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An application of the augmented plane wave method of solving
the periodic potential problem has been made to metallic copper.
The aim is to investigate the value of the method and to learn
details of the energy band structure of copper. The method has
been found to converge very rapidly; eigenvalues of three- or
four-figure accuracy can be obtained for any point in k-space
without involving the solution of very large secular determinants.
Throughout, good results can be obtained by considering only a
single augmented plane wave; these appear to be good one-electron
wave functions by themselves, and the possible use of these as a
starting point in a self-consistent calculation is discussed. The
method proves suitable ground for the application of a high-
speed computer, by which the present computation has been
carried out.

The numerical results for copper are not in agreement with the
results of a cellular calculation. Recalculation of certain states
by the cellular method indicates that the dominant reason lies
in the different potentials employed, the augmented plane wave
method dealing with a potential constant in a region between
the atoms. The sensitivity of the energy levels upon the exact
crystal potential has become more apparent, though copper may
be expected to show greater sensitivity than other materials. The
present calculation of the width of the 3d band is 3.935 ev,
compared with 3.46 ev by the cellular method and 2.7 ev by the
tight-binding method. The appearance of a high density of states
near the top of the 3d band is confirmed.

' 'N recent years, various methods have been used in
- ~ attempts to make accurate solutions of the periodic
potential problem. Sy limiting consideration to points
in momentum space possessing high symmetry, the
cellular method has proved capable of accurate results;
calculations have been made on sodium, " lithium, '
copper, 4 and lead sul6de, ' using this method. The
orthogonaljzed plane wave method originally proposed
by Herring' can also be used with accuracy at certain
points in momentum space, and studies have been
made by this means of beryllium, lithium, "and, more
recently7 of diamondio and germanium ii—is

An alternative approach to the periodic potential
problem was suggested by Slateri4 and extended by
SaGren and Slater"; the purpose of the present paper
is to describe an application of this method and to
estimate its value as a practical approach to the
investigation of energy band structures. The method
is obviously simple mathematically; its practical value
depends upon the rate of convergence of an expansion
of the wave function in terms of "augmented plane
waves, " and it is hence of immediate interest to apply
the method to a particular substance. Metallic copper
has been selected for two reasons. Firstly, the form and
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relative positions of the 4s and 3d bands are of interest,
in particular since it is an indication of the band
structure of the transition elements preceding copper
in the periodic table. Secondly, a calculation by the
cellular method has already been carried out for
copper, ' and con6dence in such calculations would be
greatly improved by obtaining equivalent results by
the two approaches. Comparison can also be made with
the calculations in the 3d band in nickel using the
"tjght-bjndjng" approxjmatjon i6 iv although thjs makes
no claims to be an exact solution of the problem.

The conclusion arising from the present work is that
the method provides an excellent approach to the
solution of the periodic potential problem. Without
undue numerical labor, it is possible to obtain eigen-
values of greater accuracy than those resulting from
the cellular method as it is used at present. In addition,
it is possible to extend the calculation to deal with
points in momentum space possessing no symmetry
properties. The numerical results for copper are not in
agreement with the results of the cellular calculation;
the dj6erence is apparently due to the di6erent crystal
potential assumed in the two calculations. The present
work is to be regarded as an analysis of the practical
use of the augmented plane wave method rather than
an evaluation of physically sjgnjhcant results for copper.

THEORY OF THE AUGMENTED PLANE
WAVE METHOD

The mathematical details of the method used here
have been given by Saffren and Slater, '5 subsequently
referred to as I. Only a brief recapitulation of the
necessary formulas will be given here.

%e assume the crystal potential in which the electron
moves to be spherically symmetrical inside a sphere,
radius r„surrounding each atom and constant between
these spheres. %e shall here consider a material con-

"G. C. Fletcher and E.P. lvVohlfarth, Phil. Mag. 42, 106 (1951).
'r G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).
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taining only one atom per unit cell. Inside the sphere,
the wave function is expanded in a series of spherical
harmonics of angle, and radial wave functions of r,
u&(r), satisfying the equation

d2(ru~) (l(l+1)
+V (r) E—~ru(, (1)

dr' & r'

V(r) being the potential inside the sphere.
Outside the sphere, we assume the solution to be a

single plane wave of propagation constant k; if we
choose the constant potential to be zero in this region,
the energy of this wave is ~k~2. By suitable choice of
constants in the expansion inside the sphere, the two
functions can be made equal at the boundary of the
sphere. The wave function so obtained may be written
in unnormalized form Lsee I, Eq. (2)j as

p=e& exp(ik r)+02 47rp((2l+1) j~(~k~r, )
&&itI', (costi)u, (E,r)/u, (E,r,). (2)

j&(~k~r,) are spherical Bessel functions, 0 is measured
relative to the direction of k as polar axis, and et, 02 are
de6ned as

e~
——1, e2

——0, when r) r„
ej =0, e2= 1, when r &r, .

The function (2) we call an augmented plane wave.
It will, in general, possess a discontinuity in first
derivative at the boundary of the sphere; to obtain
the "best" single function of the type (2) possible, the
parameter E is chosen to make the expectation value of
the energy of (2) a minimum. The result of this process,
which can be carried through analytically, is to set the
expectation value of the energy equal to the parameter
E. The spurious contribution arising from the plane
wave outside the sphere is exactly cancelled by the
contribution to the kinetic energy integral of the
discontinuity in first derivative over the surface of the
sphere. The resulting equation for E Lsee I, Eq. (5)g is

n(E—Ik I') —4~« 2 Pt(2l+ 1)j& (Ik I')
&& Ld lnut(E, «)/dr]r =r, =0. (3)

0 is the volume of the unit cell lying outside the sphere.
The dependence of E upon ~k~2 implicit in (3) has

been discussed previously from theoretical consider-
ations a typical example is shown in Fig. 1. By
solving (3), we have determined an augmented plane
wave for a given k. Such functions are used as initial
functions in a variational procedure. As pointed out by
Slater, "we can use functions with the same propagation
vector k but corresponding to different energies E; we
can also use functions with k ranging through a number
of Brillouin zones, arising from the same reduced wave

' M. M. SaGren, Quarterly Progress Report, Solid-State and
Molecular Theory Group, Massachusetts Institute of Technology,
October 15, 1953 (unpublished), p. 16.

vector, corresponding to energies E which join smoothly
to each other as k is varied. The overlap integrals and
matrix components of energy between the various
augmented plane waves are easily determined. We And
three contributions to the energy matrix elements,
arising from the regions inside and outside the sphere,
and from the discontinuity in Grst derivative over the
surface of the sphere. The calculation of these matrix
elements follows the treatment of reference 14. For
completeness, we give here the resulting formulas for
matrix elements between two augmented plane waves
ll t(Et,kt) and $2(E2,ks). If we denote the Hamiltonian
operator H and the unit operator I by the symbol 0,
we find that

I(4t I &2) = —4«'jt(lkt —k2I')/ikt —ksl,

(kt/k2) (5)

J(11,)II)y2) =kt. k2I($$, I)i/2),

(k, =k,) (6)

(7)

Kt(gt, I,P2) =r,'fd lnu((E2, «)/dr —d 1nut(Et, r)/d«]

XLEt—Esj-', (EtWE2) (8)

lg

ut2(Et, r)rsd«u, —(E2r,t),
(Et=E ) (9)

Klg'1 II 02) PE1d nul(E2 )/d
—Esd lnu((Et, «)/dr]LEt —E2$

—',

(EtWE2) (10)

=EtK~(pt, I ll 2)+r, 'Ld lnut (Et,r)/dry =~„

(Et= E2). (11)

The functions lit, $2 are unnormalized. The normal-
ization constant 22(E,k) is easily seen from (6) and (9)
to be given by

«12=0+42« p&(2l+1) jp(~ k
~
r,)

1S

X uP('E, r)rsd«ku& (E,2«,)$. (12)
0

With the exception of (9) and (11), these matrix
elements have a dependence on the radial wave func-
tions only through their logarithmic derivatives at the
surface of the sphere. Formulas (9) and (11) can be
reduced to a similar form by use of the relationship

rs

uP (E,r)r'dr
0

rsuP (E,r,) Ld lnu~(E, «—)/dr]r =., (13)
8Z

L4t 0ll21= J(4t 042)+4~ Zt(2l+1) j~(lktI«)
&(j &((k2[«,)E&(kt k2/)kt( )k2))Kt, (p&0 i/2), (4)

where
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For computational purposes, however, accuracy is most
easily maintained by using (9) and (11) as they stand.

As shown by Slater, "we find that when ki and ks
are equal and when (3) is satisfied both energy and
overlap matrix elements are zero (except when Ei and
Es are also equal). Hence, in particular, the augmented
plane waves corresponding to electrons in the valence
or conduction bands will be orthogonal to those corre-
sponding to electrons in the ion core states, so that,
if we restrict our discussion to the former, the lowest
eigenvalue will converge to the required eigenvalue in
the valence or conduction band.

If we include augmented plane waves of different
wave vectors in the variational problem, however, both
overlap and energy matrix elements are nonzero; the
resulting secular equation will thus, in general, be one
involving a nondiagonal overlap matrix, i.e., with the
energy parameter occurring in nondiagonal terms as
well as along the diagonal. The method used to solve
such an equation will be outlined in the following
section.

METHOD OF COMPUTATION

It is obvious that the computation involved in this
work is simple, but laborious. It must also be borne in
mind that when a method of solving the periodic
potential problem has been found, a desirable feature
of such a process would be the ease with which it could
be used in a self-consistent type of calculation (that
this may be necessary even in calculations on simple
metals is apparent from the results of the present
work). These features of the calculation suggest the
use of a high-speed computer; throughout this work
therefore, use has been made of the Whirlwind I high-
speed digital computer to enable the entire process to
be carried out automatically and at high speed.

The 6rst step is to solve Eq. (3). For this we require
the radial wave functions Ni(E, r,) for various E and E;
these are obtained by the Noumerov process. " The
spherical 8essel functions j&( ~

k
~

r,) are most accurately
determined" by use of the auxiliary function A~, defined

by

For high /, simple series expansions of Ai+;(x) are
possible, from which functions of lower l may be
generated from the recurrence relation

In practice, this was found to produce negligible loss
in accuracy for all l and x(= ~k~r, ) required here.

Having computed the function on the right-hand
side of (3), we wish to specify a value of ~k~ corre-

'9 For a detailed account of this method, see G. W. Pratt,
Phys. Rev. 88, 1217 (1952).

"Tables of Spherical Bessel Functions (National Bureau of
Standards, Washington, 1948), Vols. I and II.
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FIG. 1. Energy of augmented plane wave, E, as a function of
wave vector,

~
k ~, of plane wave portion (Hartree atoniic potential

for Cu+, (3d)~0 configuration, touching radius of sphere). Asyrn-
ptotes corresponding to zeros of ei(Z,r,) are shown with relevant
values of l Broken li.ne indicates 8= (k~'.

sponding to a particular point in the Brillouin zone,
and to determine the solutions E(k) of (3). Regarded
as a function of E, however, (3) has the undesirable

property of discontinuities at values of E such that
ni(E, r,) is zero. In addition, the computation of (3) at
values of E forming a 6ne enough mesh for accurate
interpolation of zeros is a lengthy calculation owing to
the occurrence of the radial wave functions. A more
tractable approach is to regard (3) as a function of k
for a given value of E, and to determine the zeros of
this function, which varies slowly with k. Graphical
interpolation then yields the desired values of E for
the particular wave vectors required.

One fact of some importance arises as a result of this
method of solution. The values of E and k subsequently
used to calculate the matrix elements do not necessarily
satisfy (3) exactly, since they depend upon the accuracy
with which one can select points from a graph. Hence,
the orthogonality relations mentioned in the preceding
section are not exactly satis6ed. It has been found that
the eigenvalues of the resulting secular equation are
highly sensitive to small changes in the matrix elements,
and considerable errors can arise by assuming that
overlap and energy matrix elements between functions
of the same k are zero. The original formulas (4) to
(11) were therefore used to calculate these matrix
elements also. By this means, the formulation of the
variational problem remains consistent, although the
augmented plane waves with which we start are not
the "best" functions possible.

The method used to solve the secular equation is
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that of Lowdin. " The equations written in matrix
notation as

(H —~E,) X,=O

are reduced to the canonical form

(H' —1E,) C,=O, (17)

where E appears only in the diagonal elements of the
matrix by the transformation

The matrix 4: can be found by first diagonalizing
4, and forming the inverse square root of the diagonal
matrix; the problem hence reduces to one of ordinary
matrix diagonalization. The process of matrix diagonal-
ization, used twice here, can be carried out at high
speed and with great accuracy on the Whirlwind I
computer by a routine developed by Dr. A. Meckler.
This fact makes the present method of determining
A: simpler and more accurate than that used by
Lowdin.

APPLICATION TO METALLIC COPPER

In order to apply this method to any material,
suitable choice must be made of the spherically sym-
metric potential V (r) around each atom. In the cellular
calculation on copper, an atomic potential was used as
an approximation to the crystal potential. In order to
conform as closely as possible to the data used in this
previous investigation, the same potentials have been
used, modifi. ed to be continuous with the zero constant
potential at the boundary of the sphere. In the present
work, the spheres were taken to be touching, giving
the best facilities for approaching as closely as possible
to the actual crystal potential with this form of po-
tential. In all cellular calculations, the electron under
consideration is supposed to move in the 6eld of the
nucleus and all other electrons. In the case of the 4s
band, therefore, a suitable potential is that for Cu+ in
configuration (3d)."Two atomic potentials are available
for this configuration, the Hartree atomic potential, ""
and the Hartree-Fock potential" which includes ex-
change between the ion core electrons. Separate calcu-
lations have therefore been carried out using both of
these potentials, in order to investigate the difference
in energy band structure arising from the two different
assumptions. In the case of the 3d band, a modified
Hartree potential was formed to represent the (3d)'(4s)
configuration by subtracting from the Hartree Cu+
potential the contribution from one 3d electron and
adding that of an atomic 4s electron, both normalized
to unity inside the atomic sphere. It is recognized that
these potentials are probably only crude approximations

"P.O. Lowdin, J. Chem. Phys. 18, 365 (1950).
sm D. R. Hartree, Proc. Roy. Soc. (London) A141, 282 (1933)."D.R. Hartree, Proc. Roy. Soc. (London) A143, 516 (1934)."D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

A157, 490 (1936).

to the actual crystal potential, and the marked depend-
ence of the relative positions of the electronic energy
levels upon the potential found subsequently indicates
that greater care is necessary in the choice of potential
in order to obtain results of real physical significance.

The computation was carried out as already de-
scribed. A typical plot of the energy of an augmented
plane wave as a function of k' is shown in Fig. 1. The
example shown is obtained by using the Hartree Cu+
potential inside the sphere; the lattice constant is taken
to be the observed value, 6.8124 Bohr units. The
asymptotes shown correspond to values of 8 for which
n~(E,r,) is zero; the relevant values of l are shown for
each asymptote. In carrying out the summation over $,

the series in (3) is in practice terminated at a given /,

determined by the properties of the spherical Bessel
functions. However, it may be observed that the aim
in solving (3) is simply to obtain the best possible
one-electron wave functions to use as unperturbed
functions in the subsequent variational calculation. It
has been found that this latter process converges so
rapidly that functions which only satisfy (3) approxi-
mately are still sufficiently good unperturbed wave
functions. Hence, a reduction in numerical labor can
be achieved at this stage of the computation by in-
cluding only terms of low / in the summation in (3).
Results for copper have shown that inclusion of terms
for which l(7 in (3) gives values of E determining
wave functions which are equally good unperturbed
functions for the variational process as are functions
resulting from the inclusion of all terms for which /(13.
In setting up the matrix elements between two aug-
mented plane waves, however, we maintain sufficient
values of / to ensure accuracy in the summations in (4).
Although the augmented plane waves determined by
this means possess, in general, a discontinuity in first
derivative at the boundary of the sphere, the contri-
bution of this discontinuity to the energy vanishes if
E= ~k ~'."It is seen from Fig. 1 that over much of the
range the curves E versus ~k~' lie close to the line
E=

~

k
~

', indicating that the individual augmented
plane waves are themselves quite good approximations
to the true solutions of the wave equation.

To form a wave function corresponding to a point k
in the Brillouin zone as a linear combination of aug-
mented plane waves, we can use functions with wave
vectors k =k+K„K being a vector of the reciprocal
lattice. The expression for the wave function is hence

n, m

P being an augmented plane wave, and a being
constants to be determined by solution of a secular
equation. The index m refers to functions with diGering
E but the same k. It is immediately apparent that in
general a large number of terms can appear in (19).

2~ See analysis In references 14 and 15.
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For a face-centered cubic crystal such as copper, the
lowest nonzero R are of the form Kpp4=(0, 0,4r/8),
the next of the form Kp44 ——(0,4s/a, 4n./a) and so on,
together with similar vectors formed by interchange of
the three components and alteration of signs. Thus,
inclusion of only terms in which K,= (0,0,0) and
K„= (0,0,47r/a) results in 7m unknown constants in
(19) and hence a secular equation of order 7m, where
m is the number of "branches" of Fig. 1 being used.
Inclusion of the next set of K gives a secular equation
of order 19m. Thus, unless the series (19) converges
very rapidly in both e and m, the resulting secular
equation will be of very high order.

At points in the Brillouin zone possessing high
symmetry, however, the permissible wave functions
possess known symmetry properties. " In such case,
some of the coefficients a„are interdependent, and,
compared with the general case described above, an
equivalent number of terms can be included in (19)
with fewer undetermined coeKcients. For example, at
the center of the zone, k= (0,0,0), for the state pos-
sessing s-like symmetry (referred to in reference 26 as
the state I'i), we find that

~004 = +040 = ~400 = ~00—4 = ~0—4o = ~—4oo,

and similarly, all coeScients of the type a044 are equal.
Hence, to consider the I'& state, a secular equation of
order 2nz replaces one of order 7m in the general case,
and one of order 3m replaces one of order 19m, and so
on. Thus, as in all such calculations, this method will
be most powerful at points possessing high symmetry
in k-space, for this allows the inclusion of more terms
in (19) without involving secular equations of an
equivalently high order. Much of the present calcu-
lation has therefore been limited to points of high
symmetry in k-space.

To discuss the convergence of the sum (19), it is
convenient to consider an example; that selected is the
state X„"having reduced wave vector (0,0,2x/a), and
having the symmetry of the free electron function
cos(2~s/a). After applying the symmetry conditions,
the following independent coefficients remain in (19):

002 ) ~042 ) ~006 ) &442 ) ~406 )
' '

~

Table I shows the lowest eigenvalue resulting from
solutions of a secular equation involving varying num-
bers of these coeScients. The erst entry in the first
column shows the energy of the single symmetry
combination of augmented plane waves, coeS.cient cop2'.

The second entry in this column shows the result of
including app2', 8042', the second entry of the second
column results from the inclusion of @002 ~042 ~002',

"Souckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
(1936). See also reference 4 for a general description of these
symmetries.

'7 The notation used to denote the states of various symmetries
is an adaptation of that used by Bouckaert et ul. (reference 26),
and is fully described in references 2 and 4.

TABLE I. Example of convergence of lowest eigenvalue of
secular equation, using different numbers of augmented plane
waves. State X, using Hartree potential.

Number
of wave Number of P- per k
vectors 1 2 3 4 5 6

1 0.3760 0.3752 0.3747 0.3747 0.3746 0.3746
2 0.3754 0.3746 0.3746 0.3746 0.3746 0.3746
3 0.3748 0.3746 0.3746 0.3746 0.3746 0.3746

a0422, and so on. More terms have been included in this
example than in any other state considered in order to
demonstrate the convergence. The excellent conver-
gence shown in Table I is typical of results for all the
states considered here; in no case was any improvement
obtained. by inclusion of more than two values of E for
each k (m= 1, 2 in the notation given above), and in no
case was it necessary to consider values of K„greater
than Kp44. This latter observation is not surprising in
the case of copper, and may not be true for other
substances. Previous calculations4 have shown that the
energy of a conduction electron in copper approximates
closely to that of a free electron, and hence the wave
function, except in the immediate vicinity of the
nucleus, can be well approximated by a single plane
wave. In the case of the electrons in the 3d band, the
wave functions are principally concentrated inside the
atomic sphere, and are small in the region of constant
potential between the spheres. The accurate represen-
tation of this part of the wave function is therefore of
little importance in determining the energy.

The rapid convergence obtained for states of high
symmetry in the Brillouin zone, of which Table I is a
typical example, suggest that the method could be
applied at points of no symmetry in k-space. A calcu-
lation has been made at one such point, the point
2= (~/2ap. /a, 3'/2a). Results of four figure accuracy
can be obtained from the solution of a secular equation
of order 14. This is the highest order equation it has
been found necessary to solve in the present work.

The method is hence more powerful than the cellular
method, which has so far only been applied with
accuracy at points of high symmetry in k-space. The
orthogonalized plane wave method has also been used
to investigate general points in k-space28; approximately
the same numerical labor is required in the two methods,
and the present method would appear to show a more
rapid convergence.

Higher eigenvalues of the secular equations possess
slower convergence and, in most cases, it is necessary
to include further K to obtain accurate results for
such states. No attempt has been made to complete
the calculation of these eigenvalues except in a few
cases; for this reason, the results given here do not
exhaust the data of interest. The aim of the present
calculation has been to demonstrate the power of the

pp F. Herman {private communication).
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be a very laborious operation. The calculation of an
eigenvalue at a general point in k-space involved here
the solution of a secular equation of order 14, and the
evaluation of over 70 radial wave functions. However,
there have recently been suggested methods of interpo-
lating, from accurate results at a few points in mo-
mentum space, the energy at any point in k-space, and
hence obtaining the density of electronic states.""
Such methods become more powerful if there exist
accurate results at more points in momentum space.
Thus, the ability to investigate any point in momentum
space with accuracy, even at the cost of extensive
numerical labor, affords very valuable assistance in

applying any such interpolation scheme.

FIG. 2. Brillouin zone for a face-centered cubic crystal,
showing points of high symmetry.

augmented plane wave method rather than to calculate
every eigenvalue of interest for copper. The ultimate
aim in such a calculation is the determination of the
entire density of electronic energy states; this would be
possible by the augmented plane wave method, but,
even making full use of a high-speed computer, would

2&p

2.5—

2.0

TAaLE II. Kigenvalues of conduction band of copper using
(a) Hartree and (b) Hartree-Fock atomic potentials. Energies
in Rydberg units.

State
HJ BSW

notation notation (a) (b)

F,
F 1

F 2

F„
Z,
+S
E'„'
AS
LS

1

X,
Xy'
A

F1
F12
F25'
F15
Z1
X]
E3
A1

L2'

X1
X4'

—0,558
0.671
0.7982
1.697—0.451—0.147—0.136—0.391—0,0519
0.0887—0.471
0.080
0.2409
0.124

—0.354
0.803
0.907
2,308—0,240
0.086
0.0951—0.1702
0.2219
0.3263—0.174
0.375
0.502
0.361

DISCUSSION OF RESULTS

The numerical results obtained for copper are shown
in Tables II and III. For convenience of reference, the

i,5-

d-
0'
LLI cl

&8 ~----
4l 2ly

1.0

~(}Xg
/

/
/

/
/

///

B

p(
r X

0.5—

Fro. 3. Energy as a function of wave vector in L002$ direction:
Conduction band using Hartree potential. Energy in. Rydberg
units relative to the ground state F,. Figure preceding description
of state indicates degree of degeneracy.

states are given both in the notation of the previous
cellular calculation4 (HJ notation) and in that of
Bouckaert et al.ss (BSW notation). The points of high

symmetry in the Brillouin zone are shown in Fig. 2.
The results are quoted to the accuracy that has been
obtained by investigating the successive convergence
of the secular equations. The points along the axes of
high symmetry referred to as 6, A, Z represent the
center points along these axes Li.e., A is the point
(0,0,s-/a)). The dependence of Z upon k along the
principal directions in k-space is shown in Figs. 3—11.
The calculated points are shown, together with sche-
matic diagrams of the E—k curves through these
points. The manner in which the various states are
connected along the axes can be derived from the
compatability conditions of Bouckaert et al."

The eigenvalues of the conduction band show that
the states at the top of this band are predominantly

2' J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954)."L.Allen (private communication); Phys. Rev. 98, 993 (1955).
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TA&LE III.Eigenvalues of d band of copper. Energies in Rydbergs.

State
HJ BSW

notation notation
Eigen-
value

State
HJ BSW

notation notation
Eigen-
value

~dl
p 2

Z,
Eg
-K.
Xcf

x",'
Ey'
A,
A„

Ls
Ld
L 2

F2;

E1
+1
K2
K3
X4
A1
A3
A3
L1
L3
L3'

—0.155—0.0541—0.2853—0.3448—0.14—0.1621—0.1528—0.0688—0.1355—0.152—0.061—0.2756—0.1456—0.0652

g„l
+~2

X,
XQ
Xg'
X~'
X„~
Xf'
Xf'

1

Xl
X2
X3
X5
Xg'
Xg'
X'

—0.235—0.13—0.067—0.0643—0.335—0.1062—0.0742—0.066
+0.64
+1.527
+1.60

!
—0.2693—0.194—0.127

mass slightly less than unity in the [002j and [111j
directions, and considerably less than unity in the
[011]direction. The presence of an s-like state at the
top of the conduction band in the [111]direction does
not agree with the prediction of Mott, "based on x-ray
absorption measurements by Cauchois" that this state
would be predominantly p-like in character.

The eigenvalues of the 3d band show a spread of
.3.935 ev from the I'~' state at the center of the zone
to the state E, at k= (0,3s./4, 3s./4). This value is in
general agreement with the predictions of x-ray ab-
;sorption measurements by Cauchois, "who predicts a
value of less than 5 ev, and by Gyorgy and Harvey, '3

who predict a width of 3.5 ev. It also agrees with the
result of 3.8 ev quoted by Chodorow" obtained from
.an application of an earlier form of this method, "using

"N. F. Mott, Phil. Mag. 44) 187 (1953)."Y.Cauchois, Phil. Nag. 44, 173 (1953)."E. M. Gyorgy and G. G. Harvey, Phys. Rev. 93, 365 (1954).
34 M. Chodorow, Phys. Rev. 55, 675 (1939)."J.C. Slater, Phys. Rev. 51, 846 (1937).

s-like in character along each of the principal directions.
The energy gap across the faces of the 6rst Brillouin
zone varies from 2.18 ev along the [002j direction to
0.15 ev along the [011$ direction when the Hartree
potential is used, and from 1.72 ev in the [002$ direction
to 0.12 ev in the [011$ direction in the case of the
Hartree-Fock potential. There is a considerably closer
correspondence between the results for the two po-
tentials than was observed in the cellular calculation.
The use of the Hartree-Pock potential results in a
larger width for the conduction band, and a smaller
energy gap across the faces of the zone along each of
the principal directions, but the relative positions of
the states possessing s- and p-like symmetries at the
edges of the zone is unaltered. The eigenvalues lie close
to the "free-electron" values along the [002$ and [111]
directions, but are lower than these values along the
[011$direction. Calculations at the center points along
these axes conhrm the approximate parabolic depend-
ence of E upon k, with the consequence of an effective
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Fro. 4. Energy as function of wave vector in [111$ direction:
Conduction band using Hartree potential.

l5—
ZS

rr Z
/

2
hard

(v-

r~S
2r' (&=-

y Zp
I,Q

0.5
I~Kp

0'
S

/

ZS

!0&—
i' K

K

C9

LIJ
Z
Lsj

FIG. 5. Energy as function of wave vector in [110]direction:
Conduction band using Hartree potential.

the same form of potential. The width of the band in
the [002j direction in fact agrees exactly with that of
Chodorow.
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cellular calculation has therefore been repeated using
the exact potential employed in the present work. In
particular, the two states at the center of the zone in
the d band were considered, both of which are easily
amenable to an accurate cellular calculation. The results
agreed with those of the augmented plane wave method
to within the accuracy one can claim from the cellular
method. It is therefore concluded that the difference in
the results is predominantly due to different potentials
used in the two calculations.

The same may be assumed to be true in the case of
the conduction band. The augmented plane wave
method may be the more reliable for these states.
Doubt has recently been cast on the accuracy of cellular
calculations involving the matching of boundary con-
ditions at points on the cell boundaries, "and this may
affect the reliability of the results for the conduction
band of copper carried out by that method. The
agreement with experiment is equally good for both
sets of results.

It must be pointed out that the use of two diferent
potentials in considering the 3d and 4s bands makes it
impossible to predict the relative positions of the bands
by direct use of the augmented plane wave method.
This method is only used to solve the periodic potential
problem for a single assumed potential. The two calcu-
lations are therefore to be regarded as distinct)energy

It will be seen from the 6gures quoted that not all
the states in the d band have been evaluated at each
point in k-space considered; further states would involve
the solution of higher order secular equations, which is
not considered necessary in the present work. The
distribution of states in the d band is consistent with
the assumption of a high density of states at the top of
the band, agreeing with a previous calculation for
nickel by the "tight binding" method. ""'

These results are to be compared with those of the
cellular calculation on copper4 since both claim to be
accurate solutions to the periodic potential problem.
Serious differences are immediately apparent, especially
in the eigenvalues in the d band. The total band width
does not differ greatly, the cellular calculation giving a
width of 3.46 ev, but the distribution of states in the
band diGers widely in the two calculations. Similar
differences occur in the case of excited levels of the d
band. '~ It has, however, been observed previously that
the eigenvalues appear to depend markedly on the
crystal potential used in the calculations, and, unlike
the cellular calculation, the present work has assumed
a constant potential outside the atomic spheres. A

"G. F. Koster, Quarterly Progress Report, Solid-State and
Molecular Theory Group, Massachusetts Institute of Technology,
October 15, 1954 (unpublished), p. 4.

'~ I am indebted to Mr. J.Hubbard for permission to see results
on the excited states of the d band carried out by the cellular
method.
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Conduction band using Hartree-Pock potential.

"F, Ham, Ph. D. thesis, Harvard University, 1954 I(unpub-
lished). I am indebted to Dr. Ham for several discussions on this
matter.
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band calculations. In the cellular calculation, an at-
tempt was made to determine the relative positions of
the two bands by an approximate solution of the
Hartree equations for the crystal. Such a calculation is
necessarily very approximate in the absence of a full
self-consistent treatment of the two bands, and no
such attempt has been made in the present work.

The sensitivity of the eigenvalues upon the exact
crystal potential has been noted previously in the case
of copper and of germanium. Copper and the transition
metals preceding it in the periodic table may be expected
to show more sensitivity than other materials, for it is
known that the radial wave functions for l=2 are
exceptionally sensitive to the potential; in the crystal,
this effect will be particularly noticeable in the 3d band.
It becomes more apparent that a self-consistent type
of calculation is necessary even in the case of simple
metals. In this connection, the augmented plane wave
method has a marked advantage over other existing
methods of solving the periodic potential problem. It
has already been observed from Fig. 1 that a single
augmented plane wave may well be a good approxima-
tion to the true wave function. This is borne out in
Table I and in every other state considered. Energies
in error by not more than 0.003 Rydberg unit can be
obtained before entering upon the variational problem,
that is, by considering an augmented plane wave to be
a suSciently good wave function; Although the wave
functions themselves may be expected to show greater
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error, it still appears that an augmented plane wave
forms a fair approximation to the true solution. This
is a signi6cant observation when the problem of self-
consistency is approached. The contribution to the
potential of these one-electron functions could be esti-
mated; this new potential could then be used to repeat
the calculation and to obtain self-consistency. Alter-
natively, the new potential could be regarded as a
perturbation to the original potential, to be included in
the variational calculation. Hence, a practical conse-
quence of the extremely rapid convergence of the
augmented plane wave method is the feasibility of a
self-consistent energy band calculation.

CONCLUSION

The work. on copper has shown that the augmented
plane wave method is among the most powerful of the
existing methods for the solution of the one-electron
periodic potential problem. Results of greater accuracy
than those obtainable by the cellular method as cur-
rently used can be obtained with no greater numerical
difhculty. In addition, the application is not so severely
limited to points of high symmetry in momentum space.
The method thus compares favorably with the method
of orthogonalized plane waves, which has also beez
applied to points of no symmetry in momentum space.
Although the method used here deals with a restricted
form of potential, it has been pointed out by SIater
that more general forms of potential couM be considered
with some ease; it remains to be seen whether the rapid
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rate of convergence observed in the present work would
also result from the inclusion of different forms of
potential. Although the calculation of an entire density
of states by the augmented plane wave method would
be a calculation of prohibitive length, the ability to
obtain accurate eigenvalues at any point in k-space
affords a valuable means of checking any interpolation
procedure used to obtain a density of states curve.

In view of the differences between the results of the
present calculation on copper and those of the cellular
calculation, which difference appears entirely due to the
different potentials employed, it cannot be claimed
that the results of such solutions to the periodic po-
tential problem necessarily bear any great physical
significance. As more accurate solutions are carried out,
it becomes increasingly apparent that the exact form
of the potential inside the atomic cell is an important
factor in determining the energy levels. The need for a
self-consistent calculation is obvious, and the present
method would appear to make such a calculation
feasible. Such a calculation has not been carried out
for copper, and the present work is therefore to be
regarded as an investigation into the value of the

augmented plane wave method, rather than an investi-
gation of the physical properties of metallic copper.
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