, Phys. Rev. 57, 1169 (1940).
4 A discussion of some features of the OPW method especially

pertinent to this calculation is given by J. Callaway, Phys. Rev.
97, 933 (1955).

The principal physical problem in a band structure
calculation is the determination of a crystal potential.
If it were possible to calculate a self-consistent field for
a crystal, errors in the assumed potential would be
eliminated when the 6nal result was obtained. Calcula-
tion of a self-consistent 6eld for iron is impractical with
present computing techniques, and it is unfortunately
true that some of the results are sensitive to the choice
of potential. Some features: the relative positions of the
d-band levels at symmetry points in the Brillouin zone,
and the exchange splitting of corresponding states of
electrons of + and —spin are reasonably insensitive to
details of the potential. Other results, such as the width
of the d band and the relative position of the 3d and 4s
levels at the center of the Brillouin zone, are much
more sensitive to the potential and must be viewed
with some reserve.

The calculation can now be outlined briefly. A start-
ing charge density was formed from superposed Hartree
charge densities for the d s~ con6guration of the free
iron atom arranged in the proper crystal lattice. The
starting potential was computed from this; exchange
eQ'ects for a nonmagnetic state were included by means
of Slater's free electron approximation to the exchange
potential. ' Convergent OPW expansions were obtained
for nine states in the Brillouin zone: F~~, F25, r„, Il»,
IJ25, II~5, E2, E3, and E4. An interpolation scheme
recently proposed by Slater and Koster' was used to
extend these results to other states.

The width of the 3d band was calculated to be about
two electron volts. The separation of the 3d levels at
the center of the Brillouin zone is considerably smaller
than it is at the corners and faces of the zone. The charge
density of the 3d electrons is more compact than that
of the Hartree free atom field. This is due to the in-
clusion of exchange, and is in agreement with the
interpretation of neutron polarization experiments. ~

The relative position of the 4s and 3d bands is sensi-
tive to the potential used and is apparently incorrectly
given by the potential mentioned. The 4s band was
predicted to be above the 3d band at all points. An im-
proved potential was obtained by assuming seven 3d
electrons instead of six and by recalculating the ex-
change potential on the basis of the Hartree-Fock equa-

v J. C. Slater, Phys. Rev. 81, 585 (1951l.
6 I, C. Slater and 0. F. Koster, Phys. Rev. 94, 1498 (1954).
~ J. Steinberger and G. C. Kick, Phys. Rev. 76, 994 (1949).
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tions. It was revealed that the Slater free electron
approximation overestimates the exchange energy by
about 15 percent for 3d electrons and by 20 percent for
4s electrons. The improvement in potential taken in
6rst order perturbation theory placed the 4s.level F&

about 1.4 ev below the bottom of the 3d band.
Application was made to the theory of ferromagnetism

by calculating from the Hartree-Fock equations the
change in potential energy of a 3d electron when one 3d
electron per atom reverses its spin. This energy was
found to be between 1.23 and 1.58 ev. A density of
states curve was calculated for the unmagnetized state,
and the change in kinetic energy upon magnetization
was computed to be 0.69 ev. This gives a tendency to
ferromagnetism between 0.54 and 0.89 ev at absolute
zero. This is considerably too large. Most of the error
probably results from underestimation of the change in
kinetic energy caused in turn by underestimation of the
d-band width.

The exchange splitting of the band structure was
considered. Corresponding states of D symmetry are
separated by a gap or the order of 3 ev; the S-like levels
j. & are separated by about 1 ev. A total band width of
4.1 ev from the bottom of the 4s band to the Fermi
level in the 3d band (magnetized state) was obtained.

Finally, on the basis of this calculation, one would
expect a rigorous self-consistent field calculation of the
energy levels of electrons in iron would give overlapping
d and s bands with a d-band width of the order of
that which has been estimated empirically, and would
give an energy change on magnetization which might
be of the same order as the observed change, or which
might be considerably larger (due to neglect of corre-
lation).

CRYSTAL POTENTIAL

The energy band theory of solids is conceptually
based on the Hartree-Fock equations. However, it has
not been possible to solve the Hartree-Fock equations
exactly for a solid. There are two principal difhculties:
(1) The effective potential for an electron state Pq' (ith
irreducible representation of wave vector it) depends
on fq' and is different for each state fi, ' This leads . to
great complication and is almost never handled exactly.
One approximation often used is that each electron
moves in the field of an ion. It has also been proposed
to simplify the Hartree-Fock equations so that there is
a common potential for all states. ~ One convenient
method is by means of a free-electron approximation:
it is assumed that the exchange potential at any point
is determined by the local charge density of electrons
of the same spin and is the same as for a free-electron
gas of the same density. 5 A somewhat better approxima-
tion is to assume that the exchange potential is the
same for all states of a given angular momentum and
spin, ' or in the case of a solid, is determined by the

s Herman, Callaway, and Acton, Phys. Rev. 95, 371 (1954).

predominant angular momentum in the decomposition
of P~' into spherical harmonics.

(2) Since it is not practical to calculate a self-con-
sistent field for a solid, a charge distribution or a po-
tential must be chosen. In some cases, particularly the
alkali metals, it is possible to use spectroscopic data to
determine the potential (or an equivalent). For more
complicated cases, recourse is made to a Hartree (or
Hartree-Fock) field for the free atom and from this a
starting charge density and a potential are computed.
Since the charge density around an atom in the crystal
may differ from what it is for a free atom, it is sometimes
attempted to superpose free atom charge densities
arranged on atomic sites in the crystal lattice. The
numerical reliability of such procedures is questionable,
but it is doubtful whether better methods are available.

In this calculation, free atom charge densities ob-
tained from the Hartree field for the d's' configuration
of atomic iron calculated by Manning and Goldberg'
placed on lattice sites were superposed. The result was
spherically averaged and normalized to 26 electrons in
the unit cell. For convenience in calculating exchange
potentials, the d electrons were also treated separately.
A Coulomb potential was computed from this charge
density in the usual way, and an exchange potential
was obtained by Slater's free electron approximation

,for an unmagnetized state with three 3d electrons of
each spin. In this approximation,

V~ ———6 (3pp/4ir) **;

V+ is the exchange potential in atomic units for an
electron of positive spin and p~ is the local charge
density of electrons of positive spin.

The observed saturation magnetic moment of iron
has been interpreted as indicating there are consider-

ably less than two 4s electrons per atom in metallic
iron. "Also, the reliability of the free electron approxi-
mation to the exchange potential can be questioned.
When it was found that the results obtained with the
potential just described were unsatisfactory in certain
respects, it was decided to investigate the effect of
assuming that there are seven 3d electrons instead of
six and of computing the exchange potential from the
Hartree-Fock equations. An examination of various
methods of averaging exchange potentials has been
reported by Herman, Callaway, and Acton. ' It can be
deduced from the data in this paper that the free elec-
tron approximation overestimates the exchange energy
for a 3d electron by about 20 percent compared to the
Hartree-Fock equations for the case of a free germanium
atom. The situation turns out to be similar for iron.

The Hartree-Fock exchange potential appearing in
the wave equation for a state lt „i (r,) may be written

9 M. F. Manning and L. Goldberg, Phys. Rev. 53, 662 (1938).
'0 N. F.. Mott, Proc. Phys. Soc. (London) 47, 571 (1935).
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Now suppose there are 22 3d electrons of + spin. A
simple argument shows that in order to preserve the
spherical symmetry of the potential, one should modify
Eq. (3) by multiplying the braces containing Y2 and
Y4 by (r4—1)/4, i.e., we have

as follows:
2

'l' ' (r2) ip l (rl)dr2 lp 'l' '(r1)

U.im(ri) =
4-1-(ri)

(2)
2 (rl —1)

U2d =— Yo (3d,3d,r) +—
7 4

The summation over n'l'm' is restricted to all occupied
states having the same spin as elms. If for a given e'$',
all the m' states are occupied, the contribution to the
exchange potential from those states is independent of
ns and m'. If a shell is incompletely filled, as is the case
for the d electrons (assuming the unmagnetized condi-
tion), some assumption has to be made about the
occupancy of the m levels. For the purpose of calculating-
an exchange potential, it is convenient to assume, in
the absence of other information, that they are occupied
with equal probability. In this case, the exchange po-
tential will be spherically symmetric. In calculating
that part of the exchange potential for the state F» that
is due to the interaction of the 3d and the 4s electrons
it is sufFicient to use just I/5 of the 4s-3d exchange for
a closed 3d shell. (Here 22 is the number of 3d electrons
of spin parallel to that of the 4s electron. )

The situation is more corn, plicated when one con-
siders the 3d-3d interaction in calculating the exchange
potential for a 3d state. It can be shown that the ex-
change potential for a 3d electron in a closed shell can
be written as"

Y2(3d, 3d,r)+ Y'4(3d, 3d, r) + . , (7)

the remainder being unchanged. This prescription will
be seen at once to yield the correct result when the 3d
shell is full, or contains but one electron. To obtain
this result for a diGerent case, consider the situation of
two 3d electrons of + spin. Let one of the electrons be
in the state m= 0; the other is distributed with proba-
bility 4 over all other states. The exchange terms in the
Hartree-Fock equation, i.e., the coefficient of Y2(3d, 3d,r)
and Y4(3d, 3d,r) will be 4 of the closed-shell values plus
certain terms which are not spherically symmetric. If
we now say that the first electron is distributed with
probability 5 over all the ns levels, and average the
exchange terms in this way, the nonsymmetric terms
disappear, and we are left with just ~ of the closed-shell
result.

Under the assumption that for the purpose of com-
puting a starting potential, all the m levels can be
treated as degenerate, we have the following important
result: the change in the exchange potential for a 3d
electron of + spin when we increase the number of 3d
electrons per atom with positive spin by one is

2 2
V3d (r) =— Ye (3d,3d,r)+ Y2 (3d,3d,r)—+Y4 (3d,3d,r)

r

&U~, I= f Y,(3d,3d,r)+ Y,(3—d,3d,r)),
'

7r18 P-.(r)
+—Y'2(rlP, 3d,r) —,(3)

35 P,„(r) where this is to be taken with the proper algebraic sign
to decrease the energies of these electrons. This result
is useful when we wish to consider the ferromagnetism
of iron.

On the basis of these results, an improved exchange
potential was calculated from the starting charge
density for the unmagnetized state. It was found that
the Slater free electron approximation to the exchange
potential overestimates exchange badly for small r and
is reasonably close for large r to the Hartree-Fock
potential. If the expectation value of the difference
between the Hartree-Pock and free-electron exchange
potentials is found with the 3d radial function deter-
rnined for the state F25, the result is that the Slater
approximation overestimates the exchange energy by
0.49 Rydberg or 15 percent.

The exchange potential for a 4s electron was then
calculated from (6), using for the 4s wave function,
the wave function for F» calculated by the cellular
method. Since this function has nodes, the exchange
potential has infinities, but these do not contribute to

where
q

2

Y2(ril, e'P, r) = P„l(ri)P„.l. (ri)
~

—
i

dri
&2 Er)

(rq 2+I

+ P.l (ri)P; 1 (ri)
~

—
~

dr i, (4)

and the I'„& are normalized to one. Similarly, for the
4s state Ft we write (assuming closed shells):

2 1
V4, ——— P P„,(r) Yp(4s, rls, r)

g p4, n=»

+Q P„~(r)Y'1(4s,NP, r)+P2„(r)Y'2(4s, 3d,r) . (6)
n=2

"D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936l.

2 4 P„.(r)
+ Q Y2 (22s, 3d,r) +- p Y2 (rip, 3d,r)—

5r ~-1 P,„(r) r ~=2
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the exchange energy, being removed when we calculate
the expectation value. Except very close to one of the
peaks in the exchange potential, it was found that the
free-electron approximation overestimates the exchange
potential. The error in the exchange energy for the F»
state is 0.23 Rydberg or 20 percent. Most of this error
seems to be due to overestimation of the interaction
between the 4s and the 3d electrons.

The usefulness of the free-electron approximation
depends on the state considered and the accuracy re-
quired. It seems to compare favorably with other
methods of averaging exchange potentials. ' Unfor-
tunately, the dependence of the exchange potential on
the wave function for the particular state may be too
great to justify use of an exchange potential averaged
over all states. Accuracy in the potential is important
because of the sensitivity of some features of the band
structure to details of the potential.

The eGect of using a Coulomb potential computed
from a d s' configuration of the free iron atom was also
examined. The principal change comes from the fact
that the charge density is now more compact and the
potential is less attractive for moderate values of r.
The expectation value of this change in potential found
with the I'ss function (see next section) is 0.697
Rydberg, while the change in exchange energy occa-
sioned by increasing the number of 3d electrons by one
is 0.035 Rydberg in the opposite direction. The state
F» is not aGected so strongly; the change in the Coulomb
energy is 0.122 Rydberg while the change in the ex-
change energy is —0.020 Rydberg.

It was not feasible to examine the effect of the changes
in potential on the bandwidth, since a repetition of the
entire band structure calculation would have been re-
quired in order to obtain an accurate answer.

BAND STRUCTURE OF THE NONMAGNETIC STATE

OP% expansions were constructed for the levels F»,
F»2, F25, and F»5 at the center of the Brillouin zone;
H~, H~s, Hss, and Hrs at the corner point H, 2s/a
(1,0,0); Ps and P4 at the corner P, 2s/a(sr, sr, —',); and
Er, mrs, Xs, and 1V4 at the point X, 2s./a(-,',—,',0) which is
the center of a face. The Brillouin zone for the body-
centered lattice is shown in I'ig. I. As indicated in the
introduction, the expansions for F», H», and N» gave
unreasonably low energies. F» and H» were treated by
the cellular method. The expansions for P'3 and P4
apparently did not contain enough plane waves to
yield reliable results, but further calculations for P4 in
particular would have required a prohibitively large
secular determinant to obtain accuracy commensurate
with that obtained at F and H. It is believed that reli-
able solutions from the point of view of convergence of
the OP& expansions were obtained for the following
nine states: F»~, F»., F», H», H&5., H»5, N2, N3, and N4.
The appropriate determinantal equations were solved
on the high-speed electronic computing machine at the

Fn. 1. Brillouin zone for the body-centered cubic lattice.
Symmetry points and axes are indicated.

Institute for Advanced Study, Princeton, New Jersey.
All the eigenvalues and eigenvectors of the matrices
(usually of seventh order) were determined in the
process.

The results of the calculation up to this point were
unsatisfactory in one respect: the 4s level F» was
placed some seven volts above the d band. This is
contrary to reasonable expectations based on existing
knowledge of the transition metals. This result prompted
the previously mentioned study-of the crystal potential.
A potential was constructed, based on a d's' configura-
tion of the free iron atom (but with the same wave
functions as the dss') and on the Hartree-Fock exchange
integrals. The difference between this poten'tial and the
one previously used was treated by first order per-
turbation theory, but only as regards the position of the
levels. The F» level was now found to lie satisfactorily
below the 3d band.

Slater and Koster have proposed an interpolation
scheme for energy bands in crystals based on the tight
binding approximation. ' These authors regard the in-
tegrals occurring in the matrix components of the
energy between different Bloch sums as disposable
parameters to be determined from energy values ob-
tained by other methods at symmetry points in the
Brillouin zone. They have applied this scheme to d
bands in the transition metals for both the body-
centered' and face-centered cubic lattices, " using
parameters determined from a previous calculation for
nickel. " Some of their results, particularly the sym-
metry about 8=0 of the density of states for the body-
centered lattice, are rather critically dependent on their

» G. F. Koster, Quarterly Progress Report of the Solid State
and Molecular Theory Group, Massachusetts Institute of Tech-
nology, October 15, 1954, (unpublished), p. 4.

"G.C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).
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approximation and are removed if more parameters are
used. They have also applied their method to the
diamond lattice, ' using the results of Herman" ob-
tained by the OPW method to determine the param-
eters. The band structure they draw is in rather serious
disagreement with the calculations by Herman of
effective masses near the center of the Brillouin zone
in that the free-electron-like behavior of the 6» band
from F» is not reproduced, nor the downward curvature
of the 6» band from the state F»5, nor the downward
curvature of h~ frorr the state F2q .

%e might expect l.hat better fitting with a tight
binding scheme could be obtained for the transition
metals since the d bands are relatively narrow. Difficulty
could be expected for the band formed from the 4s
electron levels since it would be likely to show free
electron like behavior except near points of crossover.
If it can be reasonably asserted that the distortion
produced by crossover of the 4s and 3d bands is not so
great as to eGect strongly the density of states, then
it might be reasonable to try to use the interpolation
scheme to compute the density of states.

«,4

«, Q

Vl
CO
lL
4J
CO
O
K

7

AXlS

FIG. 2. Energy bands in iron parallel to 100 axis (unmagnetized
state). Intermediate points are determined by the interpolation
scheme. Vse of more parameters would remove the degeneracy
of A1 and A~, of A2' and A5. Dotted lines show possible alteration
of predicted band structure in order to avoid crossover of D1
bands.

'4 F. Herman, Phys. Rev. 88, 1210 (1952).

It was decided to apply Slater's scheme in the two-
&enter approximation using nearest neighbor inter-
actions only. If we allow for the possibility of different
central interactions for the states at k=0, there are five
parameters to fit. These parameters were determined
from the energies of the levels F»&, F~5, &25, H»2, E~,
E3, and 274. Since there are seven levels there are two
relations which the matrix elements have to satisfy if
the fitting is exact. These relations are not exactly
satisfied, but are obeyed sufficiently well to suggest
there is some truth in the approximation. This form of
the interpolation scheme leaves one unwanted de-
generacy: the bands along the 100 axis in the Brillouin
zone are split into a doubly degenerate band and a
triply degenerate band instead of three nondegenerate
bands and one doubly degenerate band. However, the
symmetry of the density of states about its midpoint
is removed.

By using Slater's interpolation scheme, energy levels
were calculated at several points in the Brillouin zone
in order to determine the form of the bands and the
density of states. The density of states is found in the
following way: For various values of k, and k„, the
band structure parallel to the k, axis in the Brillouin
zone was determined by the interpolation scheme. For
each of these curves, the energy was divided into small
intervals (0.01 Rydberg) and the relative extent of the
k, axis for which each curve lay within the given energy
range was computed. This gives a rough density of
states for each band. These curves are step curves and
they all have to be added with the proper weighting.
The result is a step curve for q(E).

Table I gives the lowest eigenvalues for all the repre-
sentations for which convergent solutions were found.
Diagrams of the band structure are shown in Figs. 2
and 3 (intermediate states and also the two 1Vi levels
have been located by the interpolation scheme). The
6» and Z» bands from F» are drawn as free-electron
bands. Since cross over of equivalent bands is rendered
extremely unlikely by group theory, the band structure
will be distorted somewhat from the solid lines of these
diagrams. A possible modification of the band structure
to prevent such cross over is shown by dotted lines in

Fig. 2.
The splitting of the 3d levels at the center of the

Brillouin zone is only 0.3 ev; much less than it is at the
corners and faces of the zone. The bottom of the 3d
band at the point S» lies 1.35 ev above the lowest

point of the 4s band at F». The location of the top of
the d band is ambiguous because of the mixing of s
and d states: The state X4 (which is determined by the
OPW method) lies 1.57 ev above the lowest Ei (which

is found by the interpolation scheme). There is another
state of type X& about 1.8 ev (estimated from a single

OPW) above X4,. this may be predominately S-like
although E» contains a mixture of s and d states. The
top of the d band is not determined with precision, but
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it would be reasonable to say that this calculation gives
a d band width of about two electron volts. Unfor-
tunately, these numerical values are sensitive to the
potential.

A much smaller splitting of the d-band states at
k=0 than at other points of the zone is also a feature
of the band structures calculated for nickel by Fletcher"
and for copper by Howarth. "These elements have the
face-centered cubic structure. It does not agree with
the predictions of Slater and Koster' for the body-
centered lattice, based on their interpolation scheme.

Some confidence in the relative order of the 3d levels
among themselves (at least for the ones found from
OPW expansions) was furnished by an exploratory
calculation for the points F and H with a potential
which did not include any exchange. Although the
magnitudes of the separations were changed the order
and relative separation of the levels was the same. The
result that the separation of the 3d bands at F is
roughly one third that at /I may be viewed with some
conidence.

TABLE L Lowest eigenvalues.

lA
CO
K
Lab

Cl
CI

lY.

7

N~

NI

Ng

Representation

~1

~25

+12
H25
$4
H15
H1
~15

Energy (Rydbergs)

—0.750—0.625—0.595—0.595—0.574—0.573—0.555—0.548
+0.154~
+0.64~
+2.00'

—.8—

K AXIS

FIG. 3. Energy bands in iron parallel to 110axis (unmagnetized
state). E1 levels and intermediate points are determined from the
interpolation scheme. Effects of prohibiting crossover of Z1 bands
are not shown.

a Correction to potential not included.

The separation between the levels F~ and IIj5 is
1.238 Rydbergs (16.8 electron volts) before correction
of the potential. These levels are presumably the limits
of the s-p bands. The width of this band according to
the free electron approximation is 1.345 Rydbergs,
which is in error by 8.6 percent. It then seems reason-
able to draw the 4s bands as free-electron bands. Since
the states Ft5 and Hr~ formed from 4p electron levels
lie far above the d band, one might conclude that the
mixing of p and d states in the d band is small. I'4 is a
state where mixing of this kind is permitted by group
theory. The form of the OPW expansion, although
poorly convergent, suggests that this mixing is small.

There is no experimental information as yet which
bears directly on the form of the band structure sug-
gested here. However, experiments on the polarization
of slow neutrons by magnetized iron give information
as to the charge distribution of a magnetically active
electron. These experiments have been analyzed by
Steinberger and Wick. ' Although their cellular method
calculation of the wave functions of d electrons was

"D.J. Howarth, Proc. Roy. Soc. (London) A220, 513 (1953).

performed with boundary conditions which are not
appropriate for 3d electron states, their principal con-
clusion is probably sound. They 6nd that the charge
distribution of a magnetically active electron must be
somewhat more compact than are the Hartree functions
for a free iron atom. ' The additional binding is pro-
vided by exchange.

The wave function for a 3d electron depends, of
course, on the particular state in the band. But inspec-
tion of the OPW eigenfunctions suggests that the wave
function does not change much over the 3d band. This
result is consistent with the small width of the band.
It would seem that a reasonable idea of the radial
charge distribution of a 3d electron could be obtained

by summing the l= 2 part of the expansion for one of
the states. This was done for the state F2~, the result
is shown in Fig. 4 where it is compared with the 3d
radial function of Manning and Goldberg. ' The F25
function has been altered in the right direction from
the Hartree 6eld.

The density of states for the unmagnetized state
obtained from the calculation based on the interpolation
scheme is shown in Fig. 5. It has the two-hump struc-
ture suggested by information on the electron specifI. c
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I'"io. 4. Comparison of 3d radial wave functions obtained from Fgs'
and the Hartree wave function of Manning and Goldberg.

heat" and temperature variation of the magnetic sus-

ceptibility of the transition elements. "However, these
results are based on an extrapolation of the density of
states curve from element to element, regardless of
changes in the crystal structure and the potential. The
validity of such procedure remains to be established.
Before de6nite comparison of the density of states
curve with experiment can be given, allowance must e
made for the splitting of the band structure of the
magnetized state introduced by exchange.

The calculated energy bands are probably too narrow.
The improvement in the potential previously discussed
would tend to widen the bands, but it was not possible
to calculate this. An accurate calculation of the d-band
width must wait for a self-consistent 6eld.

An estimate of the self-consistency of this calculation
can be made by comparing the Coulomb potential
calculated from the I'» function previously discusse
with the Coulomb potential of the assumed initial is-
tribution. The potentials are found to disagree con-
siderably since the charge density obtained in this
calculation is more compact than the initial one. Conse-
quently, results of this calculation which are dependent
on the details of the potential are open to some question.

potential constructed from the F25 function, the value
is —1.58 ev. Since the latter potential is derived from a
charge distribution that may be too compact and the
former from one that is too loose, the correct figure
should lie between these limits. The energy computed
here represents the lowering of the levels of majority
spin electrons from the unmagnetized state, and we
must remember that the levels of minority spin elec-
trons are raised by a like amount. Corresponding leve s
of opposite spin are separated by an energy between
2.46 and 3.16 ev. The figures obtained here from the
Hartree-Pock exchange potential agree reasonably well
with the corresponding results of Slater's free-electron
approximation to the exchange potential.

The change in cohesive energy due to exchange when
one 3d electron per atom reverses its spin is just one-
half the separation between corresponding levels in t e
magnetized state. The factor of one-half arises from the
fact that when we add the one-electron eigenvalues of
the Hartree-Fock equations, we have counted the ex-
change interactions twice. Thus the change in cohesive
energy due to spin reversal will be between 1.23 and
1.58 ev. These numbers are slightly larger than those
obtained by Slater for the case of nickel by examination
of spectroscopic data. "Slater obtains a value of 0.99 ev
for this quantity. The discrepancy arises from two
causes: (1)a different method of averaging the exchange
interactions over the 3d states, and (2) slightly larger
values for the appropriate integrals in this case. The
difference in the method of averaging amounts to one
fifth of the change in spin energy.

%e must now compute the change in the kinetic
energy on going to the magnetized state. This can be
determined from the density of states curve. We have
to calculate the integrals J Erf(E)dE for the magnetized

'ELECTRONS PER

RYDQERG

APPLICATIONS TO FERROMAGNETISM

Equation (8) gives the change in the potential energy
of a 3d electron in the Hartree-Fock scheme when one
3d electron per atom reverses its spin. %e shall assume
(1) that this potential is the same for all electrons in
the d band, (2) that we can calculate its effect by first
order perturbation theory, and (3) that the expectation
vaues o1 f this potential are the same to a su%.cient

band. Thisapproximation for all the states in the d an . is
potential was computed by using the radial function
for the state F», and also by using the starting charge
density for a 3d electron. The expectation value of these
potentials were found by using the F&5 function. For
the potential constructed from the starting charge
density, the expectation value is —1.23 ev. For the

' M. H rowitz and J. G. Daunt, Phys. Rev. 9I, 1099 (1953).
'r C. . Kreissman and H. S.Callen, Phys. Rev. 94, 83 ( ).
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Fio. S. Density of states for iron (unmagnetized state). The
4s band is drawn as a free electron band. v(E) for the 4s band is
enlarged by a factor of ten.

' J. C. Slater, Phys. Rev. 49, 537 (1936).
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electron volts. This is in reasonable agreement with the
experiment of Gyorgy and Harvey on soft x-ray ernis-
sion" where a band width of 3.7 ev is observed. The
density of states curve is a combination of two like the
one shown in Fig. 4, separated by a gap, and laced
together by the 4s free-electron bands. There is a de-
cided dip in the middle corresponding to the region in
which s like states predominate. Such a dip has not
been observed experimentally. This dip is diGerent
from that predicted by previous studies of the transition
metals, since it is a result of the ferromagnetism.

The electron specific heat of magnetic iron at abso-
lute zero according to this predicted density of states is

C„=18X10 'T cal/mole-deg,

compared to the experimental value 12&&10 'T."The
disagreement is presumably due to the calculated d
bands being too narrow.

It is rather difficult to determine a quantity to be
called the number of s electrons in the crystal. This is
ambiguous because of the mixing of states. If the 4s
band were entirely free-electron-like and no mixing of
angular momentum states occurred, one wouM obtain
0.11 4s electron per atom in the nonmagnetic state and
0.19 in the magnetic state, with an excess in the latter
case of 0.07 4s electron of majority spin.

The energy balance in magnetization must be re-
computed if the role of the 4s electrons is taken into
account. The result is nearly the same as before. There
are three effects which, when added, very nearly cancel:
(1) the decrease in energy due to exchange which comes
from the 3d-4s exchange, (2) the increase in kinetic
energy upon magnetization, and (3) a decrease in
energy due to electrons dropping from higher 3d states
into 4s states. To the accuracy possible here, these
effects cancel. Readjustment of the 4s levels represents
an improvement in the wave function of the system
and must lead to a state of lower energy, " but this
decrease is probably small.
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APPENDIX

Use of Group Theory to Simplify the
Eigenvale Problem

Only those orthogonalized plane waves appear in
the expansion for the wave function at a point k in the
Brillouin zone which are formed by adding to k all
reciprocal lattice vectors. In order to obtain a con-
vergent expansion, it is necessary to employ a large
number of orthogonalized plane waves (for instance 86
are used in the expansion of the level I'ts at k= 0). This
would seem to lead to impossibly large secular equa-
tions which, for a general k, we should have to solve;
but at certain points in the Brillouin zone, a simplifica-
tion is possible.

Consider the operations belonging to the point group
of the reciprocal lattice which carry a point k of the
Brillouin zone into itself or an equivalent point (a
point k' is said to be equivalent to k if k= k+&, where

g is a reciprocal lattice vector). These operations are
said to form the group of the point k."For a general k,
the group of k will consist only of the identity. There
exist, however, symmetry points in whose group there
are several operations. Then the wave function of a'
state of that k can be classified according as it belongs
to a particular irreducible representation of the group
of k. Because the Hamiltonian will have no nonvanish-
ing matrix elements between functions belonging to
diGerent irreducible representations, the OP% secular
equation can be factored. In particular, we can choose a
linear combination of orthogonalized plane waves of a
given type which belongs to a (particular row of a)
particular irreducible representation. Only combina-
tions belonging to this symmetry type need be con-
sidered in setting up the secular equation.

For example, consider the point I'. The group of I'
consists of the 48 operations of the cubic point group.
There are ten irreducible representations of this group:
four one-dimensional, two two-dimensional, and four
three-dimensional representations. The orthogonalized
plane waves which can participate in the expansion of
the wave function of one of these representations are:
the wave 000, the 12 waves 110, the six waves of type
200, the twenty-four waves of type 211, the twelve
waves 220, the twenty-four waves 210, the eight waves
222, the forty-eight waves 321, etc."Suppose we wish
to find the lowest energy of a state belonging to the
representation F25 . Such a state will be triply degener-
ate, and if expanded in spherical harmonics will have
as harmonic of lowest order a function of type xy/r'
(or gz, or ys, or a linear combination of these). "Since
the functions xy, ys, and sx are linearly independent,
they form a basis for the expansion of any function

~2Bouckaert, Smoluchowski, and signer, Phys. Rev. 50, 58
(1936).

"2~/o is omitted."F. C. Von der Lame and H. A. Bethe, Phys. Rev. 71, 612
(1947).



ELECTRONIC ENERGY BANDS IN Fe 509

belonging to F~5. I et us choose to construct the ex-
pansion of the wave function in I"~5 which transforms
like xy. To do this, we choose a plane wave of a par-
ticular type, say 110, and apply the formula"

Z&f ww, *w(T)'TX&=ZDww, rw(~)X(&&i

Here, T runs over all 48 operations of the group of F.
D,w,w(T) is the ay, xy element of the matrix repre-
senting the operation of T on the basis xy, ys, sx. The
result is a linear combination of plane waves which
transforms according to the xy row of the representa-
tion 7~5. We then proceed in a similar manner for all

of the plane waves we intend to use in the expansion.
In this manner, we express the wave function for a
state of 1"~5 as a series in orthogonalized plane waves,

taking advantage of symmetry. The Hamiltonian will

have no matrix elements between this function and
functions belonging to diferent irreducible representa-
tions, or between orthogonal members of this
representation.

In the general case, to construct an expansion which

will transform according to the ith row of the jth irre-

ducible representation of the wave vector k, we first
determine the types of waves which belong in the ex-

pansion and construct

ZrDv, 's(T) 2'x~,

for all the plane wave types. Only these functions now

need be employed in constructing the secular equation.
There is one unknown coefficient for each such linear
combination.

In the case the representation is nondegenerate, it is
sufFicient to use"

Zrc P)&x~ (12)

where C, is the character of the operation T in the jth
irreducible representation and x~ is an orthogonalized

plane wave. The result is a function transforming
according to the jth irreducible representation of wave

vector k.
"E.P. Wigner, Group 2'heory and Quantum 3Iechanscs (Ed-

wards Brothers, Inc. , Ann Arbor, 1944).

TABLE II. Wave functions for P (k=000).

Representation
Wave I'I Fl F2 F2 F]2 F12 i 15 F25 F15 i'25

110 +
101 +
Oii +
110 +
101 +
Oii +
110 +
101 +
011 +
110 +
101 +
Oii +
200 +
020 +
002 +
200 +
020 +
002 +

0 0 0
0 + 0
0 — 0
0 0 0
0 + 0
0 — 0
0 0 0
0 + 0
0 — 0
0 0 0
0 + 0
0 — 0

0 0 0 0
0 0 0 +
0 0 0
0 0 0 0
0 0 0 +
0 0 0
0 0 0 0
0 0 0
0 0 0 +
0 0 0 0
0 0 0
0 0 0 +
0 0 0 + 0 0 0
0 0 0 — 0 0 0
0 0 0 0 0 0 0
0 0 0 + 0 0 0
0 0 0 — 0 0 0
0 0 0 0 0 0 0

+ +
+ 0
0 0

0
0 0
+
+ 0
0 0

+
0

0 0

+ 0
0 0
0 0

0
0 0
0 0

(ooo) (+) x' —y' .(*s—y) ~ *y

In certain cases, a given irreducible representation
may occur more than once in a given plane wave type.
For instance, the representation I'25 occurs twice
among the plane waves 211. This means that it will be
possible to construct two linearly independent wave
functions of xy symmetry from the waves 211. Both
will have to be included in the expansion. The rule for
determining the number of times a particular repre-
sentation is contained in a particular plane wave type
is as follows": (1) Determine the number of plane waves

carried into themselves (i.e., aab into aab) by an opera-
tion of the group. (2) Multiply this by the character of
the operation. (3) Form the sum of (2) for all operations.

(4) Divide the number obtained in (3) by the number of

operations contained in the group.
Table II gives the appropriate linear combinations

for the first nineteen waves belonging to F. The linear

combinations for other points may be obtained from

the author.


