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The properties associated with the space-charge region and with surface states at a semiconductor surface
are discussed. A theory of the space-charge region that takes into account charge-densities arising from
immobile impurities and from both signs of mobile carrier is presented. The properties of the space-charge
are discussed in terms of the surface potential and of the electrochemical potentials of holes and electrons,
and related to the transport of added carriers in a homogeneous semiconductor. The change in surface
conductivity arising from nonvanishing surface excesses of holes and electrons is treated. The space-charge
systems at a free surface and at a p-» junction are compared, and the range of validity of the Mott-Schottky
space-charge theory evaluated. The arrangement of surface states is discussed with reference to the Brattain-
Bardeen model. Theories for the surface photoeffect and field-effect experiments are given, with and without
surface states: it is concluded that the existence of surface states is without gross effect on the former,
while relevant quantitative evidence from the latter is not yet available. The question of the relation
between surface potential and contact potential is discussed. The properties of “channels” are discussed

15,

1955

in terms of the theory. The paper concludes with a short section on long-time effects.

INTRODUCTION

HE purpose of this paper is to summarize the

conclusions which may be drawn from physical
theory as to the electrical properties of the surface of a
semiconductor. The surface of a semiconductor, like
most phase boundaries, is the seat of a space-charge
double layer. In many one-dimensional problems, it
suffices to consider the case that the field outside the
semiconductor is zero: this means that the net surface
charge density is also zero. The double-layer may in
principle arise in several ways, such as preferential
adsorption of ions of one sign, or alignment of adsorbed
atoms or molecules having an electrical dipole moment.
In a metal, such charge can be compensated by a high
density of electrons or holes in the immediate vicinity,
i.e., within a few atomic diameters, of the geometrical
surface. In a semiconductor, part at least of the electron
or hole distribution must be spread over a relatively
wide space-charge region, owing to the combined
requirements of electrostatics and statistical mechanics.
At the same time, there may still be an extra population
of holes and electrons bound in the near vicinity of the
surface, since one must not expect bulk statistical
considerations to hold over atomic distances. The
concept of “surface states’” was proposed some years
ago by Tamm,! and discussed in detail by Bardeen.?
It should, however, be noticed that the distinction
between charges consisting of electrons and holes in
surface states, and charges deriving from impurity
atoms adsorbed onto the surface, is far from clear.
Specifically, the lack of dependence on work function
of the rectifying properties of metal semiconductor
contacts might be due to Tamm-type surface states, or
to charges associated with adsorbed gases: one does not
know. One may distinguish, a little artificially perhaps,
between these two kinds of surface charge as follows.
That part of the surface charge which, while not forming

1T. Tamm, Physik Z. Sowjetunion 1, 733 (1932).
2 J. Bardeen, Phys. Rev. 71, 717 (1947).

part of the extended space-charge region, is yet in good
electrical contact with the conduction or valence band,
will be described as charge in surface states; that part
which can only change relatively slowly, with some
sort of “activation energy,” is thought of as associated
with adsorbed ions. How far this distinction can be
maintained operationally must be left for experiment to
decide. Another convenient assumption is that the
surface states are associated with recombination
processes at the surface; that is, the surface states are
trapping centers of the type discussed by Shockley
and Read.?

In Sec. A of this paper, we shall be concerned only
with the properties of the space-charge region itself.
The problem is to write down expressions for the surface
excesses I', and I, of electrons and holes, as functions of
the surface potential (the difference between the mean
electrostatic potential just inside the surface and in the
interior) and the electrochemical potentials for holes
and electrons. From this one can write down (z) the net
surface charge density due to the space-charge region,
(72) the shape of the space-charge region, i.e., the
dependence of potential on distance, and (¢i) (with
some reservations) the excess conductivity due to
mobile carriers near the surface.

In Sec. B, an attempt will be made to use the theo-
retical concepts to describe the results of experiments
which have been or can be made on semiconductor
surfaces. In the understanding of many of these measure-
ments, it is unfortunately necessary to make some as-
sumption about the surface states. On the basis of surface
recombination measurements made on germanium
surfaces prepared in a certain way, Brattain and
Bardeen! proposed a particular model, in which the
surface states are supposed to be either of donor
character, lying high in the forbidden band, or of

3W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).
4W. H. Brattain and J. Bardeen, Bell System Tech. J. 32, 1
(1953).
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acceptor type lying low. In this paper we shall predict
the- results of various experiments on two extreme
assumptions: (7) that there are negligibly few surface
states, and (47) that there are surface states of the
type proposed by Brattain and Bardeen.

The problem of the apportionment of charge between
space-charge and surface states has also been considered
by Pikus,® who has discussed such questions as the
variation of work function with temperature and the
effect of applying an electric field normal to the surface.
For a detailed discussion of the properties of Tamm
states, as opposed to the questions of ionic charge
discussed by Brattain and Bardeen, we refer the reader
to this paper.

A. PROPERTIES OF THE SPACE-CHARGE REGION
1. Fundamental Considerations

The theory of the space-charge region at the surface
of a semiconductor has been given by Schottky,®
Schottky and Spenke,” and Mott.® For convenience we
shall develop here the considerations applicable to
rather high-resistivity germanium or silicon, at or
near room temperature. It will be assumed that
impurity atoms (donors and acceptors) are completely
ionized at all points. The space charge then may be
written down in terms of the local concentrations p and
n of holes and electrons, which may be taken to obey
Boltzmann statistics, so long as the impurity concentra-
tion in the semiconductor is low enough to make the
Fermi-Dirac assembly nondegenerate. The considera-
tions to be given are applicable either to a step (abrupt)
junction within a single crystal between regions of
differing impurity content, or to a free surface.

Following Shockley® we wri e

P = nieﬂ(‘P;D""‘ﬁ)’

(1)

n= nieﬂ(‘ﬁ—v’n)’

where ¢, and ¢, are the “quasi-Fermi levels’ for holes
and electrons respectively; ¢ is the electrostatic
potential, »; the density of holes and of electrons in
intrinsic semiconductor, and B=¢/kT, e being the
electronic charge, £ Boltzmann’s constant, and 7" the
absolute temperature. The quasi-Fermi levels have,
apart from a change in sign of ¢, the properties of
electrochemical potentials. The zeros of ¢, and ¢,
have been chosen in such a way that, in thermodynamic
equilibrium, ¢,=¢,: we shall denote this common
value by ¢o. Now in equilibrium ¢, is uniform through-
out the system; in particular, it is constant right up to
the surfaces of the sample. In the body of the semi-
conductor the electrostatic potential ¥ is also uniform,
but this ceases to be true in the vicinity of the surface.

5 G. E. Pikus, Zhur. Eksptl. i. Teort. Fiz. 21, 1227 (1951).

8 W. Schottky, Z. Physik 113, 367 (1939); 118, 539 (1942).

7 W. Schottky and E. Spenke, Wiss. Veroffentl. Siemens-Werken
18, 3 (1939).

8 N. F. Mott, Proc. Roy. Soc. (London) A171, 27 (1939).
9 W, Shockley, Bell System Tech. J. 28, 435 (1949).
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In order to determine the form of the electrostatic
potential near the surface, one must solve Poisson’s
equation:

VA= —A4r/eeo. 2)

(Unrationalized quantities are used in writing this
equation.) Here e is the dielectric constant for the
semiconductor, and p is the charge density at each
point, which, for a completely ionized semiconductor,
is given by

p=e[(p—po)— (n—no)], 3

where po and 7, are the hole and electron concentrations
in the body of the semiconductor. With some reserva-
tions, to be discussed below, the charge distribution
near the surface is completely determined (in the case
of thermodynamic equilibrium) by substituting Egs.
(1) and (3) into Eq. (2), and solving with the appro-
priate boundary conditions.

Before following this procedure, one generalization
is required. In dealing with semiconductor problems,
it is often important to consider steady-state distribu-
tions which, although not corresponding to strict
thermodynamic equilibrium, are sufficiently close to it
to be regarded as quasi-equilibrium configurations.
The lifetime of minority carriers in high-resistance
germanium is so long that it is permissible to treat
the holes and electrons as separate components in the
thermodynamic sense, so that the sum of the electro-
chemical potentials (the difference of quasi-Fermi
levels) is no longer to be held constant. Each electro-
chemical potential, however, is uniform throughout
the system; in particular, we may consider a steady-
state configuration of the semiconductor surface, such
as may be produced by shining light on it, in which
¢, and ¢, are different from ¢, but each is constant
throughout the space-charge region. This approximation
holds good so long as (z) the diffusion length of minority
carriers in the semiconductor is long in comparison
with the thickness of the space-charge region; (7z)
currents (arising from either carrier) to or from the
surface are not too large, nor the depletion of carriers,
such as may be produced by an externally applied
voltage, too extreme.!

In a moment we shall proceed to calculate the
space-charge configuration in terms of arbitrary
values for ¢, and ¢,. It is not possible, however, to
choose ¢, and ¢, independently, because, in the body
of the semiconductor, there must be net space-charge

10 The assumption of constancy of “‘quasi-Fermi levels” cease to
be true for a p-» junction that is subjected to a reverse bias
considerably larger than 27 /e. In order that the hole and electron
currents I, and I, may be solenoidal (no recombination), the
products pVe, and #Ve, must be constant, and since  and »
are greatly reduced in value near the junction on the # and p
sides respectively, V¢, and Ve, must be quite large there.
Calculation suggests that, in a typical case, the assumption of
constancy of ¢, and ¢, is reasonably good up to about 10 times
kT /e, that is, about 0.2 volt. An exact treatment of the case of
still larger reverse biases has not been attempted, involving

as it does the solution of the bipolar conduction problem in the
presence of space charge.
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neutrality, so that one electrochemical potential is
determined if the other is known. The relation between
them is obtained from Egs. (1) and (3) by setting
p=0, and will appear as Eq. (10) below.

There are two limitations on the validity of a treat-
ment that starts from Egs. (1) and (2). Equations (1)
apply rigorously to the case of a statistical assembly
extending indefinitely in all directions; we wish to
apply them to a space-charge region in which the
potential is varying very rapidly with distance. A
rigorous discussion of this difficulty, which occurs also
in the Debye-Hiickel theory of strong electrolytes, has
been given by Kirkwood."'*? Another limitation is set
by the wave nature of the electron; one would not
expect statistical considerations to apply down to
distances of the order of an electron wavelength. In the
absence of any alternative method, we shall assume
that Egs. (1) and (2) will be a fair approximation so
long as the variation of ¢ is not so great that the
semiconductor becomes degenerate at the surface.
The total extent of the space-charge region in high-
resistivity germanium is of the order of 10~* c¢m, but
certain of the properties associated with it depend on
the distribution of carriers within only 100 A of the
surface. In the light of the above considerations, any
conclusions concerning these latter properties must be
regarded with caution.

Substituting Egs. (1) into Eq. (3), we obtain

p=en V90 — Blor—v0) | gBlor—¥) — BUW—en)]  (4)

in which we have written ¥, for the value of the electro-
static potential in the body of the semiconductor. Now
suppose that y and p vary only in the direction perpen-
dicular to the surface; and let x stand for the distance
along this direction, with x=0 at the surface, and x
going positive inwards. Integrating Eq. (2), we obtain

ay\? 8w ¥
() ===[ o )
dx ecovV o
Into this we substitute Eq. (4) and carry out the
integration, so obtaining

a2
"—=—F(3’,)\;P,N): (6)
dx BL

1 7, G. Kirkwood, J. Chem. Phys. 2, 767 (1934).

12 The question concerns the statistical fluctuations in electro-
static potential at each point, and the resulting fluctuations in
the local densities of holes and electrons. It is assumed that the
mean distribution functions are obtained, to sufficient accuracy,
by inserting into the Boltzmann expressions the mean electrostatic
potential at each point. The error involved in so doing becomes
larger, the greater the departure of the mean electrostatic poten-
tial from its value in the body of the semiconductor. It has been
shown for the electrolyte case that the method usually breaks
down as soon as it ceases to be a good approximation to write
#8¥~14-BAy. Fortunately, the restriction in the semiconductor
system is less severe. C. Herring has pointed out to us that the
approximation used is satisfactory so long as €?/eeod’<<kT, where
£'= (eep/27Nep)?, in which N stands for the local concentration
of holes or electrons, whichever is the greater. This condition is
easily satisfied in most cases of practical interest.
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where
£=[eeo/2menB T,
A= [170/%0]’} = po/ 1=/ Ng= €fo—¥
P=,3(¢p“‘ (00),
N=B(¢r— (00),
y=BW—y),
and

F(y\P,N)=F[NeP(ev—1)
AN (ev— 1)+ (A —X"N)y ],

with the following sign convention: when y <0, the
positive branch of the square-root function must be
chosen; when y>0, the negative branch. Note that
£ is a characteristic length for the semiconductor,
having the value 1.4X10~* cm for germanium at room
temperature.

From Eq. (6) we can write down expressions for
the surface excesses I', and T',, of holes and electrons.
The idea of “surface excess,” first introduced by Gibbs,?
implies the difference between the total amount of some
component in the actual system, per unit area of
surface, and that which would be found if the phases
were homogeneous right up to some chosen dividing
surface. We choose the dividing surface in such a way
that the surface excess of the component forming the
semiconductor is zero; and write ¥ and ¢, for the values
of y and ¢ at this surface (averaged over distances of
the order of atomic dimensions). Then

0

- f (p—p*)dx

Y (-1
=—Lp;L\e? f —dy, (7
0 F(y7>‘:P7N)
I‘,,=f (n—n*)dx
' T (1)
e [,
0 F(y;k;P7N)

where p* and #* are the steady-state values of hole
and electron concentration at a point just inside the
space-charge region, and are given by p*=peef and
n*=mnoe~?. Notice that in the limit of —Y large,

T ,—n.Celorvs

while for Y large,
T n_)nwce%ﬂ (¥s—¢n) .

~ (8a)
(8b)

The total surface charge density due to excess holes
and electrons is

e(',—T,)=en.LF(Y \,P,N) 9)

13 ], Willard Gibbs, Collected Works (Longmans Green and
Company, London, 1906), Vol. 1, p. 219.
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as may be proved in a more straightforward manner by
considering the value of dy/dx at the surface. Notice
that the integrals for I', and T, separately cannot
easily be evaluated explicitly, but the difference
I',—T, can.

So far we have said nothing as to what determines
the values of ¢, and ¢.. Since, however, ¢, and ¢,
are constant right through the space-charge region,
we may invoke the condition of space-charge neutrality
in the body of the semiconductor, and write

(e ¥=1)/(=1)=N, (10)

as may easily be proved from Egs. (1) and (3), setting
p=0.

2. Shape of the Space-Charge Region

The form of the space-charge region at a semi-
conductor surface or interface has usually been treated
in the following way. If the electrostatic potential
near the surface is greater than in the interior for #-type
semiconductor, or less for p-type semiconductor,
there will be an enrichment of the majority carrier in
the surface region, which may be described by a simple
Boltzmann expression. In the contrary case, there is a
depletion of the majority carrier, which may be treated
by thinking of an exhaustion region of appropriate
depth containing no carriers of either sign. At the same
time it has been realized that, on base material of high
resistivity, one may have the state of affairs in which
there is an appreciable concentration of minority
carriers at the surface. Such a surface region is usually
called an inversion layer. The purpose of this section
is to consider more exactly the shape of the space-charge
region, with particular reference to material that is not
too far from intrinsic, in order to show clearly the
limits within which the usual simple treatment is
allowable.

To find ¥ as a function of x, one integrates (6):

e [ d (11)
’ 0 F(y7A7P7N)

This integral cannot easily be evaluated explicitly.
In order to illustrate the shape of the space-charge
region, we shall consider the behavior of the integral
for the case of a change in potential near the surface
tending towards the production of an inversion layer.
Three parts of the space-charge region may be dis-
tinguished :

(@) 0< |yt
Expanding the exponentials, and using (10), we have
F(y))‘7P:N)_)—y[% ()\—1_)\)+)\er% (12)

The integral therefore diverges logarithmically: the
space-charge region extends indefinitely far into the
semiconductor. In this region, however, the properties

379

are not greatly different from those of the bulk semi-
conductor.

(#) The “Parabolic” Region

In the usual, simplified form of the space-charge
theories of Mott and Schottky, it is assumed that all
of the space-charge arises from absence of both holes
and electrons in a certain well-defined region. Using
this approximation, it is easy to show that the potential
should vary as the square of the distance. This approxi-
mation is equivalent to ignoring all terms under the
square root sign except (\"'—M\)y. It may be checked
that this is a poor approximation except under the
following conditions:

(@) y&L=1, ev/(—y)<Kre?,
(13)

or (b) ¥>1, e¥/y<KN\%V,

These conditions specify that the potential must vary
in the direction tending to produce an inversion layer,
by an amount that is large in comparison with k7/e,
but still small in comparison with that which would
actually produce an inversion layer. The conditions are
most clearly satisfied at a reverse-biassed p-» junction,
but at the free surface of a block of semiconductor
that is not too far from intrinsic the range of potentials
in which they are satisfied is small.™*

In the range of x for which v satisfies condition (a),
one has

m—2— ENAHN) (=)= (—yt], (19

where x=; is the limit of this region on the inside, and
y1, the value of y there, is of the order of —1.

(442) Inversion Region

When A<1 and y is sufficiently large and negative,
or when A>1 and y is sufficiently large and positive, the
greatest contribution to the space-charge comes from
carriers of the opposite kind to those predominating in
the bulk. Here it is sufficient to neglect all except the
first or the second term in the expression under the
square-root sign in Eq. (6), so that we have: For

AL e/ (—y) >N 2P,

xo—x= LN "I P (elra— V),

(15)

where x=ux, represents the inside limit of this third
region, and y, is the value of y there. This third region
corresponds to an inversion layer: in the case considered,
a hole-rich region over an n-type semiconductor. The
inversion layer is, as we shall see below, very thin in
comparison with £ in a practical case, and the drop
in potential across it is usually insignificant in compari-

4 One physical system where such conditions do exist is the
surface of the base region of an npn junction transistor having a
channel across it. Here a reverse bias can be applied between the
p-type body and the #n-type surface. So long as the applied

voltage is rather greater than %7'/e, the parabolic approximation
will hold for most of the space-charge region.
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son with the drop across the parabolic region. It is
important to remember however, that most of the
positive space-charge may be concentrated in the
inversion layer.

A similar analysis may be carried out for the case
that the potential near the surface is varying in such a
sense as to enhance the concentration of the majority
carrier. Here there is of course no exhaustion region,
and the distribution of carriers near the surface is
similar to that worked out for region (ii7) as may
easily be checked from Eq. (11).

The complete space-charge region consists of regions
where () and (44) are applicable, with or without
region (772) depending on the boundary conditions.
The exact profile may of course be determined by
numerical integration of Eq. (11).

3. Space-Charge at a p-n Junction

For the sake of completeness, we shall see how the
foregoing considerations apply to the case of an
“abrupt” p-z junction,® in which the impurity concen-
tration changes in a distance small in comparison
with £. The following notation will be used:

x=0
pln
—x
On the p-side, Np=[po/70*>1, V,=B{s—¥0p). On
the n-side, A,=[po/10 ! <1, V,,=B8¥s—v0,). For other
quantities, suffixes p and » denote values referring to
the p- and #n-side, respectively.

It is required that, at the junction, the quantity
(dy/dx) shall be continuous. Using Eq. (6), and paying
attention to the sign-convention for the square-root
function (note that ¥,/Y, <0), we have

e, (e Yr— 1)+ Von, (e¥r— 1)+ A=A )Y,

P (e Yr— 1) e N\, (e¥r— 1)+ A\ A=) Vs
(16)

In addition, we have two relations of the form of
Eq. (10) to be satisfied; and, as pointed out by
Shockley,® the quasi-Fermi levels must be related to
the applied voltage V in the following way:

BV=P,—P,=N,—N,,
Yp—Vo=—8V—In(A\A;).

The above equations may now be solved for N,, N,,
Py, PnyYyand Ve

A=ND)N2P7 (1= p72)

)
1=\ 5268V

—Nn— p—BV p—N,
e Nn=¢B8V¢ X

(17

Vo= BV,

(18)
(A=2A72)+0,%7 (1—0.2)

ePr= gV :
1— N2\, 2%V

ePp — e‘ﬂ Ve_P",
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BV 41\,

{ I—Ankp“leﬁv}

T @) e
EA-1 g
@/3)+1!
S _BVHIAT 1o [ (@/6) -1
1 (Ye) ll—i—)\n)\p'leﬁ" [(zn/@)+1l’

where ®= (\,—N\;™) and N= (A, —\,). The foregoing
expressions represent exact solutions of the problem.
We now consider approximate solutions to the following
topics: (7) the dependence of the ¥’s on the resistivity
of the two sides, and (#7) the capacity of the space-
charge region.

We first note that, since the maximum forward bias
that can be applied across a junction is 87! In(A\,/\,),
it is permissible to drop terms of order A\, efV from
Egs. (18) and (19). This excludes only the case of
extreme forward bias. One then sees from Eq. (19)
that, for the case A,A\,>>1 (implying that the p-type
side is much more heavily doped than the n-type side):

Y i~ BV o 1,

20:
it (20a)
while in the contrary case,

V~—1,
(20b)

Y y~—InO\A ;) — BV .—1.

This confirms the usual conclusion that “most of
the space-charge region is on the side of higher resistiv-
ity.” But note that, however heavily doped one side
may be, there is still a potential drop of £7'/e across it
when the junction is reverse-biased.

To illustrate these results, consider a junction
between, say, 10 ohm-cm n-type and 0.1 ohm-cm p-type.
If a reverse bias of 0.25 volt is applied, all except
0.025 volt appears across the n-side. There is a negative
space charge (extending ~10=% cm) on the p-side,
which is largely compensated by excess holes in a
narrow region (again ~10~% cm) on the n-side of the
junction; beyond this there lies the remaining positive
space charge, in a region ~10~* cm in width in which
the “parabolic” approximation applies.

The capacity associated with the junction is a
quantity that is rather difficult to define. The easiest
approach is to consider the ac admittance of the
junction G+4S, and take the quantity (S/w)e-o as
describing the low frequency shunt capacitance of the
device. The term S is made up of two parts: that
arising from diffusion of excess or deficit hole-electron
pairs out to distances of the order of a diffusion length,
and that due to the creation of a space-charge region in
the immediate vicinity of the junction. The first of
these, considered by Shockley® decreases exponentially
with reverse bias, whereas the latter decreases only as



PHYSICAL THEORY OF SEMICONDUCTOR SURFACES

v/(—7V). In consequence it is the space-charge capac-
ity which is of principal interest for reverse biased
junctions.

The analytical difficulty in discussing both sources of
capacity at the same time arises from the fact that in
the presentation given here we have evaded the whole
question of the mechanism of carrier transport in the
space-charge region, replacing it by the condition of
constancy of the quasi-Fermi levels. We shall therefore
consider only the space-charge capacity. First we note
that d*/dx* passes through zero once and once only,
to wit at the geometrical junction. The stored charge
on each plate of the equivalent condenser is therefore
given directly by Eq. (9), which may of course be
evaluated either for the p side or for the # side. Into
this one substitutes for the P’s and ¥’s from Eqgs. (18)
and (19), and differentiates with respect to V. The
general expression for the capacity is too complicated
to be useful. One special case of interest is that in which
one side (say the p side) is much more heavily doped
than the other. For sufficient reverse bias, the capacity
is given by

Cren£B/20 [ —BV—2—In(\,/Ap) 1. (21)

By comparing this with the diffusion capacity
discussed by Shockley, one sees that the space-charge
capacity predominates as long as 2M,}(L,/£)éfV
XA/ (—BV) is small in comparison with unity. In a
practical case this condition is well satisfied for reverse
voltages of 0.2 volt or more. Note that Eq. (21) is
nearly the same as one gets by straight-forward
application of the Mott-Schottky ‘exhaustion layer”
theory, in which the potential drop occurs entirely on
the high-resistivity side, and the potential varies
parabolically with distance. One may conclude with
one or two remarks as to the conditions under which the
Mott-Schottky exhaustion layer theory is justified.
When both sides of a p- junction are equally heavily
doped, the exhaustion layer model, and the parabolic
potential, apply well to both sides, with zero or negative
bias across the junction. When, however, one side of
the junction is much more heavily doped than the
other, the exhaustion layer model can be used only
for the high-resistance side, and then only if one
excludes the region in the immediate vicinity of the
junction. The extent of the region over which the
potential is parabolic increases, of course, with negative
bias; so, at high reverse bias, and so long as one is not
interested in the precise field distribution near the
junction itself, it is reasonable to regard the whole of
the potential drop as occurring across a Mott-Schottky
exhaustion region.

4. Surface Conductivity

It is possible to evaluate the change in conductivity
of the surface region due to the presence of a space-
charge layer:

AG= eI, H0T), (22)

s0
40
301 ) =
A=05
a \%?
0.033
20
9
01
o
-10 |-
00!
-20 L 1 1 1 1 1 L 1 1
-4 -2 -io -8 -8 -4 -2 o 2 4 6

Y

F1c. 1. The surface-conductivity integral as a function of
the surface potential ¥ for various values of the parameter A
(for n-type).

where u, is the mobility for holes and 4 is the ratio of
the electron mobility to hole mobility. This equation,
however, however, assumes that it is sufficient to
suppose that the mobilities of holes and electrons in a
differentially thin slice of semiconductor are the same
as the bulk mobilities. This will not be too bad unless
the thickness of the space-charge region is comparable
with the mean free path of the carriers. This latter
quantity is of the order of 10~% centimeter, which is
not very much smaller than £, so that this approxima-
tion is not very good. In consequence, the actual
change in surface conductivity would be expected to
be rather smaller than the values to be predicted below.
The errors arising from this approximation have been
investigated by Schrieffer.!® :
Substituting from Eqs. (6) and (7), one finds

AG=+}eu m.Lg\7%, (23)
where g is the integral
ON(ev—1)+b\(ev—1)
g=M\? f dy. (24)
Y F(}’J\)

Values of this integral are shown in Fig. 1. Notice that
if, for n-type semiconductor, the potential at the surface
is greater than that in the interior, the change in
surface conductivity arising from extra electrons at
the surface is positive. If, however, the surface potential
is a little bit less than the potential in the interior, the
change in conductivity is negative, because there are
now fewer electrons in the surface region at x=0, and
not yet any appreciable contribution from holes. Only
for very low surface potentials does the change in
conductivity begin to rise again, as extra holes are
created. The minimum surface conductivity is at the
potential

Y=In(2¥/b). (25)

Thus, one sees that the surface must be more p than
the interior is # before there is any appreciable hole

16 J. Robert Schrieffer, Phys. Rev. 94, 1420 (1954).
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surface conductivity. At the extremes of surface
potential the surface conductance is of the form gu,I',
or gbu,I',, where I', and T',, are given by Eq. (8).

5. Quasi-Fermi Levels and Flow of Minority
Carriers

The transport of added carriers in a homogeneous
semiconductor has been discussed by van Roosbroeck.!®
We restrict the discussion to a semiconductor that is
not too close to intrinsic, and suppose that any current
crossing the surface is at any rate small enough for flow
in the body of the semiconductor to proceed largely by
diffusion rather than drift. For a semi-infinite block,
the small signal solution for hole density at points
inside the space-charge region is of the form

Ap=Be—+lLo, (26)

where Lo=+/(Dor) and Do=D, for n-type, D, for
p-type.

The hole current at a point just inside the space-
charge region, arising partly from flow of minority
carriers into the surface traps, is

(27)

where I, is the hole current actually crossing the
surface. But, from Eq. (26), the current I, is given by
—eDy gradAp, which is equal to I,/[(p*/po)—1] for
n-type semiconductor, where * is the hole concentra-
tion just inside the space-charge region, and I,/, the
body saturation current, equals eD,po/L,. Now the
recombination flow may be written ev,(p*— po), where
v 1s the surface recombination velocity, so that

I,'=1I,—surface recombination flow,

L=L[(p*/po) —1]=1(e"—1), (28)
where I, the total saturation current, is given by
Is=epo[ (Dp/Ly)+vs]. (29)

The net hole inflow I, could arise from injection of
minority carriers from a metal or electrolyte in contact
with the surface. If the surface is illuminated with
light that is absorbed within a distance from the
surface short in comparison with a diffusion length
(not necessarily short in comparison with a Debye
length), it may be shown!” that the effect is equivalent
to a minority carrier flow L across the surface equal to
eN, where N is the number of hole-electron pairs
created per unit area per second. The effect on the
distribution of carriers inside the semiconductor is then
given by adding L to the current I, in the above
equations.

Equation (28) represents the linear approximation to
surface and body recombination. If I, is very large, this
linear approximation is usually no longer adequate.
Under many conditions one might expect a mass-action

16 W, van Roosbroeck, Phys. Rev. 91, 282 (1953).
17 W. H. Brattain and C. G. B. Garrett, Physica 20, 885 (1954);
Bell System Tech. J. 34, 129 (1955).
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recombination law to hold,'® so that one can write
instead:

Iy=(Is/nd) (p—po) (no+1),

=T1,(eP—1) (14N2%P). (30)

This equation is quadratic in e”.

B. PROPERTIES OF THE SURFACE CHARGE
6. Space Charge and Charge in Surface States

Equations (7) for I', and T', are correct only so long
as it is assumed that Egs. (1) hold right up to the
dividing surface, and that there are no free electrons
or holes beyond. As mentioned in the introduction,
there are reasons for believing in the existence of
surface states into which electrons can be bound in
such a way that they cannot take part in lateral
conduction. It is reasonable to assume further that
these surface states are associated through trapping
with recombination of minority carriers at the surface.
Brattain and Bardeen proposed that these trapping
centers were either of donor type lying high in the
band, or of acceptor type lying low, or both. Such a
model enables one to understand how the surface
recombination velocity can be insensitive to variations
of surface potential produced by changes in chemical
environment, as found experimentally.*!® The argument
goes like this. Consider low-lying acceptor-like traps.
The flow of current between the conduction band and
the traps will be proportional both to the number of
electrons in the conduction band at the surface, and
to the number of empty traps; this flow will be much
less than that between the traps and the valence band,
which is proportional both to the number of 4oles and
to the number of occupied traps, unless the electro-
chemical potential of the traps is almost equal to that
of the holes: so the main resistance to recombination
occurs in the former process. Since variation of surface
potential affects the densities of electrons near the
surface and of empty traps by compensating factors,
surface recombination should be unaffected by changes
in surface potential that do not affect the number of
traps. Note that either donor or acceptor traps are
sufficient to account for recombination in both #- and
p-type.

With this model, the charge in surface traps is

Tor=e[ NpeP—¥ — N "],

(1)

in which N, and N, represent densities of donor and
acceptor traps multiplied by the appropriate Boltzmann
factors, and P, N, and ¥ have their previous meanings.

In the following sections we shall assume that the
charge in surface states may be written as in Eq. (31);
it is easy to proceed to the limiting case of no surface
states by setting N,=N,=0.

18R, J. Keyes and T. G. Maple, Phys. Rev. 94, 1416 (1954).
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7. Surface Photoeffect

The total charge in both space charge and traps is
given by
Z=e(lp,—Tn)+0or, (32)

where I',—T, is given by (9) and o4, by (31). We are
concerned with calculating the change in v, produced on
illumination of the surface, the illumination being
supposed to take place so abruptly that the ionic charge,
and therefore the total charge 2 in the surface of the
semiconductor, to which it is equal in magnitude and
opposite in sign, does not have time to change. Differen-
tiating the right-hand side with respect to L, the light
current, using Egs. (10) and (28), and setting the result
equal to zero, we find (for n-type)

dys
aL

1
=—L(e¥"—1)4(eY—1)—Z (NN ¥ — Ny Y) ]
BIs

=N L(A+NL/L)eY —11+[(14+L/T)e Y —1]
+ZL(AHNL/I)N ¥+ (14 L/I)Nwe ¥ ]}, (33)

where
Z=2F(Y \)/n&A\. (34)

The theory of Brattain and Bardeen gave an expression
equivalent to ignoring all those terms in (33) not
multiplied by Z, since charge in the space-charge region
was ignored. The following approximations to (33)
should be noted:

dys 1 1
V> —0:i—~— — — for L small,
dL  BI,1+L/I, BI,
(35)
dy, —1 A2 A2
V—>+w: ~N—— — ——
dL  BI, 14+NL/I, BI
for L small.
For N,, N»=0, L small:
dys 1 1—e¥
= (36)
dL BI; 14+X"%Y
With the Z terms only (i.e., N4, Ny—> )
dy, 1 1-¢7
= 37

AL BI, 14+\—¢""

where ¥V'=Y+31 In(A\2N,/N»).

Let us consider the import of Egs. (36) and (37).
In each, the surface photovoltage is given as that
change in surface potential which is required in order
to keep the semiconductor surface charge constant when
the imrefs of holes and electrons inside are altered.
The reasoning leading to Eq. (37) is relatively simple;
most of the surface charge is in donor and acceptor
traps, and the populations of these traps would alter
when the imrefs change, if it were not for the change in
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Fi16. 2. Surface photoeffect as a function of ¥, with and
without surface states (relative values).

surface potential. The physical interpretation of Eq.
(36) is harder to picture. First it is worth noting that
if the space-charge region were accurately described by
a Mott-Schottky exhaustion layer, and if there were
no surface states, there would be no surface photo-
voltage at all, because the charge associated with the
space-charge region would then be a function only of
the surface potential, and would be unaffected by the
change in imrefs produced on illuminating the sample.
The surface photovoltage given by Eq. (36) arises
precisely because the Mott-Schottky exhaustion layer
model is not exact. In this view (with no surface
states) in order to maintain the total charge in the
space-charge region constant, the surface potential
must change and the only way in which this can
happen is by rearrangement of the distribution of
that charge. One point to notice is that the limiting
values of surface photovoltage are the same, which-
ever model one uses. As we have emphasized else-
where,!7 the limiting values of photovoltage may be
derived by a thermodynamic argument, and are
therefore independent of the precise model assumed;
all that the model adds is the dependence of surface
photovoltage on surface potential in the intermediate
region, which depends, in chemical language, on rate
process considerations.

In Fig. 2, Eq. (33) has been evaluated for A=0.2 for
the two extreme conditions represented by (36) and
(37) and also for an intermediate case in which N,=N,
=8X108cm™2. It will be seen that there is little
difference between the shapes of the three curves.
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The quantity dy,/dL describes the change in surface
potential produced by sudden illumination of the
surface. Experimentally, one can measure the change in
contact potential or electrode potential. This includes
changes in potential drop across the material itself,
such as IR drop. Suppose that the current 7, if any,
is kept constant: then there still remains the change in
the potential difference [(6—1)/(6+1)]8" In(s/c0)
that arises because of the difference in mobilities of holes
and electrons.!® This gives an additional photoeffect:

av, 1 bv—1 A2 (38)
AL BI, b 14+ (b+1)(L/1)+1]

so that the limiting values of the net surface photoeffect
for L—0 should be

av 1
V—o—w, —~—;
ar BI,
(39)
av P
V— oo, —_—~———
aL b BI,

Expressions for p-type are analogous.

8. Surface Potential and Contact Potential

Let us now turn from the question of variation of
surface potential with illumination to that of the
dependence of surface potential on chemical environ-
ment. One way of investigating this is to measure the
contact potential difference between the semiconductor
and a reference electrode, of which one has reason to
believe that the work function is adequately indepen-
ent of environment.

The question arises as to how much of the change in
contact potential observed, for example, in the Brattain-
Bardeen cycle, is change in surface potential ¢, and
how much is to be ascribed to changes in the ionic
double layer. Brattain and Bardeen* have concluded
that only about 20 percent of the change in contact
potential arises from y,. Measurements by Morrison'
of surface conductivity as a function of gaseous environ-
ment suggest that this estimate is too low. If there were
no surface states, the predicted result would be close
to 100 percent, since the capacity of the space-charge
region is two orders of magnitude or more lower than
that normally associated with an ionic layer (~30
uf/cm?). Even with No=N,=10° cm~2, the capacity
associated with the semiconductor surface is negligibly
small except at the extremes of ¥.. As we shall see
below from the field-effect experiment, it is unlikely
that the density of surface states is greater than this
by more than an order of magnitude or two, so that
one would not be surprised to find that changes in ¢,
account for almost all of the observed change in contact
potential.

19 S, R. Morrison, J. Phys. Chem. 57, 860 (1953).

C. G. B. GARRETT AND W. H. BRATTAIN

One possible test is the behaviour of contact potential
in very strong light. First assume N,=N;=0. In order
to derive expressions for the surface potentials in a
very strong light we use the strong form for the recom-
bination (30). On physical grounds one would expect
that the difference between the surface potential and
the potential in the body would become very small in
strong light: now that there is a copious supply of
both holes and electrons the charge in the space-charge
region has become very sensitive to the exact value of
surface potential. Let us then take Eq. (9) and expand
the exponentials in a power series in y. In this case, the
first-order terms cancel, giving

DA (e Yo— 1) 4N (e¥o— 1)+ A=A ¥
Yy . (40)
ZL/I)%

From this, one sees that ¥Y—0 in strong light as the
fourth root of the intensity of the light.

A'similar analysis can be carried out for nonvanishing
N, and N, The point is that in all cases the effect
should be to shift that portion of contact potential
arising from ¢, to a standard value (Y=0 for N,=N,
=0; ¥'=0 for N,, N;— =) irrespective of the starting-
point: any contributions from the ionic double layer,
however, should be unchanged.

The experimental difficulty in this lies in the high
light-intensity required. One rough experiment on an
n-type sample was carried out, the results of which are
shown in Fig. 3. (The measurements were made on an
ac basis, with a low duty-cycle, to minimize heating.)
The upper curve was obtained in an atmosphere of
humid oxygen (about 70 percent relative humidity);
the lower in an atmosphere of dry oxygen. For the upper
curve ¥ >0, the surface is more #-type than the interior,
and the surface photovoltage is small; for the lower
curve ¥ <0, the surface is strongly p-type, and the
small-signal photovoltage is large and of the opposite
sign. The fact that, in the latter case, it was possible
to shift the contact potential nearly half-way to the
zero point, shows that the original estimate of Brattain
and Bardeen of Ay,/Acp~0.2 is assuredly too low, as

o7

o __o__—O-—
o } O]
05 4 =0
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Fic. 3. Experimental behavior of contact potential
in strong light.
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concluded by Morrison, but it was not possible to
attain a light intensity sufficiently great to reach the
region where Eq. (40) might apply.

The conclusions of -this section may be summarized
thus: (1) The surface photo-effect, in combination
with measurements of surface recombination velocity
(in order to calculate I,) is the most reliable tool for
determining whether the surface is p-type or #n-type,
and how much so; (2) Such measurements do not,
however, shed much light on the problem of determin-
ing the location and density of surface traps.

9. Field Effects

In the field-effect experiment of Shockley and
Pearson,? measurements were made of the change in
surface conductivity produced by applying a high
normal electric field. The results of such a measurement
are best described by quoting an effective mobility
ketr, defined by dAG/dZ, the differentiation being
carried out at constant ionic charge. Using (32), (7),
(23), and (31) we find

1—N\"2be¥ (1)
Meff= M ’
"1 A2eY — Z(N 2T+ N3)/ (¥ — 1)

where Z again has the significance of Eq. (34). Equation
(41) is illustrated in Fig. 4, for the case A=0.2, with
No=N3=0 and with N,=N,=8X10% cm~2. (For N,,
Ny— 0, perr—0 for all ).

Results of measurements on germanium generally
give values of |uee| lower than u, by about a factor
of 2.2 Although such experiments have not been carried
out in a controlled environment such as the Brattain-
Bardeen cycle, there is a suspicion that uess is much more
nearly independent of ¥ than one would gather from
Fig. 4. If this turns out to be the case, either the
Brattain-Bardeen trap model is wrong, or the traps
responsible for surface recombination are different from
the surface states that cause |uess| to be less than for
the case of space-charge only. It is clear, however, that
N, and Ny cannot be very much greater than 10° cm™2,
or there would be no field effect at all.®

Two other possible experiments may be mentioned
here: (z) the influence of applied field on the surface
photo-effect; (47) the influence of light on the effective
mobility as measured in the field-effect experiment.

20 The lower branch of Fig. (3) fits well to an equation of the
form L=1I,(fAY—1) (l—l-)\?eﬂA") obtained by settingP— ¥ = const
[see Egs. (9) and (31)] and using Eq. (31). This shows that, even
at the highest light, the surface potential has not yet shifted to
the point at which electrons or donor traps have become of
appreciable importance.

21 W, Shockley and G. L. Pearson, Phys. Rev. 74, 232 (1948).

22 J, Bardeen and S. R. Morrison, Physma 20, 873 (1954). H. C.
Montgomery and W. L. Brown, Bull. Am. Phys. Soc. 30, No. 2,
42 (1955).

28 Remember that N, and N are the numbers of traps multiplied
b};lz a B(})lltzm(mn factor: The actual numbers should be much greater
than this.
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F1c. 4. The “effective mobility” in the field-effect experiment,
with and without surface states.

The first of these measures the quantity

(a ) (a‘#s) €,ir€0 a2¢s
av/).\arL/;

4rD 629L’
where D is the gap across which the voltage AV is
applied. This may be evaluated from Egs. (32) and
(33). The resulting expressions are very cumbersome.
For the case of N, N3 smaller than #,£, and in the
vicinity of the change in sign of the photo-effect
(|7|<1), it may be shown that

dlps €air )\ %ce 1
() ()

dL]  ego V2D BI,
independently of the magnitude of NV, and N, to first
order in these quantities. The effect should be easily
measurable, but gives no direct information as to the

surface states. The second experiment measures the
quantity

(). ~CD.G .G,
(). (%), @

This may be evaluated, using Egs. (23) and (33).
The general result is too complicated to be worth
quoting here, but it may be shown for the case N,=N3
=0 that, in the vicinity of the point at which wues
changes sign, illumination of the surface with light of
intensity of the order of I, should produce significant
changes in p.s. Such an experiment ought to give an
additional check on the theory.

(42)

(43)

10. “Channel” Conductance

The formulation of space-charge theory which we
have presented in this paper makes possible a simple
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analysis of the question of “channel” conductance, first
discussed by Brown.?* Consider a sample of germanium
containing a p-z junction, and suppose that the surface
of the n-side is covered with negative ions, in such a
way as to make the surface everywhere p-type. The
properties of the structure will be affected by the fact
that the holes near the surface on the p-type side are in
electrical contact with the #n-type side. A complete
analysis demands the consideration of the three-
dimensional current flow problem, allowing for the
presence of space charge, and requires a knowledge of
how the ionic charge will change with time as a result
of the change in electrochemical potential of holes and
electrons produced by applying a bias to the junction.
It is easy, however, to write down the channel con-
ductance for the one-dimensional case, in which the
ionic charge and electrochemical potentials are supposed
uniform in the direction parallel to the surface and
constant with time. The channel conductance is then
that surface conductance arising from minority carriers
in the inversion region near the surface. Since the
channel conductance is significant only when the
inversion region is well developed, it is sufficient
approximation to set the actual number of minority
carriers per unit area near the surface equal to the
surface excess of minority carriers. We shall suppose
that the base material is n-type, so that holes are the
minority carriers. In our agreed approximation, the
channel conductance is thus equal to eu,I',. The
magnitude of this quantity depends on the density of
absorbed anions, and therefore on the chemical environ-
ment. The interesting question is then how the channel
conductance depends on the voltage applied to the
nearby junction in the bulk semiconductor. If the
section of the channel considered is very near the bulk
junction, it is sufficient to make our usual assumption
that the electrochemical potentials are everywhere
uniform, so that the applied voltage 7 and the quantity
P on the n-type side are related approximately by
V=P/B [see Eq. (18) %26 The voltage is imagined to
be applied suddenly, so that the ionic charge on the
surface has not time to change. The change in the
space-charge region so produced still depends on the
assumption made in regard to the surface states.
We start first with the assumption N,=/N;=0. From
Eq. (9), one can write I',—T',, constant. For the case of
interest (8V, ¥Y<<—1) the only terms in F(¥) that need
be considered are Ae?~Y and A1V, we have the following
equation for ¥:

NPT — V= N2A}-A, (45)

2¢W. L. Brown, Phys. Rev. 91, 518 (1953).

25 Since, as we shall see, the channel conductance is compara-
tively low, this assumption is incorrect for regions distant from
the bulk junction, because, as Kingston has pointed out,? the
current carried by the channel sets up an ohmic drop in potential
along the channel, which makes the effective voltage applied
between the channel and the n-type body smaller and smaller,
the further one proceeds away from the body junction.

26 R. H. Kingston, Phys. Rev. 98, 1766 (1955).
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where A is the value of (—Y) for the case 8V=0. By
using Eq. (7), it may then be shown that the channel
conductance G is well described by the following
approximations:

—BV<—BVy, —V~—BV+A4,
Gar~K{[—=B(V+Vo) = (—B8V)}.  (46)

—BV>—BVo, —Y¥~—BVo+A4,
Ga~vK(=BV){[LTV0+17i—1},  (47)

where 8V o= —N2%* and K=eu,\"n.L.

It will be seen that, in the model of no surface states,
the channel conductivity should vary rather slowly
with reverse bias until a voltage V), is reached, and
should fall off very rapidly thereafter. The point is
that, for zero bias, the (negative) ionic charge is
compensated partly by holes, partly by ionized donors
in the exhaustion region; as negative voltage is applied,
the exhaustion region widens, until finally all of the
(fixed) negative ionic charge can be compensated by
ionized donors. There being no holes left, the channel
is described as having been “pinched off.”

With an appreciable density of surface states, this
pinching off does not occur. Using Eq. (31), we see
that there is now no linear term in ¥ in the expression
for surface charge: therefore the approximation
—Y~—BV+A should continue to hold indefinitely.
In the limit, for —V very large, we should have

Ga~3K(—BV0)/(—BV)?, (48)

the conductivity decreasing as the inverse square root of
applied voltage. For high reverse bias, however, as
pointed out by Kingston,?® the thickness # of the region
in which holes can flow becomes small in comparison
with the bulk mean free path I. Following Kingston,
we take this thickness to mean the distance X in
which the electrostatic potential falls through kT/e;
then, from Eq. (11), for the limit —8V>>—gV,, one has

Y dy PRAY
o[ |
ri1 APV —NTy)E 2(—BV)

so that, because of the reduction n available thickness,
the hole mobility is reduced in the ratio A*£/2I(—8V)%.
Thus K =epm:£%/21(—BV)3, and

eupniuez Vo
Gch’\’ (_')

4] 4
Therefore Gen~3X10~%(Vo/V) mhos per square for
germanium at room temperature. This agrees with
Kingston’s conclusion®® that, at high reverse bias, the
conductivity should be proportional to 1/V. The
remarkable feature of (50), however, is that the
channel conductivity at V=7V, is, under these condi-
tions, independent of the resistivity of the base material.
The reason for this is that the quantity A\ enters both
into the concentration of minority carriers at the surface

(50)
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and into the width of the channel, so that the channel
conductance depends only on A, and on this only
through the “pinch-off” voltage V.

For a channel of length ¢ and perimeter d, the channel
conductance should thus be =3X10~%(d/c) at V~V.
In the junction transistor structure, (d/c) may be of
the order of 50 or more for a channel over the base
region: the channel conductance should therefore be
~10~* mhos at Vo~V. Experiments of Kingston?® and
of Brown? give just this order of magnitude. In an
alloyed structure, no appreciable channel can form
over the base, but a channel over the emitter or collector
would have (d/c)~500, so that channel conductances
of 10~ mho would not be surprising.

The general conclusion of this section is to confirm
Kingston’s observation that, for sufficient reverse bias,
G«1/V, and to show that the coefficient in this
relation depends on the bulk properties and surface
treatment through the factor V. In comparing with
the experimental results, however, one must remember
that, if sufficient time is allowed after the application of
bias, the ionic charge itself may change.

11. Time Effects

It has been assumed throughout that surface states
are in extremely good electrochemical contact with the
conduction or valence band of the semiconductor, while
charges associated with ions are fixed. That the former
is a reasonable assumption is shown by the observation
that the “effective mobility” observed in a field-effect
experiment is consistently less than the space-charge-
only value even when measurements are made in a
time of the order of 10~2 second after switching on the
field.? The assumption about the constancy of ionic
charge implies that there are no further time constants
in the surface system. This is not true. When the
surface of a lump of germanium is illuminated by a
fairly intense light, it is found that the contact potential
returns over a period of seconds or minutes towards its
initial (dark) value; on switching off the light, the
contact potential overshoots, and only recovers the
original value some time later. Similar effects have been
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observed by the authors in experiments on germanium
electrolyte systems.'” These experiments can be
described by saying that the ionic charge tends to
change in such a sense as to restore the surface potential
¥, to the value corresponding to chemical equilibrium.
This is what one would expect from the theoretical
treatments of chemisorption on a semiconductor given
by Aigrain and Dugas, Engell and Hauffe and by
Weisz.?

The question of long-time effects introduces consider-
able uncertainty in the application of the results of
section B of this paper to actual systems. In addition,
there is the complication that, in structures involving
body p-» junctions, ions on the surface may drift under
the influence of applied fields?® thereby introducing
further long-time changes in surface properties.

12. Conclusion

In this paper we have considered the theoretical
interpretation of experiments on the electrical properties
of semiconductor surfaces. The theory of the space-
charge region may be written down fairly precisely,
but considerable ignorance still prevails as to the exact
structure of surface states, under given chemical
conditions. Measurements of surface photoeffect are
not in themselves sufficient to answer this question.
The most promising line of attack appears to be a
combination of the field-effect experiment with a
controlled variable chemical environment.
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