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trations larger than 2&&10ts/cc and smaller than about
10'r/cc.
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The method, developed by Kuhn and Van Vleck, and later
simplided and extended by Brooks, for calculating the cohesive
energy of monovalent metals, is here further extended to include
the effects of the deviation of the efI'ective ion-core potential from
pure hydrogenic form in the vicinity of the surface of the s-sphere.
A formula is derived for calculating the logarithmic derivative of
the wave function at the surface of the s-sphere. From the loga-
rithmic derivatives of the s- and p-functions the ground-state
energy and the Fermi energy can be evaluated. The method thus
extended is applied to the calculation of the cohesive energy of the
monovalent noble metals. For these metals, the repulsion between
ion cores is important. Combining the repulsive energy, which is

calculated by Fuchs with a modified Thomas-Fermi method, with
the energy of valence electrons calculated by the present method,
we obtain the total cohesive energy of copper. Since there is no
calculation of the repulsive energy for silver and gold, the ion cores
are assumed to be r'igid and the energies of the valence electrons at
the observed lattice spacings are determined and considered as the
approximate total energies. The cohesive energies calculated at the
observed lattice spacings with the rigid ion-core assumption are
61.7 for Cu, 55.8 for Ag, and 49.2 for Au in comparison with the
experimental values of 81.2, 68.0, and 92.0 respectively. Here the
energy unit is kcal/mole.

1. INTRODUCTION

AN VLECK and Kuhn' have given simplified
methods of calculating the cohesive energies of

monovalent metals. Recently, Brooks' has pointed out
a number of simplifications of their methods and ob-
tained reasonable theoretical predictions of the cohesive
energy and lattice constants of all the alkali metals. The
Van Vleck-Kuhn method is based on the following facts:
(1) The effective potential in the vicinity of the surface
of the s-sphere in the signer-Seitz sphere approxima-
tion' is essentially hydrogenic, therefore, (2) the wave
function in the same region can be excellently approxi-
mated by a linear combination of the conAuent hyper-
geometric functions, vis. ,

U' & ~ ~& (y) = ITr( t ~) (r)+ P gr|. t ~) (y) (1)

where the functions W'") and t/V&' "' are related to the
standard Whittaker functions by Eqs. (11a, b) in
Van Vleck and Kuhn, and (3) k& can be determined by
the function matching method. Brooks, however, has
shown that

k( ———tan(8 pr),

where 8~ is the quantum defect.
In the present paper, the cohesive energy of the noble

*Now at the College of Electro-Communications, Tokyo,
Japan.' J. H. Van Vleck and T. S. Kuhn, Phys. Rev. 79, 382 (1952).

2 H. Brooks, Phys. Rev. 91, 1027 (1953).' E. P. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).

metals will be computed by the Brooks method, in-
corporating the correction due to the deviation of the
effective potential from the pure hydrogenic form. In
the case of copper, Fuchs4 has calculated the cohesive
energy by numerical integration of the radial wave
equation in a Hartree-Fock potential. His results for
copper as well as the observed values for all noble metals
will be compared with our results in the last section.

2. EXTENSION OF THE BROOKS METHOD

(3)

4 K. Fuchs, Proc. Roy. (London) A151, 585 (1935).
~ F. Ham (private communication).

We shall 6rst explain a further extension of the Brooks
method of determining k~, and then derive the expres-
sion for the logarithmic derivative of the wave function
with the correction due to the deviation of the effective
potential from the pure hydrogenic form.

In calculating s- as well as p-functions by (1) and (2),
Brooks has determined the dependence of b~ on the
energy e by straight forward extrapolation from the free
atom term values for both s- and p-levels. For s-levels,
1=0, the straightforward extrapolation of 60 is legiti-
mate and nearly linear in most cases. For l) 1, however,
Ham' has pointed out that the straight-forward ex-
trapolation of b~ is often not adequate. Instead of 5~ the
quantity q&, which is related to 5& by

tan(Std)
tan(rite) =

1
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should be extrapolated in case of 3= 1. If the x-ray term
values or the energy parameters in the self-consistent
field equation of Hartree-Fock type are known, these
energy values will give further information on the de-
pendence of g~ on e.' For alkali metals, the wave function
calculated by (1) with (2) yields excellent results for the
usual solid-state parameters, if we carry out the 5O and
i)i extrapolation for s- and p-functions, respectively.

For monovalent noble metals, however, the effective
potential in the vicinity of the surface of the s-sphere is
not completely hydrogenic, because the actual lattice
spacings of these metals are relatively small. Therefore,
the wave function also is not purely hydrogenic, and we
have to make corrections due to the deviation of the
eGective potential from the pure hydrogenic form in
this region. These corrections can be obtained in the
following way. v

In calculating the ground-state energy &0 and the
Fermi energy eg, we need only the knowledge of the
logarithmic derivatives of the s- and p-functions, if we

take only the first two terms of the expansion of the
energy in powers of k. Hence, we shall derive the
corrected expression of the logarithmic derivative of the
wave function.

The uncorrected wave function U)„(' ")(r) satisfies the
radial wave equation with the pure hydrogenic po-
tential:

parts, (6) can be reduced to

d U (L, n) d U(L, n) 8
U(L, n) U„(L,n)

~~ 2
—+V(r) U), (& ")U(™)dy (7)

Since at r=R,
U(), n) (dU ((,n)/dy) U (™)(dU(l, n)/dp') —0

we have

r dU(' n)- r dUh(L n)

U«-)

g (2 q U ((, tL) (p) U(l, ~) (r)
drI -+V(~)

I
(8)'J (~ j U (& &)(r ) U(~ ~)(y)

Here, U)„('")(r) can be calculated by (1), and (8) is the
equation to be solved with respect to U('") (r). If we put,

V())= —2Z(r)/r Whe. re Z(r) is the effective nuclear
charge, Z(r) is not much different from unity in the
vicinity of r, . The quantity

(PU (' ~) 1 2 l(l+1)
U ((,e) —0

where 1/m'= —e. The true wave function U(' ")(r)
should satisfy the wave equation with the true e6ective
potential V (r):

O'U" "' 1 l (l+1)
+ ———V(r) U" "'—=0

dt' r dU(' n) dU (L,n)-

which is involved in (8), is the deviation of the true
potential from the pure hydrogenic form, and is small

near r„and vanishes for all r)R. Since, therefore, the
integral on the righthand side of (8) is small, and
U(' ")(r) may not be appreciably different from U)„(' "' (r),
we may assume, as the first approximation, that U" "' (r)
in the integrand can be replaced by U),(' ")(r). Thus, we

obtain the first approximation formula for the loga-
rithmic derivative of the true wave function:

Here and elsewhere, the energy is in Rydberg units, and
r is in Bohr units. We assume that the potential V(r)
and the wave function U" ")(r) become essentially

hydrogenic for all r)R. From (4) and (5), we find that

R -d2U (L, n) d2U(L n)

U(L'n) —U (L'n)

rs dIt'

~B -2

J +V (y) U@(l %) (LU, A) di (6)
rs

where r, is the radius of the s-sphere. By integration by

'The use of g1 and of the deep-lying levels was suggested by
H. Brooks.

~The procedure described in the following paragraphs was
worked out by H. Brooks, to whom I am indebted for the loan of
his notes on the method.

dr r=r, UI, (L n) dr r=r,

~B ( U ((,n)(t) ) 2

+r,
,

DV())
I (

dr. (10)
(U),(' ")(r ) 3

If we want more accurate values of P&(r), we may
employ successive approximations. First the values of

@iare calculated by (10) at several values of r. For large
values of r, r&R, U(' ")(r) should be equal to the
uncorrected U), (' ")(r) which can be obtained by (1).
Then, we integrate Pi(r) numerically, starting at a large
value of r toward smaller values of r. The values of
U"")(r) thus obtained will give a better approximation
to the true values of U(' )(r), and will be used in
computing the integral on the righthand side of (8). In
this way, one obtains the second approximation to the
logarithmic derivative @i. This procedure can be re-

peated until we get the self-consistent solution of (8).
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3. COHESIVE ENERGY OF THE NOBLE METALS

The method developed in the preceding section will be
applied to the calculation of the cohesive energy of the
monovalent noble metals, vis. , copper, silver, and gold.

The uncorrected wave function Uq&'"'(r) is calcu-
lated by (1). The confluent hypergeometric functions
involved are evaluated from the tables calculated by
Ham' who has revised and extended the tables published
by Kuhn. ' In calculating k& for the uncorrected s-func-
tion, the extrapolation of 80 from the free-atom term
values listed by Bacher and Goudsmit" is employed for
all three metals.

In the case of p-levels, however, the information from
the free atom term values is not sufficient for deter-
mining the dependence of the quantity gt defined by (3)
upon the energy parameter &. Moreover, the term values
of the p-series of copper show marked irregularity which
is attributed to configuration interactions. Whitelaw"
has given a theory which permits the estimation of the
unperturbed positions of the p-series. The unperturbed
positions of the 4p and 6p term assigned by Whitelaw
and the energy parameter of the Hartree-Fock equation
for the 3p electron" are used in deriving the qt e-
relation for copper. The 5p term is not used because the
inAuence of the other perturbing multiplet on this term
seems to be appreciable and is not properly incorporated
in the treatment of Whitelaw. For silver and gold, the
x-ray term values together with the spectroscopic term
values are used in deriving the relation. Thus q~ is
expressed as a function of & for all three metals, and
from g~ we can calculate k~ involved in the calculation of
p-functions by (1).

We now apply Eq. (10) to the evaluation of the
logarithmic derivatives, if AV is known. For copper, the
values of the effective nuclear charge Z(r) calculated by
the Hartree-Fock method are available. "For silver and
gold, Z(r) will be extrapolated from that of copper as
follows. As we shall see later, the lattice spacing of
copper is mainly determined by the repulsive force be-
tween ion-cores when they come into contact. We shall
call this repulsion the ion-core repulsion hereafter. Now,
we may assume that the size of the ion core determines
the lattice spacing of silver and gold as well. Therefore,
by comparing the observed lattice constants of silver
and gold with that of copper, we can estimate the form
of the ion-core potential of silver and gold. The Hartree-
Fock values of AU(r) for copper can be approximated by
means of the analytical expression

AU(r) =Pr ' exp —rrtr for 1.4(r(3.4,
=0 for r &3.4,

(11)

F. Ham (private communication).' T. S. Kuhn, Quarterly of Appl. Math. 9, 1 {1951)."R. F. Bacher and S. A. Goudsmit, Atomic Energy States
(McGraw-Hill Book Company, Inc. , New York, 1932).

"N. G. Whitelaw, Phys. Rev. 44, 544 (1933).
'~ D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

A157, 490 (1936).

with
nr= 2.438, P = 27.53. (12)

where

(13)

(14)

(15)

Finally, Coulomb, exchange, and correlation energies
are approximated by means of the expression

ec= 0.284r, ' —0.576/(r, +5.1) (16)

given by Wigner. "
In the case of copper, we carried out the successive

approximations until we obtained the self-consistent
solution of (8), but we found that the accuracy of (10)
was sufficiently good for our purpose. Therefore, the
logarithmic derivatives involved in the calculation of t.o

and ez are evaluated by (10).
The results of our calculation are summarized in

Table I. The cohesive energy &„h in this table may be
regarded as the cohesive energy resulting from the
valence electrons. The lattice structure of the mono-
valent noble metals is face centered cubic. The lattice
constant is 3.60 A for copper and 4.06 A for silver and
gold. The corresponding sphere radius is 2.66 for copper,
and 2.99 for silver and gold, all in Bohr units. We readily
see from Table I that the cohesive energy due to the
valence electrons does not have a maximum at the
observed lattice spacing for any of these metals. This
means that the ion-core repulsion is of importance in
realizing the maximum of the cohesive energy at the
observed lattice spacing.

Fuchs4 has estimated the ion-core repulsion energy of
copper by a modified Thomas-Fermi method. He has

"J.Bardeen, J. Chem. Phys. 6, 367 (1938); R. A. Silverman,
Phys. Rev. 85, 227 (1952); W. Kohn, Phys. Rev. 87, 472 (1952).

'4 E. P. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday
Soc. 34, 678 (1938).

Let us assume that the form of 6 V(r) for silver as well as
for gold is analogous to (11),and also that the values of
P and AV at r corresponding to the observed lattice
spacings are identical for all three metals. Then, re-
membering the observed lattice constant is 3.60 A for
copper, and 4.06A for silver and gold, we find that
e~= 2.113 for silver and gold. The radius R, outside of
which AV vanishes, is assumed to be proportional to the
observed lattice constants, and we have R=3.4 for
copper and R= 3.8 for silver and goM. Thus the form of
0 V for silver as well as gold is determined.

The logarithmic derivatives pp(r, ) of s-functions are
computed by (10) for several s-sphere radii, and the
values of eo which satisfy the boundary condition
$p(r, )= 1 are determined as the ground state energy.
The logarithmic derivatives pr(r, ) of p-functions are
also calculated by (10), where the energy parameter is
taken to be equal to eo. The Fermi energy && is evaluated
by the well-known formula"
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TABLE I. The calculation of the energy of valence electrons.
60 h is the di6'erence between the binding energy eo+ez+ez and
the 6rst ionization potential. o. and p are defined by Eqs. (14) and
(15) respectively. z, is equal to (8r,)&. The values in brackets are
those obtained by assuming a pure hydrogenic potential, in which
case DV=O.

Copper 4.5 —1.147
(—1.158)

5.0 —0.952
(—0.953)

4.5 —1.175
{—1.21O)

1.034 0.983 0.339
(1.046) (0.983) (0.339)

0.891 0.987 0.223
(0.893) (0.988) (0.224)

1.096 0.988 0.333
(1.124) (0.949) (0.327)

0.203
(0.214)

0.140
(0.140)

0.248
(0.289)

Silver 5.0 —0.967 0.929 1.010 0.229 0.160
(—0.971) (0.934) (1.006) (0.228) (0.165)

5.5 —0.819 0.789 1.003 0.155 0.097
(—0.819) (0.789) (1.003) (0.155) (0.097)

4.5 —1.293 0.897 0.984 0.339 0.239
(—1.321) (0.916) (0.861) (0.297) (0.309)

Gold 5.0 —1.062 0.781 1.006 0.228
(—1.066) (0.786) (1.004) (0.227)

5.5 —0.903 0.639 0.969 0.150
(—0.903) (0.639) (0.969) (0.150)

0.135
(o.140)

0.065
(0.065)

shown that the ion-core repulsion begins to be appreci-
able at an interatomic distance of 5.5 a.u. , which
corresponds to r, =3.03 or s,=4.93, and it increases very
rapidly as the interatomic distance decreases. This
means that the ion-core is almost rigid. Combining
values of &„h given in Table I with the ion-core repulsion
energy given by Fuchs, we find that the equilibrium
lattice constant is 4.2 A, and the total cohesive energy is
1.89 ev (43.5 kcal/mole) for copper. The observed
values for these constants are 3.6 A and 3.52 ev, while
the values obtained by Fuchs are 4.2 A and 1.45 ev.
From the comparison of the calculated and observed
values of lattice constant, one can conclude that the ion-
core repulsion estimated by Fuchs starts to rise at too
large an interatomic distance. In the present paper,
however, we will not try to improve the calculation of
the ion-core repulsion. Instead, we shall make use of the
fact that the ion core is almost rigid. If we assume that
the ion cores of the noble metals are rigid spheres, the
interatomic distances are determined by the ion-core
radii, while the total cohesive energies are equal to the
cohesive energies due to the valence electrons. We
calculate the radii of the s-spheres from the observed
lattice constants for these metals, and determine the
cohesive energy at those radii by interpolating values of

Metal z& 60

4.0 —1.406 Ry 1.189 0.933 0.515 Ey 0.262 Ey
(—1.508) (1.264) (0.918) (0.50/) (0.372)

TABLE lI. The calculated and observed values of cohesive
energy and the calculated values of n. The theoretical values are
calculated at the observed lattice spacings.

Metal
Cohesive energy in kcal/mole

Correcteda Uncorrectedb Observed Corrected a Uncorrected b

Copper
Silver
Gold

59.3
55.8
48.9

59.9 81.2
58.9 68.0
53.3 92.0

0.988 0.989
1.008 0.985
1.006 0.987

a Calculated with corrections due to the deviation of the effective ion-core
potential from the pure hydrogenic form.

b Calculated by assuming a pure hydrogenic potential.

The fourth-power term may contribute appreciably to
the Fermi energy.

Finally the values of a listed in Table II are the
reciprocal values of the ratios of the eGective electron
mass to the free electron mass. Hence, the effective
electron mass calculated near the bottom of the lowest
Brillouin zone is almost equal to the free electron mass
for all three noble metals.

The author wishes to thank Professor H. Brooks for
his advice and helpful suggestions throughout this
work. He is also indebted to Dr, F. Ham for the use of
his results before publication.

g„h given in Table I. Since the ion-core repulsion con-
tributes very little to the total cohesive energy, as is
shown for copper by Fuchs, the cohesive energy due to
the valence electrons calculated at the observed lattice
spacings should be a good approximation to the total
cohesive energy. The results are given in Table II, where
values of n at the observed lattice spacings are included
as well.

CONCLUSION

The agreement with the observed values of the
cohesive energy is fairly good for copper and silver, but
not so good for gold. We shall point out some of the
shortcomings in the present calculation: (I) The calcula-
tion of the uncorrected p-function is relatively inaccu-
rate, because the information from the spectroscopic
term value on the dependence of g~ on & is insufhcient. In
the case of copper, the configuration interaction aggra-
vates the situation. (II) The ion-core potentials for
silver and gold are extrapolated from that of copper.
Although the corrections due to hV are small, the errors
in 5Y may have introduced small errors in the final
results. (III) The ion-core repulsions are not treated
accurately. In fact, we have assumed the rigidity of the
ion-core, and neglected the contributions from the
repulsive energy to the cohesive energy. (IV) We have
neglected terms with powers higher than the second in
the expansion of the energy into the power series of k.


