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into two parts,

payout py out+ p@ out pout —f out+/ out

such that the fields Pz'"t and Prinz'"t satisfy the same
commutation relations as the incoming fields. Then a
unitary matrix, M, can be defined as

i/in~— po—ut IlII-1p@in~ py out

One would like to say that this M matrix corresponds
to the Heisenberg S matrix. However, the relation of
this 3f matrix to the classical conservation equations
is not very clear, especially since the fields PP&'ut and
li/Q

' do not vanish in general. The situation would be

improved if they did vanish in general. Hayashi6 in his
latest investigations of local fields in nonlocal inter-
action seems to be proceeding in this direction, that is,
making the out fields obey the same commutation
relations as the in fields by modifying the equations
of motion. In general, if the quantization difEculties
are cleared up for local fields in nonlocal interaction,
one can expect that those of the present theory will
also be cleared up.

I wish to acknowledge my indebtedness to Professor
H. Yukawa with respect to the over-all contents of this
paper and to Professor N. Kroll for suggesting the
attack which was used on angular-momentum conser-
vation.
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The new Tamm-Danco6 equations for meson-nucleon scattering are set up in the lowest approximation
and it, is shown how explicit nonphysical singularities may be avoided in these equations. The particle self-
energies appearing in the integral equation are renormalized, but the resulting modified propagator for the
system then has a nonphysical singularity. For the states T=j =-„ the vertex and self-energy expressions
generated by the uncrossed graph are considered. The renormalized vertex may be constructed by the
successive solution of two one-dimensional integral equations, the finite part of the self-energy then being
obtained by quadratures. Vertex renormalization is uncertain to a constant factor in the Sg state, and the
Sy theory therefore depends on two parameters. No numerical results are obtained, owing to a number of
difBculties found in this theory —a comparison is made between these difhculties and those of the corre-
sponding Bethe-Salpeter equation.

I. INTRODUCTION

OME preliminary calculations of phase shifts for
~ ~

~ ~ ~

~

~

meson-nucleon scattering have recently been re-
ported' for the relativistic w-meson theory with pseudo-
scalar coupling, based on the simplest Tamm-Banco'
approximation to the meson-nucleon system. This
approximation omits all amplitudes describing the
system except those directly coupled to the one-meson
one-nucleon amplitude in consequence of the inter-
action between the meson and nucleon fields. For this
amplitude an integral equation was obtained. In addi-
tion to terms describing the interaction between the
meson and nucleon of this amplitude, the integral
equation contained a number of divergent terms, repre-
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senting the self-energies of the particles and the change
in the energy of the vacuum state which result from
the interaction between the meson and nucleon fields.
The interaction kernel in this integral equation is
clearly the most important term physically since it
accounts for the scattering process, while these other
terms simply describe various kinds of correction to the
motion. Since these corrections could not be evaluated
in this Tamm-DancoG theory, self-energy terms were
simply omitted and calculations were carried through
for the T=~3, S~ and P~ states of the meson-nucleon
system. Although this lowest-order Tamm-D

ancona

theory represents a drastic approximation to the com-
plete p5 theory, very considerable success was obtained
in accounting for the striking behavior of the phase-
shift' 833 in terms of one parameter, the coupling con-
stant G'/4rr. For the St state, the linear behavior of the
phase shift 8& for high momenta could be understood
in terms of the strong repulsive interaction obtained

~ De Hoffmann, Metropolis, Alei, and Bethe, Phys. Rev. 95,
1586 (1954); R. L. Martin, Phys. Rev. 95, 1606 (1954).
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in the Tamm-Danco6 theory, the departures at lower
momenta being attributed to some weak attractive
interaction not included in the theory at the present
stage.

Experiments on meson-nucleon scattering have now
determined these and other phase shifts over a wide
range of energies. The cross sections are relatively
insensitive to certain phase shifts, notably the T=-,',
P-phase shifts 8» and 8», for which it can only be said
that they are small. However, in addition to the phases
63 and 833, the behavior of the T=-,', S~ phase 6» now
appears to be fairly well established. '

In the Tamm-Banco' theory, the interaction kernel
contains one term (the uncrossed graph) which is
eGective only for the T=-,', j=—,'meson-nucleon states.
This is a consequence of the fact that these states have
the same isotopic spin, angular momentum, and parity
as the state of one stationary nucleon or of one anti-
nucleon. Although the integral equation has a finite
form, it has no finite solution for these states, since this
additional term generates new self-energy divergences
in an implicit way. However this interaction term gives
an important contribution to the scattering processes
and cannot consistently be omitted. No means were
available for the treatment of this problem and no
calculations were made for these states in the previous
work.

In order to avoid the presence of the vacuum self-
energy term in the integral equation, a new Tamm-
Dancoff (N.T.D.) method has been proposed' in which
the amplitudes are based on the physical vacuum state
rather than the bare-particle vacuum state. In the
integral equation obtained with the corresponding
Tamm-Dancoff approximation, no vacuum self-energy
term appears, the energy of the system being measured
relative to that of the physical vacuum, and the par-
ticle self-energies appearing have a form which is now
closely related to that of the covariant theory. 5 In this
N.T.D. theory, the positive and negative frequency
states were treated symmetrically, and a new difficulty
appeared, namely the presence of unphysical singu-
larities in the N.T.D. amplitudes. The avoidance of
these singularities clearly required the statement of a
further boundary condition expressing the fact that the
state with respect to which the N.T.D. amplitudes are
defined is really the physical vacuum state.

The purpose of the present investigation was to
inquire to what extent the existing phase-shift calcula-
tions could be improved by the inclusion of particle
self-energy corrections, and supplemented by their
extension to the T= —,', j=—,

' states. In Sec. II, the
N.T.D. equations for the problem are set up in the

3 H. A. Bethe and F. de Hoffmann, Phys. Rev. 95, 1100 (1954);
J. Orear, Phys. Rev. 96, 176 (1954).

~ F. J. Dyson, Phys. Rev. 90, 994 (1953) and Phys. Rev. 91,
1543 (1953}.The latter paper will be referred to as D2.

s F. J. Dyson, Phys. Rev. 91, 421 (1953) (this paper will be
referred to as D1); W. M. Visscher, Phys. Rev. 96, 788 (1954).

simplest Tamm-Dancoff approximation and it is found
possible in this approximation, by the use of the bound-
ary condition mentioned above, to give a set of equa-
tions which have no nonphysical singularities. This
requires, however, that the theory no longer be sym-
metrical between positive and negative frequencies.
The renormalization of the self-energies appearing in
the integral equation itself is carried out in Sec. III,
where it is found that a further nonphysical singularity
appears in consequence of this achievement. In Sec.
IV, the renormalization of the vertex and self-energy
parts generated by the uncrossed graph (see Fig. 1) is
carried through, and the evaluation of their finite parts
by the solution of finite integral equations and by finite
integration processes is discussed. The Tamm-Dancoff
method has the attraction that it is numerically cal-
culable since all the operations appropriate may be
handled by standard numerical techniques. Except at
one point (vertex renormalization in the T= —,', 5,
state), the N.T.D. theory suffers no disadvantage from
its lack of formal covariance, apart from the algebraic
complexity of the equations finally obtained. This is
emphasized in the final Sec. V, where the difhculties
preventing calculation of phase shifts with this theory
are discussed, and a comparison is made with the corre-
sponding situation in the lowest approximation for the
Bethe-Salpeter equation.

H=Hp+Hr,

where IIO is the free particle Hamiltonian and

Hr=G)"f*yr Py«dsr (2)

In this expression (2), y denotes the Dirac matrix
its, and

it (r) = (2~) &,~d pp Q b„„ue'"

p*(r)=(2w) &Jt dppp„b*, „u*e '&" (3)

y (r)=(2w) &)t dsk(2ars) &(as +a* I, )e'"

The spinor I satisfies the equation

(n p+p3II)u= +E,u,

with Er = (M'+p')**, according as u refers to a nucleon
or an antinucleon state. These spinors are normalized

II. NEW TAMM-DANCOFF EQUATIONS FOR
MESON-NUCLEON SCATTERING

For the interaction of the meson and nucleon fields,
the Hamiltonian has the form
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to the relation
N*N= 1.

Denoting the physical energy of the state 4' (relative
to the vacuum state) by e, then

e(P) = ([P,H])
= &l:P,&o]&+&l:P,&.])

By expressing P as a sum of terms in normal order, i.e.,
of terms in which all creation operators stand to the
left of the annihilation operators, every (P) may be
written as a linear sum of the "new Tamm-DancoF'
amplitudes (C(N)A(1P)).

Consider erst the amplitude

(b,„a,.).
For this, the Eq. (9) now leads to

(10)

( —.—n-.-~.) &b-.- .-)= (Lb-.- .-,& ]), (11)

where q,„ takes the value +1 for a positive energy
spinor and —1 for a negative energy spinor. With H&

replaced by expression (2), the right-hand side of (11)
becomes

The projection operators 0+(p) given by

0+(p) =P„„uu*, 0-(p) =Q„uu*, (6)

may then be expressed in the form

0+(p) = LE„+(n p+PM)]/2E„. (7)

Consider now a physical state + of one meson and
one nucleon in interaction, and the physical vacuum
state %0. For any product P of the emission and ab-
sorption operators b, b*, a, and u* of (3), we will use
the notation

where |L, = (1+g, )/2 with the values +1 for a
positive energy spinor I, 0 for a negative energy spinor.

It is now necessary to obtain similar equations for
the various N.T.D. amplitudes appearing on the right-
hand side of (13).In this way, successively, an infinite
set of N.T.D. equations may be built up. At this point
however, in analogy to the Tamm-DancoG approxima-
tion made in the previous calculations' of meson-
nucleon scattering, this set of equations will be approxi-
mated by omitting each N.T.D. amplitude depending
on four or more creation or absorption operators. With
this approximation the two-meson amplitudes of (13)
are given by the following equations:

(& ~q kak Pq+k) (+qA kPb q k, w)——

=G(2~)—l9, k „P„{(war. u) (2(v,)
—

'*&akpb k„)

+ ((v*yv pu) (2(uk) l(a,.—b, )}, (14)

(t+Mq+cdk+Eq+k) &G qaG kPb —q k, u—r)——

=G(2ir) —itL, k, „p.{(w*yr.u)(2a),)-i&a* kpb k.)

+ (~*~«u) (2~k) '(~*-.-b-.-)} (13)

(&+~q ~k '9 q k, wPqyk) —(o——qaiik pb —k—q, w)

=G(2m)l Q„{0,k, „(w*pr.u)(2co,)
—

l(aksb „„)
+O-.-k, -(w*~«u) (2~k) '(~*-"b-.-)}, (16)

where 8 = (1—8 ).
For this last Eq. (16), there arises the question dis-

cussed in D2, the possibility that an unphysical singu-
larity may occur in the amplitude &a*, uksb k, , „).For
a positive spinor m, the factor multiplying this ampli-
tude in (16) may vanish, since there exist infinitely
many k, for a given q, for which

~+~, ~k &q+k=0.— — (17)

G(2~)—*') d3pd3k(2(uk) —:p„p„(v*yrpw)

X(l b, u, , (ak +a* k.)b*~k,.b„„]). (12)

The commutator appearing in (12) is now brought to
normal form, in order to express (12) in terms of the
N.T.D. amplitudes. Equation (11) then becomes

(~ ~e n .-&.)(—b a-—~.--)-
=G(27r) l (2co,) le,„p„(u*y~,w)(bo„)

+ (2',)—l dap Q Q, (ii*yr.w)(b, „b*„,„b„„)

+ dkk (2a)k)
—** P„(u*yrpw)

X&~,.(~kg+~* ky)b , k,.), (13)——

Such a singularity in (a*, uksb k, , „) would mean
that, in coordinate space, this amplitude would have a
finite value at infinity. This would imply the existence
of a real process resulting in one meson, one nucleon
and minus-one meson. Such a process would only be
possible here if a real meson were present in the com-
parison state %0. In the present problem, however, this
is not the case, since the comparison state %o is the
physical vacuum. 6 The amplitude &a"', ukpb, k „)
must therefore be finite even for momenta satisfying
Eq. (17).For fixed q and positive w, the right-hand side
of (16) must vanish for every k satisfying (17); thus

Q „(w*yrpu) &a*,.b,„)=0

The N.T.D. equations which have been set up have the same
form for any comparison state +0. It is only at this point that the
nature of the comparison state is invoked to provide an additional
condition on the amplitudes which are to describe the physical
situation. The boundary condition which had been proposed in
D2 is not correct, since the principal value singularity still allows
a standing wave at infinity.
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P„u(a*,.b,„)=0.

The spinors I form a complete set, so that

for an infinite set of positive energy spinors w+( —k —q).
From this it followsr that (since 7 and rs are non-
singular)

(19)

where (27), (28), and (29) in turn refer to the cases
I, e, and m negative.

For the remaining amplitude of (13), the N.T.D.
equation is

(e—rip„M)(bp )=G(2qr) «dskQ 0 s

(a*,.b,„)=O, (20)

for all q, a, u. From (15) and (16), it then follows that X (w*vr.u) (2ois)-«(b s.as.), (3O)

taking account of Eqs. (20).
These equations now form the complete set of

Tamm-Dancoff equations in the present approximation.
For each nonzero amplitude on the right of (13), there
is an equation expressing this amplitude in terms of
(a„,b ~„). Substituting these expressions in Eq. (13)
then gives an equation for (a~ b s„) alone. The use

uum state
in no un-
is

(a q~—a &sb—q —k, v—)=0~ (21)

and that, for positive zv,

(a*-q.aspb-q-s, w) =o. (22)

For the three-nucleon amplitude of (13), the N.T.D.
equation is

made of the fact that 40 is the physical vac
has ensured that this equation will conta

G(2qr) j (2oiq) (w &r&c)(b—qv; (aqm+a —q~)) physical singularities. The equation obtained
X (es-e~q, . fJ:~~q.-)+—(2~.)-«(u*~rso)

X(bye(a —pa+a ya))(i« qvffpq, v —0 qm-ey q, v)—) ~ (—23) (e oi&——E&)(av~b»)= (TN+Tvv)(b»a»)
From this, it follows at once that

(b ,„b* , .b„„)=O (24)

when the spinors I, e, m are all positive or all negative.
Consider next the equation (23) for u positive and o, w
negative Lrecalling Eq. (20)$,

(e Es Es-q ——Eq)—(b q~b*r q, vbsw)

= —G(2qr)-«(2oi, )
—l(u*yr.w)(b, a, ). (25)

For this amplitude it is again necessary to invoke the
boundary condition that %0 is the physical vacuum
state since, for every p, the energy factor on the left of
(25) vanishes for infinitely many q. From reasoning
similar to that given above, this leads to the condition
that, for zo negative,

(b,„a, )=0. (26)

From (23), it now follows that the amplitude
(b q„b*~q,„b~„)is zero except when one (and only one)
of u, v, zv refers to a negative energy state. For these
nonzero components, Eq, (23) reduces to

(e+Eq+E~q —En)(b-q b*~q. bs )
=G(2qr) «(2pqs) «(u*yr w)(b~„a ~ ), (27)

(e—E,—E,—E„)(b,b*,„b„„)
=G(2qr) «((2pq, ) «(war o)(b, a,.)

+(2oi ) «(u*yr ti)(b~„a „)), (28)

(e E.+E~q+—En)(b .-b'~q4)-,
G(2qr) «(2oi„) «(—war s)(b q„aq ), (29)

v If Q= —k —q, then the vectors Q satisfying (17) lie on a com-
plete surface enclosing the origin. If (w" (Q)A)=0, then f«+(Q)A
=0. From this, f(Eo—PM)/Q+n. Q/QjA=O. If this expression
is integrated over the surface, then the last term vanishes, and
one Gnds A=0.

G' t- d3k
+ — (u*LC(p, k)Q' s

16qrs& (cp o&s)*'

+D(P,k)Q-shw)(b-. -+a.~), (31)

x) (33)
k e E~ Es E~s—e —E~+—Eg,+E~s—l

~n+( p k)~ ~Q-( —p——k)—~
C(P,k) = — (34)

6—M&
—

GOJo
—E~Ig t' —E&—EIs—E~Jr,

~Q+(0)~ ~Q-(0)~
D(p, k)= +

JJ/I
(35)

e—PM

The quantities Q', Q occurring in (31) are discussed in
D3. In particular Q s=r, rp, Q' s=rsr, and (Q',Q)
have the eigenvalues (2,0) for T= ssstates, and (—1,3)
for T=-', states.

It is of interest now to compare this equation with
the corresponding equation of the old. Tamm-Dancoff
theory LEq. (10) of D3j. Owing to the use of ampli-
tudes relating to the physical vacuum state rather

where Ss, S, C(p, k), and U(p, k) are defined as follows:

3G' i.dsk it' yQ+( —p —k)y

16K' ~ g ~ 6—co —

GOING

—E~lc

~Q-(—p —k)~ ~
(u, (32)

oiv+ois+E~s~
G' 2

T„= —dsk Sp[pQ+( —k)yQ
—

(—p—k)]
16K' cop~
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than to the bare vacuum state, there is no vacuum
self-energy term in the present equation, the energy
of the state being referred directly to the energy of the
real vacuum. The graphs corresponding to the terms
appearing in Eq. (31) are given in Fig. 1. In these graphs
the + sign refers to normal particles and the —sign
to the minus-particles, borrowed from the vacuum
state If. a + line goes forward, it corresponds to a plus
particle, if backward then to a plus antiparticle (of
positive energy), while a —line going forward corre-
sponds to a minus antiparticle, backvrard to a minus
particle. Thus graphs (a) and (b) correspond to the
nucleon and meson self-energy terms Tz and T . In
these the (+) terms do not differ from the correspond-
ing terms in the old Tamm-Danco6 equation, but the
energy denominators of the (—) terms differ just in the
way necessary for a close correspondence with the self-

energy expressions of the covariant theory (see refer-
ences 5 and Sec. III). The crossed graphs (c) and (d)
are unchanged; the numerical calculations previously
reported for the T=-'„S; and I'; states therefore need
no modification in the approximation in which the
self-energy graphs (a) and (b) are neglected. The un-
crossed graph differs again only in the (—) term, the
energy denominator 1/(E+M) replacing the previous
more complicated denominator 1/(E E~ ~„M- —
—E&—M&); this term is effective only for the T= 2, Si
state, the modification being sufhcient to permit carry-
ing through all renormalization necessary for this state.

For the wave function P(k) of the system we define

ip(k) = (4pi)i p„+44(b t,„ai.). (36)

Suppressing the isotopic spin sufTices, Kq. (31) now
becomes

I'd 3k
[g'C(p, k)+g V(p, k))p(k) . (37)

(38)

X
COy

It is now required to find a solution f(k) of the form

4'(k) =A(k)+& f(k)
6—Mg —Eg

where imp(k) =8(e PPi, Ei)fp—(k) —If fp(k) is. an eigen-
function of angular momentum j, parity m, and isotopic
spin T, then the phase shift 6;„~for the meson-nucleon
scattering in this state is given by

( —.—E.)4(p)= (I' +&-N(p)+f1'( p)—
16m'

+ +
(-) -) [

(b) (c) (d)

Fxo. 1. The graphs responsible for meson-nucleon
scattering in the new Tamm-DancoB theory.

and (33). Consider first the nucleon self-energy Sz.
The expression (32) may be rewritten in the following
form:

M (3G' t. Mdpk gpss+( p k)—yp-
T~(p) = ——~(p) I

E& E 16'E ~ E~iGdp. e 4p& 4py E~y

yQ (p+k)y
I (p) , (40)

e ppi+—ppi+E~i - ~

where A+ are the covariant projection operators, re-
lated to the 0+ by

(41)

and v(p) = (M/E„)*'44*(p)P, e(p) = (M/E )'*N(p).
It was pointed out in 01 that this second-order self-

energy expression, obtained with the N.T.D. theory,
is related to the self-energy Z2 of the covariant theory
in the following way:

where

M
2'~(p) =—&(p)~p(&)~(P)

Ey
(42)

z, (P) =—3G'
t d4k ( 1

(43)
(2m-)4& k' —i4' & P—k—M )

and P is the four-vector (6+E~, —p), 6= e 4p~ E„——
For a momentum p on the energy shell 6=0, (43)
represents the self-energy of a free nucleon. This rela-
tionship (42) has been demonstrated by Visscher' and
in D1, by using an adaptation of Cini's methods (old
Tamm-Dancoff theory) to the N.T.D. theory. It may
also be verified directly by integration of (43) over the
variable kp, the result (40) being obtained after a little
rearrangement.

The covariant self-energy Z& has the following form

Zp(P) =8M+A (P—M)+Z, (P),

where the finite part Z, is given by the integral

tan5g„p ———4rf(l)/fp (l),

where e—u~ —E~=0.

(39) 3@2 ~1 ~(&')
Z, (P)= — dx [M—(1—x)Pjln

16m'~ 0 y(M')
III. SELF-ENERGY GRAPHS

The contributions of the meson and nucleon self-

energy graphs of I'ig. 1 to the integral equation for
meson-nucleon scattering have been given in Eqs. (32)

2M'x'(1 —x)
+ (P—M), (45)

y(M')
' M. Cini, Nuovo cinmnto 10, 526 and 614 (1955l.
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l.5

[smtr )+sNtf)l~
replaced by a modified propagator [(e—to„—E„)
X(1—G'& (p))$-'.

However it is also necessary to consider the meson
self-energy T (p). This is also closely related with the
corresponding self-energy expression in the covariant
theory, in fact

1
T-(P) = — Q(Q')

203&
(49)

0.5

2
P/M

where 0 is the meson self-energy in lowest approxi-
mation,

2G'
Q(Q') = d4k

(27r)4"

Fio. 2. The self-energy functions S~(p)=G Rs(p) and
S (p)=G'R (p), plotted for G'/4~=13 and 4=%.

with p(P') = (1 x)f4'+x—M' x(1 x)—P' I—n the ex-
pression (40) for T~, only the expectation value of Zs
in the state tt(p) is needed. This is obtained by replacing
P—M by AE„/M and I" by M'+A(A+2E„) in (44)
and (45). If we take f4=0 in the integral (45), then

XSp[ys(Q+-', k —M) 'ps(Q —-,'k —M) '$, (50)

and Q is the four-vector (6+a&„,p). This relationship
has been established by Visscher' using the Cini method
for the N.T.D. theory, and. may readily be verified by
integration of (50) over ks. Q(Q') is then written in the
form

Q(Q') =b(p')+B(Q' —f4')+Qc(Q')

where

M M5M—t-(P)Z, (P)n(P) = — +AAyG g~—A,
Eu Ey

Qc(Q') = —24o„G'E. (p)&
'

(52)

The function Qc(Q') is well known, and for the value
of Q appropriate we will write it in the form

According to its definition, R~(p) vanishes on the
energy shell A = 0. E&(p) is plotted in Fig. 2 as function
of p for e=M.

The first term of (46) may be brought to the left of
Eq. (37) to be absorbed as a correction to the nucleon
mass. If one neglects T (p) for the present, the infinite
constant A gives rise to a coupling constant renormali-
zation when the remainder of T~(p) is brought to the
left of (37), this equation. then taking the form

(e ~. E.) (1 Gt'&~(p)—)k(p)—
G' d3k

(O'C(p, &)+Qf7(P»))4(&), (48)A'( P)—
16~' COIf,

where the renormalized coupling constant is Gts=G'/
(1—A). The nucleon self-energy divergence which

appears explicitly in the integral equation (37) may
therefore be renormalized satisfactorily, the integral
equation being brought to the finite form (48), where
the propagator for the system (e E„cu„) ' is n—ow—

3 6 M' E(6+2E„)—
E+—

32~' E„M'+A (A+2E„)

A(A+2E„) ~ A(A+2E„)&-
In~ ——

~

—1 . (47)
M'+A (A+2E„) k M'

where, neglecting terms of order (f4/M)s in R (p),

&-(P)=—1 d, +2co„(A(A+24u„)—4M') f

6 (A+24o„) )271 2GO~

~(—~(~+2 .))-:&
Xcr sinh~ —

(
. (53)

2M )
The function R (p) is plotted in Fig. 2 for e=M. It
also vanishes on the energy shell 6=0 (by definition)
and is generally small compared with the nucleon term
R~(p).

It must be remarked here that the second (infinite)
term of (51) is not proportional to A as is appropriate
for a-coupling constant renormalization in the Tamm-
Dancoff theory, but is given by M, (f),+2o&„). Since the
meson field satisfies the Klein-Gordon equation rather
than a linear equation, such a result is difFicult to avoid
in any prescription based on the covariant theory. A
true mass and coupling-constant renormalization in the
Tamm-Dancoff theory requires the subtraction of a
term C+DA from the expression T (p) of (33); how-
ever no such subtraction can succeed in making T (p)
finite. The N.T.D. method has led to a well-defined
calculation of the finite part of the meson self-energy

graph, closely related to that of the covariant theory,
but it fails in so far as the interpretation of the infinite
parts is concerned.
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If the infinite parts of R (p) are simply omitted, the
integral equation takes the form (48) with {(e tp—~ E—„)
X[1—Gis(R~(p)+R (p))]) ' as the propagator for the
system. In view of the difhculty just mentioned, this
procedure is not as convincing as it might have been,
but there is still one further point to be made. Accord-
ing to their definition, both R„(p) and R~(p) must
vanish on the energy shell E„+pi„=e.For very large
p, they have the following asymptotic forms:

(o)

r
w+r

ry yy g'Cl i /

(b) 4v s sf s vd

Fio. 3. Typical graphs generated by the kernels C(p, k)
and U(p, k) of Eq. (55).

3 ( (2pe'l
RN(p)-

32m'E i M')

e ( (2pe lR-(p)-
8~'p & ( Ms)

(54)

The second factor of the modified propagator therefore
must have a singularity at some high momentum p, for
all G', since [Riv(p)+R (p)] ranges from 0 to +~. For
G'/4~=13 and e=M, this singularity lies at p=1.3M.

Such a, singularity is not physically reasonable. Its
existence would imply the presence of a corresponding
singularity in the wave function of the meson-nucleon
state, whose interpretation would require the presence
of waves of very high momentum at infinity, although
the ingoing meson-nucleon waves have energy e. This
would be possible only if some bound system' could be
formed with rest mass far below that of the nucleon.
This is clearly not the case, and this singularity must
be regarded only as a consequence of the approxima-
tions made in setting up the present N.T.D. theory.
Despite the success of the N.T.D. method in relating
the self-energy graphs of the integral equations to self-
energy expressions of the covariant theory, the presence
of this singularity prevents the use of this renormaliza-
tion method for calculating self-energy corrections to
the calculations of D3 for the T=-', states.

IV. RENORMALIZATION PROBLEM FOR THE
STATES T = 1/2, j=1/2

A further renormalization problem arises for the S;
and P; states of isotopic spin T= —'„since they respec-
tively have the same spin, parity, and isotopic spin as
the minus-one-anti-nucleon state and the one nucleon
state. In Eq. (37), Q=3 for the T=-', states and the
term U(p, k) becomes effective. The integral equation
now has no 6nite solution: this may be recognized
most readily by attempting to solve the integral equa-
tion as a power series in G, by iteration from Pp(k).
The successive terms correspond to graphs built up
from the basis graphs of Fig. 1, and two typical graphs

P T. D. Lee /Phys. Rev. 95, 1329 (1954)j has recently studied a
special meson theory in which the Tamm-Dancoff approximation
used here is actually exact. Complete solutions are obtained, and
it is found that the modified propagator has a pole of this kind,
when there exists a bound state lying below the energies of the
quanta of the individual 6elds.

are shown in Fig. 3. Graphs in which the uncrossed
graph V(p, k) has operated at least once have a struc-
ture of the type (b), and the vertices and self-energy
parts thus generated require renormalization.

Consider then the integral equation (38). It will be
convenient to use the covariant projection operators
(41) and the equation then takes the form

(e ~. E.)W(—P)
M pdak= .'(P) "(—P)—,' Q' (P, )lt()
E& ~ Mp

where

H(p, k) =—

Qp I
dsk

+vs vpP(k)
e—pM &If;

M Yph.+(—p —k)y p

E&+Jr, 6—M&
—

cOIf,
—E~y

q sA
—

(P+k)q s

+

(55)

(56)

H(p, k)=H (p,k)(1+P)/2+H (p, k)(1—P)/2, (57)

where

H~(p, k) =
2E„+g

~ (E,+Ei E~a)+M—
6—M&

—
Q)A;

—E~y

~ (E,+Ea+E~i)+M
(58)

e —E„—EI —E~I

For the T= -', states, Q and Q' -take the values 3, —1.
A solution of the form (39),

w(p) =&o(j)+ f(p) (59)

is now required. Consider first the function g(p) which

and we have written G,s(p) in place of F, (p)G'/16~',
where the factor F,(p) arises from any (nonsingular)
modification of the propagator (e pi~ E~) ' of—the-
system due to particle self-energy effects. If these are
neglected, F, (p) is to be replaced by unity. Since the
kernel H(p, k) lies between positive energy projection
operators, its form may be simplified to
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is the solution of

3f pdak
g(p) =G' (p) J3.(p)+A'( p)— ,

—
~ Q'&(p, k)

E~~ GOg

With use of (66), the first integral on the right of (67)
becomes

d3k
vs& (k)

M pd3k
~ (p)=A ( p) —'—Q &(p»)A(k)

+iJ
(61)

Procedures for the approximate solution of this Eq.
(60) have been discussed in D3 and we shall not con-
sider this problem further here.

By substitution of (59) in the Eq. (55) and use of
the Eq. (60), it will be found that the complete function

f(p) is now given by
M

f(p) =g(p)+G, '(p) —A+( —p)r, (p), (62)

where I', (p) is the solution of the equation

G'
t

d3k M
I', (p) =yg+ Q'H(p, k)P, (k)—

16~'" ory EI,

X g(k), (60)
~—I —Ea

where B,(p) is the Born approximation amplitude

G' t ~d3q
r, t(q)A+( —

q)
f'daq

r, t(q)y(q)—
16' L ~ cog

3E dak
&&
—P, (q)Q'a(q, k)y(k)
Eq Goy

t
daq

r, t(q)y(q)
~ QP q

J

f d3q
r, ~ (q)po(q),

P
r. t(q) g(q)

Mg Eg

where

r d3q
r'(q)A(q),

e PM Q—PS(e)—& co,

nsdsk
S(.) = t ~, P, (k)A+( —k)r, (k).

+a~a

and the solution x of Eq. (67) may be written

(69)

(70)

(71)

The function r, (P) is the vertex operator of the
present theory and corresponds to the sum of all vertex
graphs of the type shown in Fig. 3(b). Its definition by
Eq. (63) is purely formal, as r, (p) is an infinite quan-
tity. The function S(c) is the self-energy expression re-
sulting from joining the outgoing meson and nucleon
lines of the vertex r, (p), i.e., it corresponds to the
sum of all simple self-energy graphs of the type shown
in Fig. 3(b). It is now necessary to discuss the re-
normalization of I', (p) and S(e) and the calculation of
their 6nite parts.

&&A+(—k)r, (k), (63)
and

Qp t d3k

,
~~(k)

e—PMJ I
(64)

In (63) the notation

P, (k) =F,(k) (65)
6—zoic —EJc

has been used, so that P, (k) now represents the modi-
6ed propagator of the theory. It is useful also to de6ne
the adjoint r, t(p) of r, (p), satisfying the equation

(72)

(a) Vertex Operator

Only matrix elements of I', (p) leading to a positive
energy spinor are effective in Eq. (63) and in the ex-
pression (62) owing to the presence of the projection
operator A+( —p). It is therefore appropriate to reduce
(63) to two-component form. We now define the two-

After substitution of (59) (62) in Fq. (64), the follow- component function A, (p) by the relation

ing equation is obtained for the spinor: A, (P) =-,'(I+P)A+( —P)r, (p).

Qp
I

d3k
x——pM J egg. The matrix element appearing in (62) may be expressed

in terms of this function by

G2r M
&&

~
P(k)+ P, (k)—A+(—k)r, (k)x ~, (67)

16m' Ei,

yea" p )
A (-P)r (P) =11- IA. (P)

~„yM)
(73)

where

4 (k) =A(k)+ g(k).

Now the spinor x on which d„(p) will operate in (62)

(6g) corresponds to a state of zero momentum (since the
system is being treated in c.m. system). From parity
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G f g dg dQq
V~(p) =&+,Q'

8x2 ~ E~, 4x

conservation, p is a positive frequency spinor if the
incident system is in a p~ state, a negative frequency
spinor if in an 5; state. In zero approximation, then,
h, (p) may be reduced to P q 'Pq

X & (P,q)
— &+(p,q)

pq (E,+M) (E,+M)

q(E„+M)
XP.(q) V.(q) (78b)

1+/ E„+M o"p
~.&'&(p) = ~.+

2 2M' 2M
(74)

Q2

V-(P) = &+ Q dql. -(~,p, q) V-(q),

Clearly only the 6rst of these terms is eQ'ective for the
5, state, in which case the spinor y standing to the
right of &,(p) has negative frequency, and only the We will write these equations in the form
second for the p~ state, y then being a positive frequency
spinor. From considerations of rotational invariance
and of parity, the function A, (p) will have the general
form

I+P E„+M o"p~.(p) = V.(p)~—+V.(p), (»)
2 2M 2'

where Vs(p) and Vi (p) are scalar functions. Corre-
sponding to the adjoint operator F,t(p), an operator
h, ~(p) is defined

a, t(p) =r, t(p)x+( —p)
2

E~+M o"p 1+p
«(ph+V' (p) (76)

2M 2M 2

g2

(E,+M) U,(,p,q)P. (q),I s(~,p, q) =
Egco g

(80)
q' E„+M1.(,p, q) = U.(,p,q)P. (q)

Ea~a p

the kernels I. (e,p, q) being obtained by integrating
(78) over the angles of q. In terms of the symmetric
function E (e,p, q) obtained by averaging the square
bracket of (78) over the angle between p and q they
are given by

To obtain equations separately fol' Vs(p) and V (p)
The function U (e,P,q) has been calculated in D3 with

we proceed from Eqs. (63) and (73), whence

G' p d3g
~.(p)=~. (p)+,e -~. (p)

16m' ~ E~,
P —&+0&

x~ a, (p, q) +If (p,q)
2 2

Us(E p, q) = (A —2M)E, (C)+ (e—M)Eo(B)

+ - (AEi(C)+ (&+M)Ei(B)),
(E„+M)(E,+M)

Ui (e,p, q) = (A —2M)Ei(C)+ (e—M)Ei(B)

( +so"'q $
X~ ~- l~. (q). (77)

E,+M)
The integral on the right of (77) may now be simplified
to

gyp G'
t

dq (E+M~
2 16''g

in which

(AE, (C)+(.+M)Eo(B)),
(E„+M)(E,+M)

A =E,+co„+Eo+~,+M
B=E„+E, c, —
C= (o„+co,—~.

o'
PENT' q

X I
II (p, q) ——&+(p,q) IP, (q)&, (q).

(E„+M)(E,+M)

Substitution of (75) for 6,(p), and comparison of terms
on either side gives equations for V8 and V& separately:

G f /de dQq
V.(P) =&+,Q'

8+2 ~ E~, 4m

'g
X & (P,q) -&—+—(P,q)

(E„+M)(E,+M)
XP.(q) (E,+M) Va(q), (78a) V (e,p) =Z 'V, (e,p). (8&)

The Eo and E~ functions are explicitly:

1 (E+x+Ey.
Eo(x) = ln~

2pq (8+x—Zi
'

( x)
E,(x) =— (M +p'+q' —x')Ep(x)+

2pq 2Pq E E)
with E= (E~.+E~.)l» &=Pq(E.

It is now necessary to find an equation for the direct
calculation of the Gnite part of Vq and of V~. The re-
normalized function V ~(e,p) is related to V (e,p) by
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The renormalized U ~(e,p) may be defined by the
condition

V "(M,O)=1

from which it follows that Z is to be chosen

(83)

Q') dqL (e,O, q)V ~(M,q).
16m-2

(s4)

From Eqs. (82) and (84), we may now construct a
finite integral equation for V n(M, P):

U ~(M,P)=1+ Q' dq

X (L (M,p, q) L(M,O,—q)) V ~(M, q). (85)

This is an integral equation whose solution may be
obtained by standard numerical methods. It may readily
be verified that the dominant term of L (M,p, q) for
large q is independent of p, so that the subtraction does
lead to cancellation of the divergent terms of the
integral. This requirement is, of course, essential for
the success of this renormalization scheme, and the
fact that it is met here provides a strong check on the
appropriateness of the N.T.D. equations for the prob-
lem at hand.

When V ~(M,P) is known, the complete function
is V ~(e,p) given by

V-'(e, P) = V-'(M, P)+ O'IU-(P)
16x2

where IU (p) satisfies the equation

(sa)

W (P)=)fdq(L (e,p, q) L.(M,P,q)U n(M, —q)

+ -Q' dqL-(, P,q) IU-(q) (87)
Gs

167l-'

In the physical case (Q'= —1) these kernels correspond
to attractive interactions, " and the vertex functions
V n(e, p) may be shown (Appendix B) to decrease as
a negative power of P for large P. The integral in (84),
logarithmically divergent in Born approximation (where
V ~(e,p) = 1), is now convergent and it may be shown

(Appendix B) that, in fact" 1/Z =0. It should be

'0 I.s(~,p, g) is (—is) times the interaction kernel for the T=-', , 5';
state, known to correspond to a strong repulsion. Similarly for
the kernel L~(e,p,q).

"This result implies that, for the case of physical interest,
U~n(e, P) satisfies the homogeneous part of Eq (79). Edward. s

Equation (79) then becomes

Q2
Q' dqL-(e, P,q) V-'(, q)

16+2

(s2)z.)

remarked that, in this theory, the expressions for Z&
and Z~ are quite different; this is a consequence of the
asymmetry between the positive and negative fre-
quency states included in the theory, required by the
considerations of Sec. II.

In the covariant theory, the renormalized vertex
operator I"p(P',P) may be defined by the condition

Lim'-. L~(P')ps'(P', P)~(P) j/L~(P')v. ~(P)3=1, (88)

where P is the four-momentum of a real nucleon. It is
to be noted that this condition only makes a direct
statement concerning the diagonal elements of I's~(P', P)—the nondiagonal elements of I's~(P', p) between posi-
tive and negative frequency states, are, of course,
well-determined by this condition and are definite, but
unknown, functions of G'/4rr. In the P*, state, Vi in-
volves the diagonal element of I', (q) and the renor-
malization procedure (83) adopted is the direct analog
of (88), the four-momentum P being chosen (M,O).
However, in the 5; state, the nondiagonal element of
I', (q) is effective and Vs should be renormalized not to
unity, but to a value whose magnitude we are at present
unable to determine. Vg and Z8 are therefore each
undetermined to a constant factor. This inability to
relate Us to the diagonal elements of I', (q) is again a
consequence of the lack of symmetry between positive
and negative frequency states in the theory.

(b) Self-Energy Graphs

Consider now the calculation of the finite part of the
self-energy 5(e) of (70). As Salam" has emphasized,
there occur overlap divergences in these self energy
parts, which require careful consideration. However
Ward" has shown how these difficulties may be avoided

by a special method which we shall adapt to the
present case.

Consider then the derivative" of 5(e),

d G' r Mdsk dP, (k)—S(e) = —
i

ys A+( —k)I', (k)
16' ' EgMg

dI', (k) )+P, (k)A. (—k) ~. (89)
de

(Phys. Rev. 90, 284 (1953)) has also pointed this out in his study
of a covariant vertex function, based on a different approxima-
tion. The solution of this homogeneous equation is uncertain to a
factor A (e). Only A(M') is specifmd by the boundary condition
(83), and A (e) must be obtained by comparison of the asymptotic
forms obtained for energies e and 3/I. The numerical solution of a
singular homogeneous integral equation requires great care in the
region of high momenta, whereas the Eqs. (85), (87) are well-
behaved and stable in this respect. It should also be noted that,
for positive Q' (i.e., a repulsive interaction), the renorma1ized
vertex function is still well-defined by Eqs. (85), (87), but does
not satisfy the homogeneous equation.

"A. Salam, Phys. Rev, 827 217 (1951)."J.C. Ward, Proc. Phys. Soc. (London) A64, 54 (1951).
'4 The derivative of a principal value integral J'p(p)P, (p)dp

with respect to the position of the singularity will be denoted
symbolically by J'@(p)(dI', (p)/de)dp. Its evaluation will be
discussed -in Appendix A.
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Substituting for ye the expression given in Eq. (66)
and using the derivative of (63), namely

dr. (q) G'
t

dek
Ql

de 16m' ~ Ee(ue

( dH(e, q, k) dP, (k)
Xl

' '
P, (k)+a(e,q, k)

'
X+(—k)r, (k)

d6 dc

dS(e) G' r Md 3k dP, (k)
r, &(k)~+(—k) A+(—k)r, (k)

lE de16K 4 EgGgg

( G' ) ' M'depdeq+l, l
Q' " " r'(P)~'( —P)P.(P)

&16m') & ~ E„(u„E,(o,

de{.,p, q)
X P.(q)~ (-q)r (q) . (91)

de

This may now be expressed in terms of V8~ and Vz
by substituting (73), (75), and (81). After some re-
duction, this becomes

dS(e) 1—P 1+P
Zs'As+ Z~'~ p,

de 2 2
(92)

where A.& and A& are given by

G' t k'dk dP, (k)
A„(e)= l~-(k)I'

8n'~ M(up(Ee+M) de

+I, lQ'
(G )

I
I'qdq pdp

(8gr') a J E~e E„o)„

dE. (e,q,p)
&&i ~-(q)P (q) P.(p)~-(p) I, (93)

d. i '

and p may be taken as +1 for the p~ state (n=P), —1
for the Si state (n=S). The functions n (p) are given
by &s(p)=(E&+M)Vs"(p) and sI(p)=PVIs(p). The
quantities A. defined by Eq. (93) each have the struc-
ture of a vertex. The first term of A. diverges less than
linearly The seco.nd term is convergent over p and q
integrations separately, and diverges less than linearly
for the joint integration. The quantity h. (e) —A(PM) is
therefore a convergent integral if the integrands are
subtracted before the integration. The self-energy

dr, (k) )
+11(e,q,k)P. (k)A+(-k) l, (90)

de )
it will be found that

S (e) is then, on integration of (92)

S (e)=S (PM)+(e PM—)Z 'A (PM)

+Z.2 (X.(")—X.(PM))d". (94)
4 pM

The last integral of (94) represents the 6nite part of
the self energy S (e) after renormalization —we shall
denote this finite part by (G2/1&r')S s(e). Of the other
terms, the 6rst represents a correction to the nucleon
mass and the second produces a coupling-constant re-
normalization at certain points.

The final expression for f(p) is now

G2' M
f(p)=g(p)+ —P.(p)A'(-P)r (P)

16m' E„

e—PM —(Gme/16m') QPS "(e)

pdsk
&( r,s t(k) lpe(k), (95)

My

where Ge' is the renormalized coupling constant G'Z '/
(1—Z 'A (PM)). At all other places in this expression,
where the coupling constant occurs implicitly, the
unrenormalized coupling constant G' is effective. This
corresponds to the appearance of G2' only at the points
marked with a cross on the graph (b) of Fig. 1. For an
approximate theory, such as the present one, it is not
to be expected that a renormalization scheme can be
obtained which is complete and consistent at every
point. %hat is signi6cant is that, with the N.T.D.
method, the 6nite parts of all divergent expressions
have been identified uniquely and it has been shown
that the in6nite parts occurring in self-energy and
vertex terms may be interpreted as mass and coupling
constant renormalizations. For the p~ state, it would be
natural to identify G2 with G, which corresponds simply
to dropping all infinite terms. However, for the S;
state, the renormalized vertex function is uncertain to a
constant factor—if a 6nite vertex operator is defined
corresponding to some standard condition such as
(83), this uncertainty is transferred to an uncertainty
in G2. For the S~ state, therefore, the two coupling
constants G and G2 are to be considered as quantities
to be determined independently from comparison with
experiment.

To obtain the phase shift, only the large com-
ponents of f(p) are needed. For the S; state, taking
A(p)=&(e ~. E~)—

G22 E„+2M
4x' 3E~

l(E,+M)
Vts&(I). (96a)

e+M+ (3G2'/16'')Ss" (e) 2Me
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For the p; state, fe(q) is h(e ~„E—„)rr"p/p and

X Vt~~(r). (96b)
e—M' —(3G2'/16'') 5p" (e) 2M'e

The phase shift is then given by expression (39).

V. DISCUSSION

It is of interest to summarize in this section the
various difficulties which have appeared in the course
of this work, and to compare the situation with that
for the corresponding covariant Bethe-Salpeter equa-
tion. In lowest approximation for meson-nucleon scat-
tering, this equation may be written

(y —~—~2(p)) V—~'—ll. (V'))4 (p,s)

G'
I ( Q'

i d4&l V5 Vs
(2m)4& ( y —k —M

+»» le(p+& —~ @ (97)
p+q —M

This equation goes a little beyond the lowest approxi-
mation in that the use of the modified propagators
corresponds to the inclusion of some terms of order G4.

For Eq. (97) a consistent coupling constant renor-
malization is not strictly possible since a product of
propagators occurs, but it is reasonable to simply drop
the infinite parts of Z2 and 02. However, as Feldman"
has pointed out, the modified nucleon propagator
t p —M —&2(y)] ' has a pole in the complex pe-plane,
which probably has the consequence that (99) has no
finite solution in its present form. In Sec. III, it has
been remarked that the modified propagator in the
Tamm-Danco6 theory also has a nonphysical pole,
which prevents its use in the scattering calculations.
The physical interpretation of the pole is quite diAerent
in the two cases and it appears most probable that
there is no simple relationship between them. Each of
these situations illustrates that approximations to the
modified propagators may be used only with caution,
and only when they contain no singularities beyond
those required by the physical processes possible. Both
in (37) and (97) then, the presence of a spurious pole
prevents the use of the appropriate modified propaga-
tors in the theory.

For the T=-', states, the calculation of a covariant
renormalized vertex may be reduced to the solution of
a 6nite integral equation in a manner similar to that
developed in Sec. IIIa, and the self-energy renormaliza-
t.ion procedure may be followed through according to
the method of Ward. " However the difhculty in the

+ G. Feldman, Proc. Roy. Soc. (London) A223, 112 (1954).

covariant theory is that reliable solutions cannot be
obtained for these four-dimensional integral equations
at present, especially as numerical techniques are
inadequate to deal with integral equations involving
several variables. The advantage of the N.T.D. theory
is that all these operations involve the solution of one-
dimensional integral equations by standard techniques.
The advantage of the covariant theory is that it in-
cludes both positive and negative frequencies; the
vertex renormalization is then well-determined in that
the relation between the renormalized vertices effective
for the S1 state and for the P1 state is known explicitly.
For the graphs generated from (97), only an incomplete
renormalization' is possible, of course, in that the re-
normalization of each coupling constant is not inde-
pendent of its position in the graphical structure. This
situation also holds in the N.T.D. schemes; it is not a
serous matter since the important thing is to calculate
the finite parts corresponding to a given graph. The
difficulty for the N.T.D. scheme is that, in the S~ state,
the uncertainty in the vertex renormalization involves
essentially the introduction of a new parameter in
the theory.

Both the B-S and the N.T.D. theories have the defect
of not satisfying the symmetry principle of Goldberger
and Gell-Mann, "that to every uncrossed graph gener-
ated in the theory a corresponding crossed graph should
be included. One consequence of this symmetry prin-
ciple is that the difference between the T= —,

' and T=-',
scattering lengths at zero momentum must approach
zero in the limit of vanishing meson mass. H this feature
of the complete p& theory is not present in the approxi-
mate calculations of S-state scattering, it may well be
that the difference in slope calculated may reQect the
approximations of the method rather than the content
of the complete theory. This defect will exist in any
strict Tamm-Danco8 theory, and this suggests the
direction in which any further modifications of the
noncovariant theory should tend.

In a more complete theory, one may expect that
equations of the type (37) may be obtained, but with a
far more complicated kernel. The modification to the
S-state kernel used here may be expected to be quite
different from that for P-state kernels, so that a com-
parison of (37) with experimental results may well lead
to effective coupling constants diGerent for S- and I'-
states. A practical difhculty (see Appendix A) in the
use of the considerations of Sec. IV is tha& for the
T= -'„j= -', states the integral equations (60) and (85)
have satisfactory solutions only if G'/4w is less than 6.7.
This is certainly not a deep diAiculty since for reason-
able coupling strengths the unsatisfactory character
of the solution only shows up for very large momenta

(say p)1035) where the Tamm-Dancoff kernel could
not be regarded as a reasonable approximation.

"M. Goldberger and M. Gell-Mann, Proceedings of the
Rochester Conference (University of Rochester, Rochester, 1954}.
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Several more general criticisms of the N.T.D.
method, made recently, should also be mentioned here.
Symanzig" has considered the soluble case of the an-
harmonic oscillator and has shown that the X.T.D.
amplitudes do not diminish with increasing complexity
of the amplitude considered but may even increase
exponentially, although the old Tamm-DancoG ampli-
tudes describing an excited state .of this system do
diminish satisfactorily. It seems possible that this lack
of convergence may be a general feature of the N.T.D.
method and that the equations considered here could
not be regarded as the erst approximation in a con-
verging sequence of equations. Renormalization of ex-
plicit self-energy expressions occurring in higher ap-
proximations of the theory have been considered by
Taylor" who concludes that these expressions do not
have the structure necessary for the success of the
renormalization procedure. The effect of these objec-
tions on the present theory is not yet clear however,
but it seems probable that the equations studied here
should still provide a first approximation to the more
extended theory.
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APPENDIX A. CALCULATION OF DERIVATIVES OF
PRINCIPAL VALUE INTEGRALS

The derivative of the following integral I,(k),

I, (k) =Jt P, (k)y(k)dk
0

with respect to energy e, is to be calculated. P, (k) is
singular at k=l, where e=ce~+E~, so that (A1) is to be
understood as a principal value integral. We may write

contours C, the square bracket becomes simply

B(k)dk,
o (k—l)'

(A4)

where B(k)=p(k)A, (k). Making use of the integral

J" dk/(k —l)'=0,

suitable for numerical computations.

APPENDIX B. BEHAVIOR OF THE FUNCTIONS g(P)
AND Va(s,P) FOR LARGE P

Consider Grst the function g(p) satisfying Eq. (60).
The states 5; and P; are of special interest in the present
work, and our detailed remarks will be con6ned to this
case. Only the large components g +(p) of g (p)
need be considered, and the integral equation for

g +(p) has been given in D3. With the notation of the
present paper,

O' 6'
g-'(P) = O'B-(P)+ Q' ' dkL-(, P,k)g-'(k), (81)

Ss' 87rs

where L (e,p, k) is given by Eq. (SO) and B (p) is ob-
tained from the integral of (81) by replacing P, (k) of
L, by 5(e—res —Es) and g +(k) by 1.

Now for p&)k,

(A4) may be rearranged to give the following explicitly
finite expression

t' B(l+x) 2B(l)+B—(l x)—
J,

B(k) 2B(1)
+ dk+, (A5)

(k—l)' l

P, (k) =A, (k)/(k l)—
The differentiation of I,(k) then leads to

dI, (k) t." 1 dA, (k)
4 (k)

de Jo (k—l) de

(A2) k' Es+M 1 (1)I..(.,p,k)- -+O( —
~,

EsMs e ops Es—p (p $—
l E)aM

B-(p)- +' ' '

(82)

dl' d
+—— A, (k)p(k)dk . (A3)

de. dl~ s k —l

The first term of (A3) is a principal value integral
again, so -that only the square bracket need be con-
sidered. The principal value integral appearing there
may be given by the average of the integrals along two
contours from 0 to +~ in the complex plane, are
passing above k=l, the other below. Then for- these

~" K. Symanzig, Gottingen Dissertation, March, 1954 (un-
published)."J.Tayior, Phys. Rev. 95, 1313 (1954).

a+b a+b 1 a+b
ln +——

86 8 2 a
(83)

In the integral equation (81), consider the ranges of
integration k~X, where X&&31. Then for p&)X, the

where the + sign refers to the S-state, the —sign to
the P-state. If p and k are comparable, and large com-
pared with M, L (e,p, k) is given by the following ex-
pression. With u& b))3E,

L (e,a,b) L ( b, ae)
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integral up to k=X and the term 8 (p) are each of
form 1/p, while the kernel is homogeneous for k)X.
This integral equation is therefore singular at in6nity
and not of the Fredholm type. Such equations, homo-
geneous for large momenta, characteristically have
solutions with an asymptotic form ~p". If )t) —1, the
integration for X&k&~ may be extended down to
k= 0 using the asymptotic form of the kernel, with error
of lower order, and this term (being homogeneous)
reproduces the form p" with a coeRicient depending on
)t. This term is dominant on the right of (B1), and
equating this with g +(p) gives the following equation
for X:

where

= —Q'D(X),
G2

(B4)

m cosecmA 1 1
DP.)=

)t (1+)t) )t' (1+)~)'

2)t (1+)t) 2 ()t—1)(2+)t)

This derivation of (B4) is valid only for —1&)t&0,
D()t) is singular at )t=O and )t= —1. In Born approxi-
mation, the asymptotic form of g +(p) corresponds to
)t = —1, and, for T=-'„j=-', states (Q'= —1), the
value of X increases with increasing G' until it reaches

at G'/4m =3s-/(3~ —8)~6 7. At this critical
value of G', the function g(p) is no longer normalizable
for large p. For G' beyond this critical value, the value
of ) is complex, of the form X= ——,'&iN—the equation
no longer has a uniquely defined solution, and no
solutions are normalizable. Such a critical value G, (j)
exists for every attractive meson-nucleon state, but
owing to the centrifugal repulsion, G, (j) increases
with increasing j, being about" 26.9 for j=—,.

For the T=as, j=-,' states, Eq. (B4) has no solution
in the range —1&X &0. However it may be shown that
the asymptotic form of the solution is still p", where
)t& —1 and is given by the same Eq. (B4). For these
states, as G' is increased, the value of X decreases from
) = —1, and the solution decreases faster than Born
approximation for large p.

The function V ~(M,p) is defined by the integral
Eq. (85). In Born approximation V "(M,p) is asymp-
totically constant. For definite G', V n(M, p) may be

'9 H. A. Bethe and F. J. Dyson, Phys. Rev. 90, 372 (1953).See
also H. A. Bethe and F. de Hoffmann, Mesoes and Feelds (Row,
Peterson, and Company, Evanston, 1955), Vol. 2.

expected to have asymptotic form p", where )i may be
either X 0.

If )t&0, then the integrals on the right of (86) are
separately convergent, and in the limit p —+ ao, the
equation becomes

G2

1— Q' ~dkL (M,O, k)V "(M,k)=0.
8~

(B5)

The difference between V n(e, p) and V (M,p) is
therefore of one order lower than the separate vertex-
functions. This is of importance since the renormaliza-
tion procedure adopted would not otherwise succeed.

This implies that 1/Z =0, and that V n(M, P) satisfies
the homogeneous part of integral equation (79).For this
equation, it is easily shown the dominant part of the
integral comes from the asymptotic region, so the
value of )t is again given by Eq. (B4). This equation
does in fact give a negative X for the physical case
Q'= —1. As G' increases from zero, )t decreases from
zero to negative values, reaching A. = —

~ for G'=G, '.
For this attractive interaction, then, V ~(e,p) de-
creases more and more rapidly with p, as the inter-
action becomes stronger.

For)t)0, more care would be needed. With Eq. (85),
the dominant terms on the right come from large
momenta k and the asymptotic form of L (M,O, k)
must now be included. When this is done, the calcula-
tion may be carried through as above, with the result
that Eq. (B4) is valid again for positive )t. Hence, for a
repulsive interaction, the value of P runs from zero
along the right-hand branch of the function D()t), and
V ~(M,p) increases as p increases. For this case
integral (B5) diverges and 1/Z =eo. The function
V ~(M,p) now does not satisfy the homogeneous part
of the integral equation (80)—in fact, this homogeneous
integral equation now has no solution, in general.

For this case, it is necessary to examine also Eq.
(87). Since L (e,q, k) is independent of e for large k,
the dominant part of the inhomogeneous term in (87)
has the asymptotic form X(e)p ', corresponding to
asymptotic form p" for V "(M,p). If the function W (k)
is k& for large k, the form of (87) requires +&0 and a
comparison of dominant terms requires p = v —1. W (k)
then has asymptotic form 2 (e)q ', where

G'
A(e)i 1+ D(v—1) i=X(e).


