Magnetic Susceptibility of Indium Antimonide

D. K. STEVENS AND J. H. CRAWFORD, JR. Oak Ridge National Laboratory, Oak Ridge, Tennessee (Received March 31, 1955)

The magnetic susceptibility of both n- and p-type InSb has been measured by the Faraday method from 65°K to 650°K. The carrier contribution has been obtained by subtracting the lattice component in both the intrinsic range and the extrinsic range. These data indicate that the energy gap at 0°K is 0.262 ev and that the electron effective mass is $0.028 m_0$. The hole contribution to the susceptibility in the extrinsic range for the p-type specimen used was too small to permit a determination of the effective mass of holes.

HE magnetic susceptibility of several n- and ptype single crystals of InSb¹ have been measured by the Faraday method from 68°K to 650°K. The results of these measurements² are shown in Fig. 1. In specimen N-1 the extrinsic electron concentration n_0 =1.6×10¹⁶ cm⁻³, in N-2 $n_0 \simeq 4 \times 10^{14}$ cm⁻³, and in P-1 the extrinsic hole concentration $p_0 = 1.1 \times 10^{16} \text{ cm}^{-3}$.

It can be shown³ that the susceptibility of a semiconductor can be written as the sum of three components: the diamagnetic lattice contribution χ_L , the paramagnetic contribution of impurity atoms χ_I containing unpaired electrons, and the contribution of the carriers χ_c . Since the impurity content of the specimens is too small to contribute significantly to the susceptibility, we are concerned here only with χ_L , which is usually only slightly temperature dependent, and χ_c . In the range of classical behavior,

$$\chi_c = (\beta^2 / 3\rho kT) n (3 - f_e^2)$$
 (1)

for electrons, a similar expression holding for holes. Here, β is the Bohr magneton, ρ the density of the crystal, *n* the electron concentration, and $f_e = m_0/m_e^{(M)}$, where m_0 is the electron rest mass and $m_e^{(M)}$ is the effective electron mass averaged appropriately for motion in the magnetic field.⁴ In the case of appreciable carrier degeneracy Eq. (1) gives too large a value for χ_c . For classical intrinsic behavior the carrier contribution is

$$\chi_{c} = CT^{\frac{1}{2}} \left[\frac{m_{e}^{(N)} m_{h}^{(N)}}{m_{0}^{2}} \right]^{\frac{3}{4}} e^{-E_{g}/2kT} \left[6 - f_{e}^{2} - f_{h}^{2} \right], \quad (2)$$

where $C = 2\beta^2 (2\pi m_0)^{\frac{3}{2}} k^{\frac{1}{2}} / 3\rho h^3$ and $E_g = E_g^{0} + BT$.

In view of Eq. (2), the rapid increase in diamagnetism above 200°K exhibited by the curves in Fig. 1 is attributed to intrinsic ionization. The maximum at 600° K is probably due to two effects: (1) the onset of

³G. Busch and E. Mooser, Helv. Phys. Acta 26, 611 (1953).

 $m^{(M)}$ becomes identical with the density of states mass $m^{(N)}$ only when the energy surfaces are spheres in K-space and the bands are nondegenerate.

carrier degeneracy which in itself would not cause a maximum and (2) a temperature dependence of χ_L similar to that observed in Ge⁵ and Si,⁶ i.e., decreasing diamagnetism with increasing temperature. From Eq. (2), it is evident that a plot of $\log(\chi_c/T^{\frac{1}{2}})$ vs 1/T should yield a straight line of slope $E_g^0/2k$. Such a plot is shown in Fig. 2 for N-2. In order to obtain χ_c , it was assumed that χ_L is temperature independent and is given by the low-temperature value of χ in Fig. 1. The curve is indeed linear over most of the range with a slope corresponding to $E_{g^0} = 0.262$ ev, in reasonable agreement with values obtained from electrical measurements.7,8 Because of the assumption concerning χ_L , this value may be somewhat small.

The curve for N-1 in Fig. 1 shows the extrinsic contribution at low temperature (<200°K). Because of

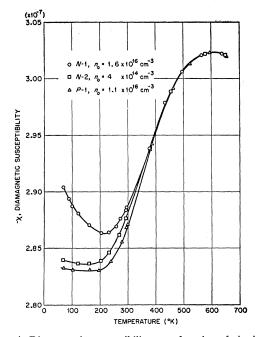


FIG. 1. Diamagnetic susceptibility as a function of absolute temperature for three specimens of InSb.

⁵ D. K. Stevens and J. H. Crawford, Jr., Phys. Rev. 92, 1065 (1953).

¹We are indebted to H. J. Hrostowski and M. Tanenbaum of Bell Telephone Laboratories for these specimens.

² The relative precision of points on a given curve is better than ± 0.1 percent. The absolute precision, relative to the reported value of O₂ gas at N.T.P. is not better than ± 0.5 percent. For comparison purposes the curves were adjusted to correspondence at 600°K.

⁶ D. K. Stevens (unpublished data).

⁷ M. Tanenbaum and J. P. Maita, Phys. Rev. **91**, 1009 (1953). ⁸ Breckenridge, Blunt, Hosler, Frederikse, Becker, and Oshin-sky, Phys. Rev. **96**, 571 (1954).

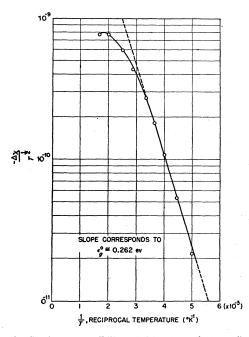


FIG. 2. Carrier susceptibility divided by $T^{\frac{1}{2}}$, $(\Delta \chi T^{-\frac{1}{2}})$, as a function of reciprocal temperature in the intrinsic range for sample N-2.

the smaller temperature dependence of χ_c and the expected temperature dependence of χ_L , χ_c cannot be obtained in this case as was done for the intrinsic contribution. However, because of the larger hole mass,⁹ the extrinsic contribution of N-1 is given to a good approximation in the extrinsic range by the difference in the curves for N-1 and P-1. This difference is plotted as a function of 1/T in Fig. 3. Three ranges of behavior are evident: (1) the intrinsic range in which the extrinsic difference between the two specimens is reduced by intrinsic ionization, (2) the approximately classical

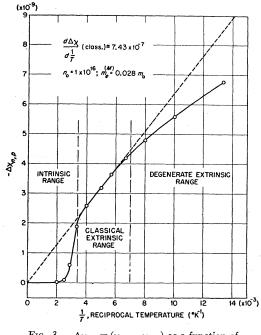


FIG. 3. $-\Delta \chi_{n, p} = (\chi_{P-1} - \chi_{N-1})$ as a function of reciprocal temperature.

extrinsic range due only to N-1, and (3) the extrinsic range in which degeneracy becomes appreciable. It is evident from Eq. (1) that the slope of the χ_c vs 1/Tcurve is proportional to $m_e^{(M)}$ in the classical extrinsic range. From Fig. 3, this corresponds to $m_e^{(M)} = 0.028m_0$. This value is somewhat smaller than that determined electrically.⁸ A similar analysis was made for the difference between N-1 and N-2, yielding $m_e^{(M)} = 0.032m_0$. Because of the higher purity of N-2 than P-1, the intrinsic range extended to a much lower temperature. Consequently, the slope was obtained on a portion of the curve deeper in the degenerate range which would give too small a slope and too large a value of $m_e^{(M)}$. Hence the first value is the most reliable.

⁹ The reported mobility ratio of 85 in this material (reference 7) indicates that the contribution of holes in P-1 is perhaps no greater than 2 percent of the electron contribution in N-1.