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Reduction of Relativistic Two-Particle Wave Equations to Approximate Forizis. III
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The interaction between two fermions of charge ez and ~zz and intrinsic magnetic moment p, z and pzz is
described by a sixteen-component wave equation of the Breit type. The method of reduction of two-particle
wave equations, as given in two previous papers by Chraplyvy, is used to convert this equation to an ap-
proximate four-component Pauli equation. A simple perturbation calculation is used to determine the con-
tribution of the intrinsic magnetic moments to the fine and hyperfine structure of hydrogen and
positronium.

1. INTRODUCTION
' 'N two previous papers, ' referred to hereafter as I and
~ ~ II, the Foldy-Kouthuysen canonical transforma-
tion' was generalized by Chraplyvy to the two-body
problem both for the singular case of equal masses as
well as for the case of unequal masses. We consider here
several applications using, except where noted, the
terminology and notation of I and II.

Pour-component one-body relativistic equations of
the Dirac type or sixteen-component two-body equa-
tions of the Breit type may now be reduced to two- or
four-component approximate equations of the Pauli
type by the I oldy-Wouthuysen method or by the pro-
cedure of expressing the small components of the spinor
f in terms of its large components. ' In Sec. 2, the differ-
ences between these methods are brought out in a
discussion of a familiar one-body example which we
shall have occasion to refer to later as the limiting case of
a two-body problem.

In Sec. 3, we compare the Hermitian part of a three-
dimensional Bethe-Salpeter equation with the corre-
sponding Breit equation by applying the two-body
transformation of I to both.

In Secs. 4 and 5, the Breit interaction between two
fermions of charge eI and &II is amplified to include
intrinsic magnetic moment and virtual annihilation .

terms. The resulting equations are converted to the
Pauli representation by means of the two-body trans-
formation. It is then a simple matter to calculate the
contribution of the intrinsic magnetic moments to the
fine and hyperfine structure of hydrogen and posi-
tronium.

2. THE HYDROGEN ATOM: ONE-BODY TREATMENT

Essentially the same diGerences exist between the
results of the Foldy-Wouthuysen and the "large com-
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may be expanded in ascending powers of the hne
structure constant n.

wc' mn4 e 3'
E=„. ~ ~ ~

2ts' 2rt' y+-'; 4

If the Foldy-Wouthuysen transformation is applied
to Eq. (1), one obtains

Pps e2 P p4 ~e2
a'y'= Pmy —— + 8(r)

2m r Snz' 2m2

g2

where EE' is obvious1y Hermitian and P' is still a four-
component spinor. This equation may be separated into
two two-component equations referring to positive and

TAnr. a I. One-body relativistic energy level corrections in Eq. (3).
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8nz'

m'e—~(r)
2yg2

e'—e —Xp4'~ r3

Expectation value

2' l+-,' 4

m+4
2e3"'

2rt' (2l+1)(l+1)
l&0

mn4 1
2e' l(2l+1)

4 U'nits are chosen so that A= c= 1.

ponent" methods of reduction when applied to either
the one or the two-body problem. Although these
differences have been discussed qualitatively before, "a
simple quantitative comparison may be of interest. We
consider the hydrogen atom, approximated as a one-
body problem.

The exact solution for the energy E of the Dirac
equation' for hydrogen,

(Prrt+n y e'/r—)P=ic)Q/itt,

3i7
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negative energy states respectively by the simple pre-
scription of replacing P by +1 or —1. The resulting
equation for the electron in positive energy states is just
the Schrodinger equation for the hydrogen atom plus
relativistic correction terms whose contribution to the
energy may be readily calculated by perturbation
theory. ' The three relativistic energy level corrections
given in Table I combine to give the mn4 term in the
expansion of the Sommerfeld Qne structure formula,
Eq. (2).

If, on the other hand, one uses the "large component"
method' to reduce Eq. (1), one obtains

iP r
+ 8(r)+ —y

Sma

e~ 1' ie2 f By
+ e —Xy+ VX—x=2—.(4)

4m' r' 4m' r' 8t

Clearly the "Hamiltonian" operating on the two large
components 7f is not Hermitian. Comparing Eqs. (4) and

(3) for positive energy states we find that the kinetic
energy relativistic correction and spin-orbit terms ap-
pear in both, but instead of one term affecting the 5
states there are now two. However, since

(
~e' se' r xe' mQ

8(r)+ —p = 5(r) = 82 i, (5)
4m"3 2m2

where (A) denotes the expectation value of A, we see

that the relativistic energy level corrections again add to
give exactly the mn' term in Eq. (2).

In the two-body problem, there is no exact solution
available by which to check approximate solutions. One

would again expect the two reduction methods to give
the same result for the energy levels. Given a choice,
however, certainly the method which leads to a Hermi-

tian Hamiltonian is more satisfactory.

3. TWO-BODY EQUATIONS

In I, Chraplyvy has shown that a two-body Hamil-
tonian written in the form

H=p m +p"mrry (hh)+(8h)+ (h 8)+ (88), (6)

where (h h), (h 8), (8h), and (88) represent even-even,
even-odd, odd-even, and odd-odd terms, may be trans-
formed into an even-even operator~

' W. A. Barker and Z. V. Chraplyvy, Phys. Rev. 89, 446 (1953).
See also E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectra (Cambridge University Press, New York, 1951).' See, for example, E. I . Hill and R. I andshoff, Revs. Modern
Phys. 10, 87 (1938).

See I, Eq. (7). The additional terms in (7) which arise if
(8h) and (h 8) do not commute make no contribution to the
desired accuracy in any of the cases treated in this paper.

Hrzz =P'mr+P"mrr+ (hh)+ (8h)'
2mI

pzz pr prr

+ (h8)2 — (8h)4 — (h8)4
2mgg Smz' Smear'

1
+ K(8h), (»)3, (8h)3

Sml'

1+,t.L(»), (hh)j, («)j
Smzx'

pzprr

+ t L(8h), (88)1+, («)1+
4mymll

Prmr —Pzrmrr
+ (88)'+" (7)

2(mr'-mrr )

If (hh), (h8), (8h), and (88) are Hermitian, it is
evident that Hpg is Hermitian.

The Hermitian part of the three-dimensional Bethe-
Salpeter equation' written in coordinate space is

He(r) =(HIGH„+2L(A IA,»—A IA ") V~(r))+)

X+(r)=~(r), (8)
where

Hz—=Prmz+ e' p,

EgalII

Hrz =—przmzr —n" y,

+II~IIIIII—
2&lr2'

(9)
&I=—i(mr +p ) ', &rz —=+ (mzz +p )*

ererr (
L7, (r) —=

r

nz. ezr (n, r) (er . r)

2 )I

If we replace the Casimir projection operators in the
curly brackets in Eq. (8) by 1, we obtain the well-known

Breit equation.

He(r) = Prmr+n'y+P"mrr —e" p

nI. nII (nI. I) (nII. r) y

r E 2 2r2 )
Xe(r) =M (r). (10)

Equation (10) is in the form of Eq. (6) with

(hh)= I I/», (»)= 'y, (»)= —"y, (»)
alld

ererr (e'e" (e'r)(n" r) )
r l 2 2rs

+

In order to write Eq. (8) in the form of Eq. (6), we

evaluate the anticommutator, retaining only those
terms in the expansion which contribute to the desired
accuracy. The resu)t is

E. E. Salpeter, Phys. Rev. 87, 328 (1952).
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««I 2F«ezz&(r) ( 1 1 ) ««z
+

r 2 (mx' mzx') 4r'

( O' EFII PP ««IxI,+ I (rxy)+
(mz mzz )

r' -+
2««z r(n' r)+ EF . yx
Smrr r'

(h8)= —n» y —««xl + I
n 'y

&4mzz 8mz) r +
zer~zr 2

zzgz.
Smr r
««I r(nxx r)

p o

2mzmzz

(12b) 1 )r q 1
x -p'+rl —y I y—(n'+n"). (rxy)

p pI ««I EFI.oII 3(EFI.r) (EFII. r)

4mrmzr

Sx p'mz —p"mzz
oI.EFII3(r) + e 2«2

3 2 (mz2 —mzz2)r' -+
&~r~zz~' IX

3 EFI.EFII (EFI.r) (EF .r) ]
X — + '+" (15)

2r2 r2 2r4 l

r(n". r)
(12c)

r' -+Smz

««I ««I fp'p On the other hand, one obtains the following trans-
(b&) = (p'+p") —

I + I
p'~ —,(12a) formed Hamiltonian" from the Breit equation (10):

2r 8 (mz mzz ) r'

I
1 1 pI p2 pIIp2 pIp4 pIIp4

(8@)=n'y+««zl + (Hrzz) -p'mz+ p"m»+ +
E 4mz 8mxz) 2mz 2mzz 8mr' Smrr'

zqzz 2 &razz
X n'y, — + nxxEF" y, —+-

r + Smzz r Smzz

r(n'r)-

Here

t A, BJ~—=A. B+B.A and fAX, Bg~—=AX B+BXA.

The elimination of a leading (8 8) term' is a consequence
of

PI nIj +II nII) () (13)
The (88) terms in the Breit interaction, Ue(r), are
changed into (h8) and (8$) terms respectively when
acted on by nz y and nzz y in (8). Expressions (11) and
(12) are manifestly Hermitian.

We may now apply the prescription (7) and transform
the Hamiltonians in (8) and (10) into even-even opera-
tors. Neglecting contributions of order mn' and higher
the result for (8) is

PIp2 PI Ip2 pI p4 pIIp4
(&rzz) =p'mz+ p"mzz+ +

2mr 2mzz Smz Smzz'

&I&rr 7F«ezz3(r)
+(p'+p") -(p'+p")

2r

««I
xl + I-(pz+p») I

k mx2 mzx2) S~'

( EFI nzx ~z~zz

X
I

+ I. (rXy)+ (p'+p")
& mz' mzx') 4mzmzz

1 tFr
x -p'+rl —y I y ——(n'+n") (rxy)

r E r' ) r'
eze» EFI.EFII 3 (EFI. r) (EFII. r)

+(p*+p")
Smzmrz r'

Sx
EFI.EFII3(r) 1,q. . .

3
2 There are (88) terms which contribute to higher order

The spinor on which Hrzz operates in (14) and (15)
has 26 components. %e may separate out two four-
component wave equations in which both particles are
in positive or negative energy states by setting p'= p"
=1 or P'=P"= —1 respectively. The other two possi-
bilities corresponding to p'= —pxz=&1, yield four-
component wave equations in which one particle is in a
positive energy state and the other is in a negative
energy state.

Several differences between (14) and (15) should be
emphasized:

(a) The e' terms in (15) responsible for the disagree-
ment between the predicted and observed values of the
fxne structure of helium" are not present in (14). These
terms in (15) come from the (88)2 term in (7). There
are no (88) terms in (12) as a result of the fundamental
anticommutation relations (13) and hence no e4 terms
appear in (14).

(b) When both particles are in negative energy states
(p'= p"= —1) all the terms in Eq. (14) are equal in
magnitude but opposite in sign to the terms obtained
when both particles are in positive energy states
(Px =P'I= 1).If one particle is in a positive energy state
and the other in a negative energy state, all interaction
terms in (14) vanish. The same behavior is not
exhibited by Eq. (15).

(c) In particular when ezexz= —e', there are bound
negative energy states in the case of Eq. (14), but there
are no bound negative energy states in the case of
Eq. (15).

' There is one incorrect numerical factor and several misprints
in I, Eq. (8),which have been rectified in Eq. (13).See Appendix A
for Errata to I and XX.

See G. Breit, Phys. Rev. 36, 383 (1930)and 39, 616 (1932).
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(d) If the mass of one of the particles is assumed to be
so large that it becomes an immovable supplier of field
for the other particle, i.e. mz~~ or mzz —+~, then Eq.
(15) goes over into Eq. (3). The Breit equation (10)
from which (15) is obtained goes over into the Dirac
equation (1) if we let the velocity operator (Irr or 4r") of
the immovable particle go to zero. These limiting proc-
esses do not cause (14) and (8) to go over into (3)
and (1).

All of the differences between (14) and (15) are due to
the presence of the Casimir projection operators in (8)
and their absence in (10).This difference between these
two two-body equations stems from the manner in
which they were derived. Equation (8) is a specialized
form of the Bethe-Salpeter equation derived from hole
theory Th.e Breit equation (10) was derived from the
single-electron form of quantum electrodynamics.

The results of this section con6rm and elaborate
points which have been made previously by Bethe, "
Brown and Ravenhall" and Salpeter"

4. THE HYDROGEN ATOM: TWO-BODY TREATMENT
INTRINSIC MAGNETIC MOMENT TERMS

The possibility of amplifying the Breit interaction to
include intrinsic magnetic moment terms has previously
been considered by Breit and Meyerott. "They found
that there is no objection in principle to this generaliza-
tion of Pauli's idea" to the two-body problem.

In the treatment which follows, intrinsic magnetic
moment terms are added to the Breit interaction for the
electron as well as for the proton. A quantum electro-
dynamic explanation exists for the electron's intrinsic
magnetic moment, but no similar fundamental explana-
tion has yet been advanced to account quantitatively
for the proton's intrinsic magnetic moment. Here the
intrinsic moments are both placed on the same phe-
nomenological footing.

Our fundamental wave equation is of the form of
Eq. (8) with UB(r) replaced by UB(r)+Ursr(r) where

ererr
Ur w(r) = pr I

iP'Ir' ——P'Ir' Ir"X

Applying the same procedure as before, we hand that
Eq. (14) is augmented by terms of precisely the same
form as terms already appearing in that equation;
namely,

(Ifrsr) TR
(p +p ) (2rs 2p

rrererr8(r)
i +
4 nrrs snrrsi

(P'+P") 2r r~' 2r Ir~")
ererr + — i. (IXp)

Sr' my2 mzz~

(pI+prI)
ererr(rrr4r +rrrrrr ) ' rXII

4nsymzzr'

~y~zy

(rsr+ srr+Isrrsrr)
Smzmzz

rr 3( r. r) ( rr. r)

W= Wp+Wr+Ws+Wp+W4,
where

Wp ——P'/2rs —e'/T,

p4 sre' e' r
Wr ——— + 8(r)+ o' —XII,

Sp' 2JM' 4p' r'

TABLE II. Contributions to (W~) in Eq. (20).

(18)

Sx——4r'4r"8(r) . (16b)
3

If we amplify (10) rather than (8) by Urr4I(r) we obtain
the same result as (16)b for both particles in positive
energy states (P'=Prr=+1). It is just the reduced
Hamiltonian obtained by setting PI=P'I=+1 in Eqs.
(14) and (16b) which we are concerned with in de-
termining the bound state energy levels of hydrogen.

It is convenient" to write the operator for the binding
energy W=IIg@D—1Ãz —wzz explicitly in terms of the
reduced mass p. If we identify mz with the electron mass
ns and mrr with the proton mass M, then 1/@=1/ sn

+1/M and ererr= —e'. I,et

sr err (
iprr+II . prr&II .&IX

TS)

ererrrsrrsrr rrr 4rrr 3(4rr ~ r) (orr r)
+pIpII

4eszmzz r' r'

Sx——4r'4r"b(r) . (16a)
3

"H. Bethe, Hondbscch dcr Physsk (Verlag Julius Springer,
Berlin, 1933), Vol. 24, 1, p. 375.

44 G. K. Brown and D. G. Ravenhall, Proc. Roy. Soc. (London)
A208, 552 (1951).

'4 Reference 8. See especially the discussion on p. 331.
"G. Breit and R. Meyerott, Phys. Rev. 72, 1023 (1947).
"W. Pauli, Handbrcch der Phys4k (Verlag Julius Springer,

Berlin, 1933), Vol. 24, Part 1, p. 232.

Operator

-p'8

2m' r

2m'' r
'~

3p4

Srn2iV

3p4

8m3f'

Expectation value

p'a4 p'a4

2~me4 ~M~3(ly-,')
p'n4 p'u4 p'n4

2mMn4 2mMns(r+-', ) mMn'+ ~0l

9p4~4 3p4~4+gm'3fn4 2m'4M'(l+-', )n4

9p40.4 3p4a4+-
gm3IIsn4 2m3P (l+ ,')ns-

p'a4
&oimMn'

' This treatment follows that of W. E. Lamb, Jr. , Phys. Rev.
85, 259 (1952) and K. Bechert and J.Meixner, Ann. Physik 22, 525
(1935).
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TABLE III. Lamb shift contributions from W3, Eq. (21).

32i

Operator

7I 8
nz —,e(r)

x'8
err —&(r)3f2

g2
p, z2

p'~. (rXp)
21gpf

Expectation value

p,'a4
PI 2 3~0l

PS N

p,'n4
@II~'2 3~0 L

p20,4" rnn'(1+1) (21+I) j=I+—,
'

l/0

22S)

+50.065

+0.023

Energy increase in Mc/sec
22'

+8.349

e2

p ' (rXp)

@2'
mn'I (21+1)

p'O, 4

2M'n'(I+1) (21+1)
l~0

p'n4

2M'n'I (2l+1)

—16.697

+0.002

—0.001

e' 1 e' (r pq 3p'
-p' — rI —I.y+

2ntM r 2rnM ~ r' ) 8m'M

3p4
+ — 8(r), (20)

SnSM2 mM

7l e

me' 7l e e
Ws= pi&(r)+ yir&(r)+ pie' —Xp

m2 M2 2' r3

e2 r
+ Ilute' —Xp—

2m% r'

e' re' —Xy, (21)4' r'

e2

(1+mr) (1+~ii)
4m%

e'e" 3(e'r) (e" r)

e2Sx——e'e"&(r) + (1+)ri)e" —Xy
3 2M

e2

+ (1+2pzz)e" —Xp. (22)
4&2 r3

Wp is the Schrodinger Hamiltonian for a particle of
mass p, charge —e in a Coulomb field whose potential is
e/r. We now tabulate all the individual contributions to
the energy levels, determined by treating W~, W2, W3,
and W4 as perturbations of the Balmer energy levels:
(Wo) = —pn'/2n'.

W~ consists of the relativistic correction terms which
are familiar in the reduction of the Dirac equation (1).
The individual contributions to W~ may be obtained
from Table I simply by replacing m there by p, .

The last three terms of S"2 are corrections which occur
as a result of writing 8' in terms of the reduced mass.
The expectation value of W2 is obtained without ap-
proximation from the addition of the individual contri-
butions in Table II:

(Ws) = —p"n4/8rnMn'.

The first four terms of 5'3 yield the contributions of
the intrinsic electron and proton magnetic moments to
the Lamb shift. The last term of 8'3 arising as a result of
writing 8' in terms of p, makes a very small contribution
to~(the Lamb shift. The expectation values of these
operators as well as the numerical values for the 22S~
225';, and 22I'; states of hydrogen are given in Table III.

In a review paper" on the Lamb shift, Salpeter
pointed out that the contribution of the electron's
intrinsic magnetic moment ( cr/2n) for an infinitely
heavy nucleus is given by 21., where the Lamb constant
I.=cr' Ry„e/3n, and that the correct factor accounting
for the finite mass of the nucleus is not (1—3nr/M)
and had not as yet been calculated. From Table III, we
see that the contribution from pi ——(n/2x. ) (1—5.946rr/~)
may be written +sI.(1—3m/M)(1 5946—rr/n) from
the term a6'ecting the S states and —stI. (1—2ni/M)
X (1—5.946rr/vr) from the term affecting the I' states.
These combine to increase the separation of the
2'S;—2'I'I states by +—,'I.(1—11m/4M) (1—5.946n/n)
=66.78 Mc/sec, of which —0.10 Mc/sec is due to the
mass correction and —0.94 Mc/sec to the fourth order
intrinsic magnetic moment of the electron. "Corrections
of this order are now of interest since the experimental
accuracy in Lamb shift measurements is &0.10 Mc/sec. 's

The contribution of the proton's intrinsic magnetic
moment to the Lamb shift agrees with that calculated
by Salpeter" and is still not measurable. It should be
pointed out that the normal Dirac moment of the
proton as well as that of the electron have been taken
into account in these calculations and that their com-
bined contribution to the Lamb shift is represented by
the fifth term in Ws and amounts to —0.002 Mc/sec.

In the case of hydrogen, the hyperfine structure
splitting is small compared to the fine structure splitting.
The operator for the hyperfine energy, W4, includes all

"E.E. Salpeter, Phys. Rev. 89, 92 {1953).' R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).
20 Triebwasser, Dayho6', and Lamb, Phys. Rev. 89, 98 {1953).
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terms which depend on the nuclear spin operator
x=zr /2. Because of the tensor interaction, / is not a
good quantum number. We restrict our attention, how-
ever, to the S and I' states. Since there are no matrix
elements of S'4 connecting these two states, we may
consider the diagonal elements for a given /.

S states. —The expectation value of 5'4 for the S
states is given simply by

27M
(W)= (1+.*)(1+.**)(-'-"3()),

3m&
(24)

which leads to the S state hyper6ne splitting,

8 p,'n'
EWs= — (1+uzi) (1+friz)

3 an' (25)

This is in agreement with Lamb, " but does not, of
course, tak.e into consideration a number of eGects
treated in quantum electrodynamic calculations. "

I' states. —It is convenient to write 84 for //0 in
terms of i, a= zix/2 and 1=rXy.

g2 3i rs r
(1+i z) (1+~xx)—,

mls r' r2

1.
+ (1+fizz)—x' 1+ (1+2pzz) I ' 1. (26)

2M' r3

g2

1+2fzzz l

+ '(2~u+1)-3), (27)
2Ms

fzsn' (1+pz) (1+fizz) 1+uzi
P;: (W,)=

18n' SnsM mM

Fquation (26) is of the same form as the hyperfine
energy operator for /&0 as treated in Bethe's Handbuch
article" and recently reviewed by Lamb, " but it in-
cludes additional small contributions. It is, therefore, a
simple matter to determine the expectation value of 8 4

for the I'; and I'; states.

fz zr (1+fix) (1++xx) 1+|uzi
P;: (W4)=

mM mM

4p'n4 m(1+2f zz)
AWP (1+friz) (2+fzz)+

9n'Mm 2'
=59.096 Mc/sec for n= 2, (29)

and

4''zr (1+pit) (4—
xzz) m(1+2fzzz)

AF's~=—
9N'Mm

16 p'n'
(1+uzi),

45 mMe'

(31)

which are the leading terms in (29) and (30). The
electron's intrinsic magnetic moment increases the
hyperfine splitting of the 2'Pf and 2'Pf states by +0.034
Mc/sec and —0.007 Mc/sec respectively. The Dirac and
intrinsic magnetic moment of the proton (2nd term in
curly brackets in Eqs. (29) and (30)) increase the
hyperfine splitting of both P states by 0.013 Mc/sec.
Corrections of this order should now be considered,
inasmuch as 2P-state hyperfine splittings are now known
experimentally to within 0.20 Mc/sec, "and more pre-
cise results are to be expected.

5. POSITRONIUM

Again we consider a wave equation of the form of
Eq. (8) with the Breit interaction amplified to include
the 6rst-order single quantum virtual annihilation ex-
change interaction, " U~(r, r) as well as the intrinsic
magnetic moznent terms Eq. (16a). For positronium
mx= mix= m; fzx=fzzz u/2s. , and

U~(r, r') = —(s e'/m') (y,c)3(r)3(r') (c zy, ) (32).
The pair creation matrices y;c and the pair annihilation
matrices c 'y, are dehned by the relation:

=23.626 Mc/sec for zs=2. (30)

These results are to be compared with earlier theoretical
expressions given by Lamb":

Sp, 'n4
AWs; = (1+fizz);

9mM~'

where f=i+j. The Pf and Pf state hyperfine splittings
k, E=1, 2, 3, 4,

1+2fzzz

+—— (2f(f+1)—9), (28) &(»c)(c '~ )0=&. h c) (c '7 ) ~ A
2M'

i=i 2 3
(33)

"R. Arnowitt, Phys. Rev. 92, 1002 (1953),has made the latest
calculation on the hyper6ne splitting of the S states. This and
earlier calculations by R, Karplus and A. Klein, Phys. Rev. SS, 972
(1952);N. M. Kroll and F.Pollock, Phys. Rev. 86, 876 (1952) and
E. E. Salpeter and W. A. Newcomb, Phys. Rev. 87, 150 (1952),
have been used together with the experimental value, known to an
accuracy of &0.0003 Mc/sec, to calculate precision values of the
6ne structure constant.

~ Reference 12, p. 386.

with f=p*yp', c=ysys=c 'i p, =any, ' go=a. Clearly Ug
is even-even.

"Reference 17, Sec. 56, and W. E.Lamb, Jr., and R.C. Rether-
ford, Phys. Rev. 79, 549 (1950).

s' R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952); see Eqs.
(3.5) and (5.3).



RELATIVISTIC TWO —PARTICLE WAVE EQUATIONS

In I, Chraplyvy has shown that for mz= uzi, there is
no finite transformation which will convert a two-body
Hamiltonian containing (88) terms into an (h 8)
operator. We may still use Eq. (7) for positronium,
however, since the Casimir projection operators elimi-
nate (88) terms to the order considered. )See Eq. (12).j
If we amplify the Breit equation (10) rather than
Eq. (8) by Uz(r, r'), we must apply the more general
prescriptions of II. In either case we obtain the same
result for both particles in positive energy states (apart
from the e' terms discussed in Sec. 2).

Separating out the four-component wave equation for
both particles in positive energy states allows us to
write the energy corresponding to the interaction (32) in

two equivalent ways:

2

t

ar a~r 3 (ar r) (a
(1+m)'

4m Ir r5

Sx 4re'—a—'a"b(r) + a'a"b(r). (41)
2m

%e now write the contributions of V&, V2, V3, and V4
to the energy levels, determined, as. in the case of
hydrogen, by treating them as per turbations on the
Balrner energy levels (Vo) = —mn'/4n'.

V~, which includes a part of the virtual annihilation
exchange interaction, consists of kinetic energy and
orbital terms. It is spin-independent and hence con-
tributes equally to the singlet and triplet states.

Vz=(4re'/m')P*(0) U{(ao)p (oo)p +by b~ „
+(&~)r (&~)~' }tp(0)

11m+' 7m+4
(V~)= + bo4-

64n4 16n3 4n'(I+-,')
(42)

= (xe'/m')$*(0) „~{oob, „b-UU

+2auu' ' aUU' g'(0) u'U')

(34) The spin-orbit interaction V2 depends on the total
spin S. It does not contribute to either the singlet or 5
states.

j=l+1
j=lX

Xe2

(U ) = (l+lo' ")b().m2' (35) ' —(I+1) j= (I—1)

where I, U= 1, 2. In the second form of Eq. (34), the 3''
(1-b )2'= Ol

Pauli matrices refer to the individual particles I, II 16m'l(t+-', )(t+1)
Hence we may say that in the Pauli representation, the
virtual annihilation exchange interaction is given by 7

(43)

V= Vo+Vi+Vo+Vo+V4, (36)

where

Vo= p'/m e'/r, —

In the case of positronium (unlike hydrogen), the
hyper6ne and 6ne structure splittings are of the same
order of magnitude and t is a good quantum number in

spite of the tensor interaction. "Therefore, we regroup
the various terms contributing to the positronium
binding energy V=Hg~~ —2m in a slightly di6'erent

way than was done for hydrogen. Let

IN' mn'(1 bo()—
(Vo) = bo4+

84m' 1'r4ol (l+-,') (3+1)

X& —&,

j=l+1
j=l

.—(I+1) J = (~—1).

All spin-spin interactions are given by V4. The b(r)
terms affect only the 5 states

V3 gives the contribution of the intrinsic magnetic
moments of the electron and positron to the Lamb shift.
Using I4r=I4n /n2m, we get

p' 57re' e'p' e' ( r
Vi= — + b(r) — — rl —I I I,

2mo 2m r 2mo Er' )
7mn ft' 4n)

( 8) (V4) r=o=
~

1+—~((2~' —3)b(r))
6m' I 7~)

38
Vo—— S I, where S=-', (a'+a")

2m2r3
(39)

7mn4 ( 4nq
(

1+—
~

for 'So states
1644' ( 7n.)

g22%8
b(r)+ S.l ~

m2 m2r3
(40)

7 mn4) 4nq
~

1+—
~

for oSq states. (45)
48 r44 ( 74r)

2' A detailed proof is given in reference 3. The remaining terms for /&0 are zero for the singlet
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states.

( ) t. tI 3( I i)( rt. p)

i 1+-i
4ms & ~) r5

mn. '(1—sot) ( n)
I

1+-
I

16esl(l+-,') (l+1) ( or)

j= l+1
2l+3

(l+1) j =(l—1).
2/ —1'

(46)

mn' 1Innx' mn' ma'
+ +

4n' 64n4 4tis(l+-', ) 87m'

mn' 1imn' nnx4 7mn4

+ — + &ot
4n' 64e4 4' s(l +-', ) 12es

(47)

j=l+1
(2l+3) (l+1)

mn'(1 hot) ——1

Sns(l+-', ) l(l+1)
—3 (l—1)

l(2l —1)

mn'(1 —ho i)nsn'
+ &oi+

Ss-ns 16iresl(l+-', ) (l+1)

Adding (Vo), (Vi), (Vs), (Vs), and (V4) the binding
energy for the singlet and triplet states is

calculation are those arising from the intrinsic magnetic
moments of the electron and positron. Recently Fulton
and Martin" have calculated all the corrections of
order n' to the e= 2 energy levels of positronium using
a quantum electrodynamic method. It is possible to
identify" the intrinsic magnetic moment contribution in
their final expressions. These are found to agree with the
results of our phenomenological treatment.

We are indebted to Professor Z. V. Chraplyvy for
suggesting this problem and for numerous valuable dis-
cussions. One of us (W. A. B.) would like to express his
appreciation to Professor W. Pauli for his encourage-
ment and comments, and to Dr. A. Thellung, Dr. R.
j'ost, and Dr. P. Martin for helpful discussions.

APPENDIX A

Errata to I
In Eq. (4), the first minus sign should be replaced by

a plus sign.
On p. 389, the second display formula in the middle of

the left column should read:

((ill')sx Qn, N QkntoKNpsN

In Eq. (7j), the numerical coefficient should be s
(rather than —,',).

In Eq. (Sb), the denominator of the last term should
be 25$zc.

In Eq. (Se), first line, the minus sign between the
terms should be replaced by a plus sign; the curly
brackets of the second line should read

s(r pi) 2e" (rXpi)
+47ri5(r) (r pi)+

The last term of Eq. (8e) should be (Sor/3) (e'e")5(r).
In Eq. (8f), the curly brackets should read

r 2l (l+ 1)

(2l+3)
j=l+1

(48)

r2 r2 r4

Errata to II

3 2(e'o") (e'r)(e" r)

—2l(l+1)
7 g l 1 0

(2l —1)

The mn4 terms in Eq. (47) and Eq. (48) agree with
those of Ferrell. "The only nnx' terms considered in our

"R. A. Ferrell, Phys. Rev. 84, 858 (1951).The details are given
in Dr. Ferrell's thesis, reference 3.

On p. 1131,the last formula of the left column should
begin with n„zzo. z

In Eq. (6c), the subscript at the end of the second
term should be oo (rather than oe).

s7 T. Fnlton and P. C. Martin, Phys. Rev. 93, 903 (1954); 95,
811 (1954).' We are indebted to Dr. Martin for an interesting discussion on
the relationship between their work and ours.


