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Low-Field Magnetic Resonance

M. A. GARSTENS AND J. I. KAPLAN
Un~ted States Nasa/ Research Laboratory, Washingtorl„D. C.

(Received March 24, 1955)

Low-6eld magnetic resonance has been investigated for linearly and circularly polarized radio-frequency
radiation for both the saturated and unsaturated case using modified Bloch equations for both. For the
circularly polarized case, a quantum-mechanical solution is presented. Experimental verification for the
linearly polarized case has been obtained.

M =At cosart+Br sinut,

M„=A s costpt+ Bs sin&et.
(2)

From the above assumptions, substituting (2) in (1c)
and averaging over one cycle, we get

0= ——',yHtA s
—(M,—Hpyp)/r.

Therefore,
~z= HpXp ——,'yHivA2.

INTRODUCTION

" 'N previous papers' ' we have investigated low-field
~ - magnetic resonance for linearly polarized radio-
frequency radiation using power suKciently weak not
to cause saturation. We now consider what happens
when the rf source is intense. To do this, we use modiGed
Block equations, ' allowing the relaxation to occur along
and at right angles to the instantaneous external mag-
netic field. This method is applied to both the linearly
and circularly polarized cases. In the latter case a
quantum mechanical solution is also presented.

LINEARLY POLARIZED CASE

If the Bloch equations4 are modified' so that longi-
tudinal relaxation takes place along the Geld which is
the resultant of the steady state Geld Hp and the
instantaneous radio-frequency Geld, and the lateral
relaxation at right angles to it, we obtain the following
equations of motion:

M ='yM Hp (M gpHt cosMt)/'7 (1a)

3II„=yM,Hr cos(vt yM~p —M„/r, —(1b)

M = pM&Ht cos(A (M Hpxp)/r, (1c)

where p is the gyromagnetic ratio, 3f„M„,M, the x, y,
and s components of the magnetization, H» cos~t the
oscillating magnetic Geld in the x direction, 7 the re-
laxation time, and + the rf frequency. At low fields and
for strong interactions, a single parameter 7. char-
acterizes both longitudinal and lateral relaxation times.
We seek the steady-state solutions of Kqs. (1) under
the assumption that llf, is time-independent, where
Jl/I, is the average value of 3E, over one cycle of the rf
field. I et

Substituting (2) and (3) back into (1), we obtain

—tpAt+Bt/T pppBs=0~

A r/ r tppA s+—ppB t =gpH t/7,

ppA s+c—opBt+ Bs/r =0,

&pAt+ (s'r Hr r +1/r)As+&oBs=yHtHpxp,

(4)

where Mp=+Hp.
The absorption y" corresponds to the out-of-phase

component Bt of 3II, in (2). From Eq. (4), therefore,
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Figure 1 is a plot of y" against ~ps- for varying values
of the saturation term —,'y'Hi'v'. For small values of
this parameter compared to 1+ppsr'+cop'rs (no satura-
tion), y" reduces to the well-known formula previously
derived'
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This appears in Fig. 1 as the upper curve marked
unsaturated. As the rf power increases, we obtain the
successive lower curves indicated, until at a point of
total saturation (very large Hr) x" approaches the
limiting curve,

y"=xpppr/(1+ ppsr'+(up'r'), (5b)

indicated as 100 percent saturated in the figure. It is
of interest to note that all of the curves terminate at

' M. A. Garstens, Phys. Rev. 93, 1228 (1954).
~ Garstens, Singer, and Ryan, Phys. Rev. 96, 53 (1954).' Codrington, Olds, and Torrey, Phys. Rev. 95, 607 (1954).'F. Bloch, Phys. Rev. 20, 460 (1946).
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FIG. 1. Absorption in a coil oriented along the x axis
for varying rf intensities.
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the same Debye value,

=xpMT/(1+M T )&

when cop ——0 and have the same zero slope at this point.
The maximum absorption points shift successively

to the left with increasing saturation, approaching zero
in the limit with 100 percent saturation.

The corresponding dispersion formula is given by
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- (ja)

X =Xp~
(1+Mors+M psrs)

4M0 Go 7

(1+Mors+M p'r')
(1+M'T'+ M p'r').

(jb)

For low rf levels (-'y'Ht'r'(&1+ M'r'+ Most'), this re-
duces to
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At zero field, these reduce to the Debye dispersion
formula:

X'= Xo/(1+M'r')

Figure 2 is a plot of Eq. (7) for varying degrees of sat-
uration and for several values of ar r. For large saturation
values, Eq. (7) reduces to

1+Ms t
x'=xo/

& 1+Mors+Moor')

For each of co7-=0, 1, and 20, the figure first shows the
unsaturated curve Eq. (7b), a partially saturated curve
indicated by the 6rst arrow, and fully saturated curve
Eq. (8) indicated by the second arrow.

We have been able to verify Eq. (7) for the un-
saturated case by Gtting curves of the type indicated
in Fig. 2 to experimental data obtained at this I.abora-

FIG. 2. Dispersion in a coil oriented along the x axis
for varying rf intensities and values of car.

tory by Waddel. ' These were dispersion measurements
taken at 16.9 Mc/sec at low rf levels on diphenyl-
picryl hydrazyl and tris-p-nitro phenyl methyl. The
theoretical unsaturated curves for both cases fitted
experimental dispersion curves over their entire range
within experimental error. For the hydrazyl an co7- of
5.9 was found to fit the data while for the methyl
radical co7 was equal to 19.2, yielding a r of 0.06)&10 '
for the former and 0.18)&10 ' for the latter.

In an attempt to obtain direct conhrmation of low-
field saturation e8ects at high rf levels an experiment
was carried out using a Sloch type of apparatus with
enough power to partially saturate diphenyl hydrazyl.

To obtain the X" and X' values in this case, the 3f„
components of magnetization must be computed. Thus

Ag 2Mp07 7 XpX"=—=
Ht L1+T (Mp

—M) 7L1+ (MTo+M) 7+ r H T (1+M T +M—o T )
(9)

8' 2MpMT xp( M MTp T 1—'r Ht T )X—
Ht L1+r (Mp —M) ]L1+T (M +M) $+ry H r (1+Mst +Mo T )

(10)

These are shown plotted for increasing saturation in Figs. 3 and 4. Figure 5 shows some observed curves
for X' and X

' at increasing saturation values using a detection coil at right angles to the rf coil.

R. C. Waddel (private communication). Further publication on this is to appear.
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M, can be obtained from Eq. (3). Thus

p co H] G007~,=XO IIO-
E1+(pop —+)Pro 1! 1+(cop+ pp)srs J+~ysHrsrs(1+ posrs+~psrs)

Of interest is the fact that M, can have negative values where
for certain values of magnetic 6eld, frequency and re-
laxation time. f (—1/ro, )frr ih tanL(t —tp)d/2+b]}~

CIRCULARLY POI ARIZED CASE

The circularly polarized case has been solved by two
methods, one in a manner similar to the previous case,
the other, quantum mechanically.

u=a& —pop, cur ——yHr, LP=n'+poP, and b is an integration
constant. By using this solution of the wave function,
the expectation value of the three Pauli spin vectors is
found to be

(a) Classical Solution

H the equations of motion are modi6ed to describe
a circularly polarized rf, we obtain

M,=p/M„Hp+M, Hr sin&pt J—(M,—xpHr cosset)/r,

M&=A/M Hr cos(ut MHp—f (Mp+ypH—r sinpot)/r,

M = yf M+Pr sl—no)$ MpHr —cospotg (M xpHp)/r—.

'Lco 5 8 g'bG0 g

(0„)=i (13)

also

~1 XOG0 T
(I

)
Hr 1+ (rop ~)sr2+ysHrsr2

1+co(Mo—M) r +'r Hr rAg
X Xo

Hr 1+ (Mp M) r +'y Hl r

The average value of M, for the steady-state solu-
tion now becomes M, =Hpxp 2yrHr—(&-r+A p), and

(a.) ~ = ~o ——Hr cos(otp/(Hr'+H p') &,

(o„)~=~p—— II, sin(utp/(—HP+Hp')&,

(0,)~ = ~p
——IIp/(HP+ Ho') &=s.

(14a)

(14b)

(14c)

The value for the integration constant 5 is chosen so
that just after a collision at time to the components of
the spin vector will be equal to the direction of the
magnetic field at the time t~. Thus we 6nd that

M, =xo! Ho—
QII1 M7

1+(~ ~)2r2+~2Hrsr2$

As in the linearly polarized case, we note that M,
can take on negative values at low Gelds.

(b) Quantum-Mechanicai Solution

In this method the spin resonance equations for the
circularly polarized case are solved under the following
assumptions:

(a) The system can be described by one relaxation
time r.

(b) That immediately after a collision the spin will

achieve equilibrium with the resultant magnetic field
at the time of the collision.

(c) That the rf Geld is monochromatic and of a
constant value over the sample (i.e., no skin effects).

The solution of the time dependent Schrodinger
equation for a spin —,'particle acted on by a magnetic
Geld H whose components are Hr cospot, H& sin~t, —
and Ho, has been solved by Archibald' in a simple
form. He 6nds that the ratio of the components of the
spin wave function (;+) is given as

g g —fgrME

' J. Archibaid, Am. J. Phys. 20, 568 (1952).

GROT

FIG. 3. Absorption in a coil oriented along the y axis
for varying rf intensities.

FIG. 4. Dispersion in a coil oriented along the y axis
for varying rf intensities.
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$9+

The requirement that f must be real is satisfied by
setting tanA = ~; then the real part becomes

f= (1/~r)t —n —d, cothBj. (17)

From Eqs. (15) and (17), the value of B is found to be

cothB = —(1/6) [(u,8+ni. (18)

All that remains to be done is to average (o) over all
collision times to by the prescription

t
&
—(t—so)/r

((rr(t))) = (e(t—4))dt„ (19)

which is just the sum of contributions from all collision
times $0 weighted by an exponential law of decay. The
final result for the x component is that

jjj11
3f

gr9. ' '

((~*))=—2Goy

cosset o. j +sinh'B !1+a&.2 )

where

rh
+6 (sinhB coshB) —sinart!— (2O)

( 2 1+r29!12j
rp=LV(2 sinh'B+1)+2oh(sinhB coshB). (21)
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Substituting for coshB and sinhB from Fq. (1g) and
recalling that the diGerence between the number of
spin up and spin down states was assumed to be pro-
portional to

XO(+1 ++0 ) 9

according to assumption (b), we have for the x com-
ponent of magnetization

err' 1l
M, = —XpHrro cosset

(1+r'a' ~)

(b)

FIG. 5(a,b). Observed absorption and dispersion curves. These
are to be compared with Figs. 3 and 4. With increasing rf intensity
the absorption curves become Qatter and the peak shifts towards
zero field. The Geld Ho is zero at the center of the curves increasing
to the right and diminishing to the left The third. curve of 5(a)
shows a saturated and unsaturated curve superposed.

It is seen from Eqs. (14)(a) and (b) that f must be real
and from Eq. (14c) that

f= j:(1+«)/(1—«)3'= &. (15)
We next write the integration constant b as a complex
number A+iB and then expand f as given in Eq. (12)
into real and imaginary parts. The result is that

1 a tanhB(1+tan'A)

cur 1+tan'A tanh'B

6 tanA (1—tanh'B)
(16)

1+tan'A tanh'B

7-

—sinart
j (22)

Identifying the in-phase component as the dispersion
and the out-of-phase component as the absorption, we
have that

and

x'= —xo!
E 1+r2+2 )
t' cur

!X"=Xsl
&1+A'r')

(23)

(24)

which are identical with the expressions obtained in
the previous section. Equation (24) is identical with
Bloch's' equation for absorption except that his +0 in
the numerator is replaced by ~.This, of course, is a small
eGect except where co varies appreciably in going through
resonance. The dispersion on the other hand has an

r F Bloch, Phys. Re.v. 70, 460 (1946).



LOW —F IELD MAGNETI C RESONANCE 463

added constant value go over the value derived by
Bloch. Thus in the case of complete saturation the
dispersion will have a constant 6nite value other than
zero.

Further experimental work is planned to verify Eq.
(5b) under conditions of complete saturation.

We are indebted to Dr. R. K. Wangness of the Naval
Ordnance Laboratory for allowing us to see his manu-
script on magnetic resonance for arbitrary field strength
prior to publication. In this paper, the circularly po-
larized case has been worked out by a quantum-me-
chanical method di6erent from that used here.
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Multiple Resonances in Cobalt Ferrite*

P. E. TANNKNWALD

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts

(Received April 1, 1955)

Double microwave resonances have been observed in cobalt ferrite when a magnetic Geld was applied in
crystal directions near the hard axis. One resonance occurs before the magnetization vector is lined
up with the external magnetic Geld and another occurs in the aligned state. The experimental results
exhibit characteristic features expected before complete line-up and yield, at 90'C, E&/M= 2200&200 and

g =2.7~0.3.

' 'N the past, microwave resonance experiments on
- - ferromagnetic single crystals have been carried out
on the assumption that the material was magnetized
to saturation and the magnetization vector was fully
aligned with the applied magnetic field. This is probably
justified when the anisotropy field is of the order of
10 percent of the effective field necessary for resonance.
Some materials, like cobalt ferrite, exhibit an anisotropy
so large that at ordinary microwave frequencies the
internal field puts the crystal already above resonance,
according to the relation co=yH, gf. However, as will be
described now, the resonance frequency can be lowered

by applying an external magnetic 6eld in the hard
direction of the crystal, ' and furthermore, one resonance
can be expected in the nonaligned state of the magnet-
ization vector 3f and another in the aligned state.

Zeiger has given a general solution of the equation
of motion' which includes the e6ects of anisotropy in
terms of energy rather than effective demagnetizing
factors. This has the advantage that it yields resonance
conditions even when M is not lined up with the
applied 6eld. The results are shown for a cubic crystal
on the assumption of single-domain structure, in Figs.
1 and 2, and clearly indicate the possibility of two
resonances as a function of applied field Ho in certain
crystal directions.

Figure 3 shows the results of absorption measure-
ments on a cobalt ferrite single crystal at 90'C as a

function of magnetic field applied in various crystal
directions N in the (110)plane. The operating frequency
(23 800 Mc/sec) is evidently above the "critical
frequency" &o,= 2yE&/3II, because resonance was
achieved in the easy axis (4=0') by application of an
external field. A plot of the position of the high Geld

peaks as a function of crystal orientation is shown in
Fig. 4. This anisotropy curve, although similar, divers
from that obtained in the usual effective demagnetizing
theory. ' As can be seen from Fig. 1, near the easy axis
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*The research reported in this document was supported jointly
by the Army, the Navy, and the Air Force under contract with
the Massachusetts Institute of Technology.

This idea is similar to that used by H. Suhl, Phys. Rev. 97,
555 (1955) in achieving very-low-resonance frequencies in
materials with low anisotropy.

~H. J. Zeiger, Lincoln Laboratory (unpublished notes}. A
similar solution was Grst given by J. Smit, Conference on Ferri-
magnetism, October 11, 1954 (unpublished). See, also, reference 1.
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FIG. 1. Resonance condition in (110) plane. The microwave
frequency ru is expressed in units of yK&/M and external magnetic
Geld fID is expressed in units of Z&/3f.

s C. Kittel, Phys. Rev. 75, 155 (1948).




