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show that, in the laboratory angle interval of interest,
the primary eGect is to suppress the cross section and
not to change the angular distribution. Consequently
we ignore the eBect of such scattering in calculating a
minimum u/b.

(3) The isotropic part of the free proton angular
distribution will, if anything, be larger than the
isotropic part of the elastic deuteron angular distribu-
tion (before modi6cation by the deuteron form factor).
Again we take the extreme case of no difference in the
two distributions in calculating a lower limit for a/b

On the basis of these arguments, and using our

measured cross-section ratio R (168'/124') =0.41&0.12,
we calculate a/b &0.35+', sess.

If we take the impulse approximation at its face
value, use Chew and Lewis' values for P(0), and make
no scattering corrections, we calculate a/b= 0.80~a..s's.
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It is shown that the y-ray energy distribution resulting from the decay of 7r mesons produced in a target
bombarded by a high-energy particle beam is related in a simple manner to the differential ~' production
cross section, for snKciently high energies of the p's ( 500 Mev). An expression is obtained for the s.
production cross section in terms of the p-ray energy distribution. This result is extended to the case of an
arbitrary two-body decay, for which an expression is obtained for the production cross section of the pri-
maries in terms of the energy distribution of the secondaries emitted in the decay.

I. INTRODUCTION

" 'NFORMATION about the m' meson production in
- ~ a target bombarded by a high-energy particle beam
can be obtained from a measurement of the energy dis-
tribution of the y rays from the z' decay at various
angles to the beam. At incident energies in the range
of 200—400 Mev, ' the interpretation of the p-ray
spectrum is very complicated, because at each angle of
observation, a wide range of angles of the w"s is
involved. However, with increasing energy of the inci-
dent particles and of the resulting 7 rays from m' pro-
duction, the maximum possible angle between the
observed p and the decaying x' becomes very small, and
it can be assumed that the m' differential production
cross section remains approximately constant over the
small range of z angles involved. It will be shown that
in this high-energy region (p energy& 500 Mev), the s'
cross section can be expressed in a simple manner in
terms of the p-ray energy spectrum. A similar expres-
sion will also be obtained for an arbitrary two-body
decay for the production cross section of the primaries

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'See, for example, A. Silverman and M. Stearns, Phys. Rev.
88, 1225 (1952); G. Cocconi and A. Silverman, Phys. Rev. 88,
1230 (1952); Goldschmidt-Clermont, Osborne, and Scott, Phys.
Rev. 89, 329 (1953);Phys. Rev. 97, 188 (1955);Walker, Oakley,
and Tollestrup, Phys. Rev. 89, 1301 (1953); Marshall, Marshall,
Nedzel, and Warshaw, Phys. Rev. 88, 632 (1952); R. H. Hilde-
brand, Phys. Rev. 89, 1090 (1953).

in terms of the energy distribution of the secondaries
which are emitted in the decay.

The total energy E of x is given by

m. (k' cos'P+ k')
E =

kLk~cosk(k' —k slI1'tP) 23
(3)

where m =mass of ~'. It is seen that for a given f,
there are in general two values of E . Moreover, since
the expression under the radical must be positive, P is

~ It is assumed that the units are such that c= l.

II RELATION BETWEEN ~o PRODUCTION CROSS
SECTION AND y-RAY ENERGY SPECTRUM

The velocity v of the w' in the laboratory system is
related as follows' to the laboratory angle f between
the observed y and the w'.

k=y k(1—s cosP),

where k is the energy of the p-ray in the laboratory
system, A; is its energy in the m' rest system, and

p = (1—s ') '. Upon squaring Eq. (1) and solving for
v, one obtains

k' cosf+ k(k' —k' sin'P) l

k' cos'P+ k'
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(f, , where f,„is given by

f, =sin '(k/k). (4) BEAM

TARGET

l
e„

becomes very small at high energies k; thus
=7.8' for k=500 Mev, and 3.9', for k=1 Bev.

Hence the spectrum of p rays above 500 Mev depends
only on the production cross-section for m' at about the
same angle as the angle of observation of the p rays.
This result is not inconsistent with the fact that m'

mesons of all energies emit some p rays at large angles
to their direction of motion, and even backwards,
because these large angle p's have low energy in the
laboratory system ( &100 Mev). Equation (4) cor-
responds to the case in which the p ray is emitted at
right angles to the direction of w' in the m' rest system.
The transverse momentum in the laboratory system is
then k, so that: sing= k/k.

Figure 1 shows E es f for photon energies k=200,
400, 600, and 800 Mev. The lower branch of the curves
corresponds to the + sign in Eq. (3); the upper branch
corresponds to the —sign. The smallest E is obtained
for P =0' and is given by

E, ;„=k (1+k'/k'),

which approaches k as k is increased. For f=P, , we
have E =2k. The largest E is E, ,„=~, and is
obtained for /=0' on the upper branch of the curves.

We now obtain an expression for P(k,8~), the number
of p rays per unit energy interval dk and per unit solid
angle at an angle 8~ to the incident beam, in terms of
f(E„,8 ), the differential vr' production cross section
per unit energy interval dE and per unit solid angle
at an angle 8 to the beam (see Fig. 2). The number of
y rays in a small energy interval dk can be written

P(k,8,)dk=eN P, d8~ ~dy f(E,8 )
~i

Xsin8 (2/4s. )JdE, (6)

where a=number of incident particles, E=number of
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FIG. 1.Total energy E of 7r0 as a function of the angle p between
+ and y for various y energies k. The crosses correspond to the
maximum angle P

FIG. 2. Relationship between the angles involved in Eqs. (6)
and (7). The lines marked EEE and y indicate the directions of
motion of the m0 meson and the y ray.

Here f(E,8~) has been used instead of f(E,8 ) on the
assumption that P,„ is small enough so that f(E,8 )
does not vary appreciably over the range of 0 . Thus
Eq. (7) is valid for k&500 Mev (where g, =7.8'),
although it may hold with reasonable accuracy down
to k 200 Mev (f, 20'). An exception may occur
near the forward direction if f(E,8 ) near 8 =0' varies
rapidly over a region of angles of the order of P, .

In order to obtain 8 c st/8 cosg, we note that

cosf= (cosf—tl )/(1 —n cosf).

Differentiation of (8) gives

8 cosf 1 k'

8 cosf y '(1—e cosf)' k'

(8)

(9)

Since P and k'/ks are small, we set cosf=1 in Eq.
(3) and neglect k' in comparison with k', except in the
term k' —k' sing. As shown below, the resulting errors

This possibility was pointed out to the author by Dr. M. H.
Ross.

target nuclei per cm', q =azimuthal angle of m',

(2/4s. ) is the number of y rays per steradian in the w'

rest system, and J is the Jacobian for the transformation
from the w' rest system to the laboratory. In Eq. (6),
the integrations extend over the regions of 0 and p
which contribute to the y intensity at 8~ (i.e., for whichf(f, ); dE is the interval of E corresponding to dk
at (8, io ); the sum refers to the fact that there are, in
general, two such intervals for given values of 8 and
p for which f(P,„.Equation (6) can be evaluated
more conveniently by using the direction of the p as
the polar axis. We have J'=8 c sop/8 cosg, where P is
the angle between +' and p in the x' rest system. One
obtains

8E, ( 2 ) Bcosf
P(k,8,) = N Z f(E.,8,)

Bk 4s.J 8 cosf

&( (2s-) sinPdP. (7)
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are very small above k = 500 Mev. Equation (3)
becomes

Tca (k' —k' sin'P) l

In order to test the validity of the approximation
made by using Eq. (10) for E, the integrand of Eq.
(13) was evaluated exactly for k=400 Mev and 800
Mev. The exact integrand which replaces [ref�(E,0~)]
)& (2/E ) of Eq. (13) is given by

From Eq. (10), one finds

sinPdP =4(k'/E ')[1—1j(2x)]dE.,

BP BE k'
I=feNf(E, 0,)] sing

BE Bk k'
(16)

Bk x(2x—1)
(12)

where x=k/E . Upon inserting (9), (11), and (12) into
(7), one obtains

~" f(E,,0,)
P(k,0,) =2riN dE . (13)

It may be noted that the integral over f of Eq. (7) has
been transformed into an integral over E by means of
(11).Upon differentiating both sides of (13),one obtains

BP (k,0,) 2eN f(k,0,)
(14)

which gives

f(k 0v) =—k BP(k,8„)

2eX Bk
(15)

Equation (15) gives the production cross section in
terms of the number of p rays observed. 4 We note that
the argument (k,0r) of f refers to the energy and angle
of the ~', i.e., the expression for f at a given energy
and angle involves kBP/Bk evaluated at the same
energy and angle. Equation (15) implies that BE/Bk(0
in the region of validity of this equation. This also
follows directly from (13), since P is an integral from
k to ~ over a positive function. As mentioned previously,
the preceding treatment is valid only for high p energies
(k)500 Mev), although it may give a reasonably
accurate estimate down to k 200 Mev. At still lower
energies, it is not legitimate to replace f(E, ,0 ) by
f(E,0~) in Eq. (6). In this case, the y-ray spectrum
involves an integral over the production cross section
for a wide range of angles 0„, and it is probable that a
measurement of E(k,8~) at several angles 8~ would be
necessary to determine f(E,0 ) for any given 8,.
Moreover, the procedure for solving Eq. (6) for f
would then be very complicated. '

A similar expression has been obtained by Carlson, Hooper,
and King [Phil. Mag. 41, 701 (1950)]for the energy spectrum oi
7f-0 mesons irrespective of angle in terms of the y-ray spectrum.

' For the case of 7t-' mesons produced by p rays in hydrogen,
Borsellino has obtained an expression for the energy distribution
of the decay p rays, I'(k,e&), on the assumption that the w0

production cross section in the center-of-mass system of the y
and the proton is proportional to A cos20 +8, where 0 =center-
of-mass angle of 7i-0 Lsee G. Cocconi and A. Silverman, Phys. Rev.
88, 1230- (1952)).

The exact expressions for BE /Bk and Bp/BE as
obtained from Eq. (3) were calculated for the complete
range of f, and the resulting values of the curly bracket
of Eq. (16) were compared with the approximate value
2/E . For k=400 Mev, 2/E is smaller than the exact
value by an amount which decreases from 6 percent to
2 percent as P increases from 0' to P, (=9.7') along
the lower branch of the E ns lt curve (corresponding to
the range of E„ from 411 Mev to 800 Mev). For the
upper branch of the E vs f curve, the error is of the
order of 2 percent. For k=800 Mev, the underes-
timate is &2 percent for the lower branch of the E vs

P curve. These errors are quite small and of the ex-
pected order of magnitude, being somewhat less than
m.'/k'.

In Eq. (13), the lower limit of the integral was taken
as k. If the exact expression for E, ;„[Eq.(5)] is used,
one obtains

~ 00

P(k,0,) =2NN
~ a(i+P/I ')

f(E-,0,)
dE7r. (17)

Differentiation of (17) gives

BE(k,0,) f[k(i+&'/k') 0 ] d t' ksi
= —2' —k(1+—

i
.

k (1+k'/k') dk. i k')
(18)

Since k'/k'((1 Eq. (18) becomes

2k' ) k BP(k,8~)
f[k(1+k jk), 0,]=-i 1+

k' ) 2eN Bk

Upon replacing k by k(1—k'/k') on both sides of Eq.
(19), one finds

k lr k') BP[k (1—k'/k'), 8,](1+—
I

(2o)
2mN & k') Bk

f(k,0,)=—

Equation (20) may be compared with (15). Both the
presence of (1+0'/k') and the fact that BP/Bk is
evaluated at a smaller y energy [k(1—k'/k') instead
of k] contribute to increase f(k,0~), since it is expected
that

i
BP/Bki increases with decreasing k. On the other

hand, the underestimate of the integrand of Eq. (13)
tends to give a value of f which is too high. Hence the
replacement of the exact lower limit E, ;„by k is

probably compensated to some extent by the use of the
approximate integrand in Eq. (13).It can be concluded
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that the accuracy of Eq. (15) is of the same order and
possibly somewhat better than the maximum errors of
6 percent and 2 percent in the integrand which were
found for k=400 Mev and 800 Mev, respectively.

Swartz and Deere' have made measurements of the
y-ray spectrum at 90' to the proton beam of the Brook-
haven Cosmotron, at proton energies of 1, 2, and 3 Bev.
If one assumes a target nucleon Fermi energy of 25
Mev, the cutoff energy of the p rays is 471, 659, and
766 Mev, respectively, for the three proton energies.
The observed spectra' at the three energies show a
maximum at 100 Mev and extend up to energies in
the range 300—600 Mev. At 100 Mev, $,„=42.5', and
the above treatment does not apply. However, near the
upper end of the spectrum (k&300 Mev), Eq. (15) can
be used to give an estimate of the m' production cross
section. For forward angles of observation (8„&45'),
Eq. (15) applies over a wider range of energies, since
the cutoG k is then of order 1—3 Bev.

m (P' cos'g+E')
Eu=

EE&p cosset (P—p' sin'f)'
(21)

where p =momentum of secondary in laboratory
system, m„=mass of primary particle, E and p are the
(constant) energy and momentum, respectively, of the
secondary in the rest system of the primary. Equation
(21) shows that P must be ~P .„, where

P . —=sin—'(p/P). (22)

E„ is double-valued for ii&it, . These results are
similar to those obtained for the a' decay Lsee Eq. (4)
and Fig. 1$.

The number of secondaries P(E,8) per unit energy

'C. K. Swartz and J. W. DeWire, Bull. Am. Phys. Soc. 30,
No. 1, 25 (1955), and private communication.

7 Throughout this section, letters without a subscript refer to
the secondaries; letters with subscript p refer to the primaries.
Unbarred quantities pertain to the laboratory system, while
barred quantities pertain to the rest system of the decaying par-
ticle.

III. EXTENSION TO GENERAL TWO-BODY DECAY

It seems of interest to extend Eq. (15) to the case of
an arbitrary two-body decay. The result may be of
interest in cases of the decay of unstable particles io
which it is easier to detect the secondaries than the
primaries. As an example, one may consider the possi-
bility of counter experiments to detect the 8' particles,
in which the energy distribution of the x+ and m

mesons is measured.
We consider secondary particles of total energy~ E

in the laboratory system, which are moving at an angle
8 to the incident beam. By a derivation similar to that
of Eq. (3), one 6nds that the laboratory total energy E~
of the primary particle is related as follows to E and to
the angle f between primary and secondary:

interval and per steradian is given by

Z(EP) =2~&AD" P
4p

)& (BE /BE) (1/4m) J sinlPdP, (23)

where j(E~,O~) is the differential cross section for pro-
ducing primaries of energy E„at an angle 8„ to the
incident beam; J=Jacobian; the factor (2a.) comes
from the integration over the azimuthal angle; (1/4')
gives the number of decays per steradian in the rest
system, ' and the sum sign indicates summation over
the two branches of the E„vs P curve. In the following,
it is assumed that E is sufficiently high so that P, is
small (&10') and f(E„,H„) can be replaced by f(E~,e),
i.e., f can be evaluated at the angle of the secondary.
Following the same procedure as in Sec. II, we set
cosf=1 in Eq. (21), and neglect E' and P in com-
parison with E' and p', except in the term p' —p' sing.
In this approximation, the difference between p and E
is also neglected. Equation (21) becomes

E+ (gP- E' sin'P) l
(24)

Upon introducing

Eq. (24) gives

x =E/E„— (25)

sin'P =E-'(2m Ex m'zi' —m—') (26)

sinfdP= (m„'/E, ')L1—E/(m, x)jdE„, (27)

riE, mQx —m'

BE m„x'(m, x E)— (28)

where m= mass of secondary particle.
The Jacobian J is given by d cosP/d cosP, where g

is the angle between primary and secondary in the
rest system. By a straightforward calculation, one finds

J—
y,7i(p e,E cosp)— (29)

It is assumed that the decay is isotropic in the rest system of
the primary particle.

where e„=velocity of primary and y„= (1—e„e) '.
Equation (29) is exact. We now make the approxima-
tion used above, of treating terms such as m2//E' and
m„'/E' as small compared to 1. One obtains by means
of (26):

E= (p'+m')&= p(1+m'/(2p')g (30)

n, = 1—m, '/ (2E„'), (31)

costi = 1—P/2 = 1—(2m, Ex—m„'x' —eP)/(2P'). (32)
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Upon inserting (30)—(32) into (29), one finds

P'myxj=
p(mQx —m')

(33)

As an example, for the 8' decay, E=247 Mev and
p=204 Mev/c give n=1.095, P=11.5, and p=10.5.
Equation (42) becomes

f(E,8) =Q (0.913E,H)+Q (9.58E,H)+ . . (42a)

Upon substituting (27), (28), and (33) in Eq. (23),
one obtains

P(E,H) =elm, ~~~ ~*f(E„H)
dE„)

2p ~ z„, ;.
(34)

where E„, ;„and E„, , are the minimum and maxi-
mum values of E~, given by

E„, ;„= m, E/(E+ p)
=nE, — (35)

BP(E,H)

(36)

E„, ,„=m+/(E p) =PE—,
— (35a)

where n and P are coef6cients de6ned by (35) and (35a).
Upon differentiating both sides of (34), one obtains

It is seen that for 3-Bev incident protons, in the region
of validity of the formula (E)1.5 Bev), only the 6rst
term of (42a) is present. As a check on the approxima-
tions made in the integrand of (34), (BE~/BE)J
)&sining(B$/BE„ ) was calculated exactly [using (21) and
(29)] for pions of kinetic energy 2 Bev arising from 8'

decay. For the lower branch of the E„es f curve, it
was found that the approximate value m~/(pE„) of Eq.
(34) underestimates the exact value by &5 percent.
This is approximately m„'/E'=0. 053.

Equation (42) can also be used for the pions from h.'
decay. In this case, n=4. 10, P=15.5, and p=3.78 give

f(E,O) =Q (0.244E,H) +Q (0.922E,H)

+Q(3.49E,H)+ . (42b)

For the z.—p, decay, we have rr = 1, P =p = 1.71, so that

IV. CONCLUSIONS
(37)p= f3/~= (—&+8)/(E 0)— It has been shown that the differential cross section

for ~' production by a high-energy beam incident on a
target can be obtained directly from a measurement of
the energy distribution of the decay p rays at various
angles to the beam. This result is given by Eq. (15),
which holds when the total energy of the x is &500
Mev, although it may give reasonable estimates down

to 300 Mev. The energy distribution of the p rays
can be measured with a total absorption y-ray spec-
trometer' of the type used by Swartz and netwire. s

Hence in this high-energy region, the experimental
arrangement and interpretation are expected to be
less complicated than at bombarding energies in the
range' of 200—400 Mev, where it is advantageous to
observe coincidences of the decay p rays or the range
of the recoil protons for the case of photoproduction in

hydrogen. Equation (15) is obviously independent of
the nature of the incident particles which produce the
+"s. However, this treatment is not applicable to the
low-energy end of the x' spectrum.

The results for the +' decay have been extended to
a general two-body decay, for possible application to
counter experiments to detect E mesons or hyperons. "
In this case, Eqs. (38) and (42) give the differential
production cross section of the primaries in terms of the
energy distribution of the secondaries arising from the
decay.

I would like to thank Dr. J. W. DeWire, Dr. M. H.
Ross, and Dr. C. E. Swartz for helpful discussions.

2pE BP(E,H)

Q(E,H)=—— (38)

Equation (36) can be written

Q(E,H) = f(~E,H) f(PE,H). — (39)

Q(E,H) can be obtained from the observed intensity of
secondaries. In order to solve Eq. (39) for f in terms
of Q, we note that

Q(pE, H) = f(crpE, H) f(np E,H), — (40)

and there are similar equations for Q(p&E,H) for j~2.
It is seen that f(nE, H) is given by

f(~E,H) =Q(E,H)+Q(pE 8)+Q(p'E, H)+ (41)

Since a) 1, Q(E,8) involves only values of f(E„,H) for
E~)E. In view of p)1, the sum of Eq. (41) will
therefore have a finite number of terms, limited by the
energy of the incident beam. Thus if j is the largest j
for which Q(p'E, H))0, we have

gtn

(42)f(E,H) ='2 Q(p'E/~, 8).

This equation gives the diGerential production cross
section f in terms of Q, which in turn is related to the
energy distribution of the secondaries by Eq. (38). In
Eq. (42), E.and 8 are the energy and angle of the pri-
mary. The errors involved in the use of (42) are of
order (m~n/E')', i.e., m~' divided by the square of the
lowest energy of the secondary for which Q must be
evaluated.

' A. Kantz and R. Hofstadter, Phys. Rev. 89, 607 (2953l; R. S.
Foote and H. W. Koch, Rev. Sci. Instr. 25, 746 (1954); R. M.
Sternheimer, Atomic Energy Commission Reports AECU-2982,
2983, and 2984 {unpublished)."S,L.Ridgway and G. B.Collins, Phys. Rev. 98, 247 {A) {1955).

f(E,H) =Q (E,H)+Q (1.71E,H)+Q (2.91E,H)+ . (42c)
It is convenient to introduce p and Q(E,H) de6ned by


