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The corrections from multiple scattering of the photoproduced meson to the usual impulse approximation
to the elastic photoproduction cross section for neutral mesons in deuterium have been computed. The
result obtained for gamma-ray energies of 285 Mev and 345 Mev is a depression of the cross section of
about a factor of two at all angles and at both energies. This is in qualitative accord with experiment.

1. INTRODUCTION

HE theory of neutral photomeson production in
deuterium has been considered by many
authors.!™ These treatments were phenomenological
and based on the impulse approximation ; they therefore
neglected the possibility of a final state interaction of
the photoproduced meson with the deuteron. Since the
meson-nucleon interaction is quite strong, it is expected
that the cross section will be considerably modified.
This interaction can be described as the consequence
of multiple scattering, and has been treated in connec-
tion with scattering of mesons in deuterium.® In this
paper we shall extend previous calculations to include
the corrections to the impulse approximation which
arise from this effect.

The method to be described retains the phenomeno-
logical features of the previous calculations by the
following assumptions; first, a transition operator is
used which yields a (243 sin%) distribution for «°
production from hydrogen. The physical basis for
choosing this transition operator is the assumption
that #° production takes place in the state with 7=%
and J=4%;% the distribution predicted seems to be in
accord with experiment.” Following this model it is
assumed that the scattering also has a resonance in
this state. The parameters of the theory then may be
determined by comparison with the measured transition
amplitudes for photoproduction and scattering in
hydrogen. Second, off-the-energy-shell scattering has
been neglected. It will be seen that the nature of this
approximation is such as to lead us not to expect
agreement of more than qualitative nature between the
theoretical and experimental results. There are several
reasons for this neglect. First, there is some reason to
believe that the range of the corrections due to multiple
virtual scattering is less than that due to multiple real
scattering, and therefore that most of the correction
comes from the latter. Second, the present state of
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meson theory does not allow reliable predictions of the
behavior of the scattering amplitudes off the energy
shell. Since our treatment is phenomenological, it
seems best to omit this type of calculation. Third, the
difficulties of solving the multiple scattering problem
including virtual mesons are very considerable, since
numerical solution of coupled integral equations is
required.

The procedure for the calculation is quite straight-
forward. A formal solution to the Schrédinger equation
for the problem is constructed following the method of
Chew and Goldberger® and of Watson? and making use
of approximations similar to the impulse approximation
to simplify the results. Finally the formal solution is
evaluated in terms of the known expressions for the
operators which are involved. The elastic differential
cross section is computed for photoproduction of #°
mesons. From these results it is also easy to obtain
the usual impulse approximation to the cross section,
so that the effects of the multiple scattering can readily
be seen. The graphs and numerical results are discussed
in Sec. III.

2. FORMAL METHODS

Notation: Let the two nucleons be numbered 1 and 2.

hi, 2=interaction terms in the Hamiltonian between
the meson field and the nucleon field.
H, ,=interaction terms in the Hamiltonian between
the meson and nucleon fieldsand the radiation field.
h=h1~+hs.
H=H,+H,.
JCo=the sum of the free-field Hamiltonians.
' =h+H.
Jc=the total Hamiltonian= JCo+- 3C’.
¥ =the solution to the Schrédinger equation for the
problem.
¢=the initial state (a deuteron plus a gamma ray).

1 1

—=-————— the Green’s function for the problem.
a E— 5C0+1:6

T=3c'+ 3¢ 3¢’, the transition operator for
X D

a—3C
the problem.
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ti=hi+h; i, the transition operator for scatter-

a—nq
ing at nucleon 1.

1
Ti=hi+H+ (h+H)——(h+H,)
(l—h Hz

7

1 1
a— hz a— hz
if one neglects terms not linear in H,, the transition
operator for photomeson production from the ith
nucleon alone.
We start from the Schrodinger equation for the
problem written symbolically in integral form:

1
Y=vo+-3CY. (2.1)
a

A formal solution to the Schrodinger equation can be
written, following the method of Chew and Goldberger,?
as

1
¢=[ 1+—T]¢, (2.2)
a

where the transition operator T is, to terms linear in
the weak gamma-ray interaction H,,

1 1
T=[1+,’z ]H[l } ,’z].
a—h a—h

We now wish to replace the interaction Hamiltonians
which appear in this expression by the related (and
observable) transition operators for scattering and
photoproduction on a single nucleon. To do this, we
proceed in the following way : first, using the definitions
for T;, we find that Eq. (2.2) for T is formally equivalent
to

1 1 1
T=[1+h—][[1+h1 I
a—h a—h
1 —1 1 7!
h1] +[1+h2 ]
a—nh a—hs

1 —1 1
XT2[1+ h2] ][H———h]. (2.4)
a—he a—h

We introduce our first approximation by assuming that

{1+[1/(a— k) Yoy {1+[1/ (a— 1) I}
{1+[1/(a—h) Jhoy{14-[1/ (a— 1) I}

are equal to 1. Physically, this means that we neglect
one nucleon’s influence on the photoproduction at the

(2.3)

XT1[1+

and
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other nucleon before the gamma ray is absorbed. The
exchange of these virtual mesons also serves to bind the
deuteron, and we will include this effect by using the
correct deuteron wave function. Next, eliminating
the meson-nucleon interaction terms %; by a series of
formal manipulations, we are led to the result,

11771 11
T=a[1——i1~l2:| [—Tl-f-—h—Tg]—}—(h:’Z). (2.5)
a

a a a a

We can interpret this equation for 7" physically. If
the denominator were expanded in a power series, the
first terms in the expansion would be T and T, the
usual impulse approximation. The next two terms are
ti(1/a)Ty and #5(1/a)T:. These terms represent the
first correction to the impulse approximation due to
one scattering at the other nucleon after photoproduc-
tion. The other terms represent all higher order correc-
tions of this type.

3. COMPUTATION

We assume that the scattering takes place in P states
and that photoproduction takes place in S and P states
as predicted in reference 5. Accordingly, we choose a
form for #; in momentum space:

(qlt:lg")=bg-q'eiaa" 53, (3.1)
where b, is a matrix in charge space and is also depend-

ent on energy. We have also a momentum representa-
tion for T,

(@I Til6)= (astryi- Qi@ 53, 3.2)

where a; and v;-q are matrices in charge space which
contain the spin and energy dependence of the photo-
production transition matrix |¢) is the initial state of
the system containing a gamma ray of momentum R
and two nucleons at r; and r,. The vector q is the
momentum of the photoproduced meson.

To solve our problem we need a representation of
theinverse operator [ 1— (1/a)t1(1/a)¢, 1! which appears
in Eq. (2.5). Let

11

—1
y=[1——£1—t2] .
a a

Then we find that y satisfies the integral equation

(3.3)

y= 1+yt1—112—1. (3.4)
aa
In momentum space 1/a is diagonal.
<ql1lq’>=—1—~6(q—q’). (3.5
a E—wtie
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We find from Egs. (3.1) and (3.5) that the matrix
element of ¢,(1/a)t is

<q1

q’>= — i@’ 'rz)q.qu’.VR

t1—ts
a

ezq -R
xf S
(27r)3 E—wtie

where R=r;—r,. In evaluating this integral we shall
retain only the contribution from the pole on the energy
shell, i.e., we suppose that &; and b, have no poles which
contribute appreciably to the integral. This is equivalent
to the assumption that the scatterings on the energy
shell give the principal contribution to the correction
due to multiple scattering. The evaluation is then
elementary and we find that

<q q’> = gila T -r»[iﬁ]
2
einR

Xbib2q-Vrq' - Vr
R

(3.6)

1
ti—t2
a

(3.7

We have introduced ¢z as the momentum vector which
conserves energy with the incident gamma ray and
we=(qz*+u** Where no confusion can result, ¢z will
often be called ¢. If we introduce the functions f and
¢ defined by

1 d e"E
fR)= EE? 3.8)
and
R)—i—d— (R) (3.9)
g( - R de ) .
we obtain

<q

This result can be substituted in Eq. (3.4). We introduce
an auxiliary function,

1
w2>¢rm¢MMR@@m
a

3 7

@n)"
We find the equation for S by operating on Eq. (3.4).

wWEg d3q'
S= qe‘i‘l 4r1+S[_ ]blbz . f
2T 2mr)?

w>memnm (3.11)

67iq’ ‘R
X (fd'+gRq’-R) — (3.12)
E—w'+1e
If we perform the integration and put ¢;= — (wg/2m)b;
we find that
S=qe 4 11+Sci6: f>4-S- R(2 fg+ 2R crcoR.  (3.13)
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We can solve for S by scalar multiplication by R. The
resulting equation for S- R is

S-R= q- Re—ia-m1 (3.14)
1—cicoh?
where we have introduced the abbreviation
h= f4R?g. (3.15)

By substitution in Eq. (3.13) we obtain an equation
for S. The solution for S is

N — 1111
1-*][26162
1 1
x[ - ] (3.16)
1—72cico 1—f26162
If we define
3 1
P(q)=f (glye " n1|¢')——, (3.17
(2m)? )
a similar calculation shows that
ks R e
P=¢ 1 n—4q-R hcics. 3.18
1'—-]’L26162f " ( )
From Eq. (3.14) we see that
wrio= [ 'kﬂfw>
(2ry o

+f( )3<ql g ——

Using the definitions of T'; and T, we finally obtain

<¢uwﬂ (3.19)

qlT|¢)= ( —iq- R fhclcg)ale“Kw 1y
— h%1c2
1
+{——‘Q'T1—|——(
1— fice R2\1—Jcco
! ) Ry:-Riei
— Xq- }ei K-—q) -1
1= feics ™

1 1
—!—{zq R—————ftia —[———~~ c1q-r
P fanrs

f26 1C2

1 h f
bt
R*\1— }l26162 1— f26162

Xe1q- Ry R] }e“K"z—q"l)—l— (1=2). (3.20)
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To compute the elastic cross section for #° production
we must average {q|T|¢) over the square of the
deuteron wave function.! We perform the average over
the angles of R and introduce

1=%3(K—q), (3.21)
and
m=3(K+q). (3.22)
Then Eq. (3.20) can be written as
{qIT|e)= (1—(1'VL /t vlcz)alsian
1—h2cico IR
1 1 1
+[1—f20102q'Yl_E(l—]ﬂcmz
1 sin/R
) O] =
+{_ ! Q‘Vmclaz—[—f——clq"rz
1— f2c1ce — 1o

1 h f
——( )cl<q-vm)
RZ 1—]126162 1—f26162
sinmR
><(73~vm)]}><~——+(1<—_>2). (3.23)
mR

We now compute the isotopic spin dependence of the
transition operator. This is done in the Appendix.
The results are

2 V2
C1=b[ ], (324—)
V2 1
and
2 —V2
—V2 1

We also compute q-+y: and q-v. in the appendix [ Egs.
(5.8) and (5.9)].

The states used as basis vectors for this representation
are the two states of the meson—two nucleon system
with total isotopic spin equal to unity; b is A% sind.
To obtain this result we have introduced the assumption
that scattering takes place in the state with isotopic
spin equal to three halves. If we introduce dimensionless
variables

x=qR, (3.26)
y=KR, (3.27)
w=mR, (3.28)
z=1R, (3.29)

then the transition matrix element for elastic #°
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production can be shown to be

ol Ts| >__1 2T 2 sinz+ sinw
9 Laes|6r= K (12)% (wq)%” z f?)

1 1,1 1
x——+—( )
1—f2 2\1—2 1—f

1 h
X[ —2a(z)+x-2zb(z) ]——
2\1—12

_%)[—Za(w)—kx'wb(w)]]

X[x1(1)+x1(2)]“§ 3(01—['02) e

X[X'z(ljhfl—lﬁ)b(z)

+X‘W(1—]-1;;2_1—ff2)b(w)]’' (3.50)

The various symbols used in the equation are defined
as follows: v» is a term which contains part of the
energy dependence of the cross section. Its value is
determined by comparison with the #° production
cross section in hydrogen. The functions f, g, and %
are functions now of x, and are redefined as

ilatd)
flx)= sind, (3.31)
X
1d
gw)=-—f(=), (3.32)
x dx
h(x)= f(x)+x°g(x). (3.33)

We have also (reference 6):

1
xi=—{2q- (KXe)—io;- [qX (KXe)]}. (3.34)

gK
Finally,
1 d sinz
a(zx)=———y (3.35)
z2dz 2
and
1d
b(z)=——a(2). (3.36)
2 dz

The usual impulse approximation is obtained by
putting §=0. Then f=#k=0. We find that

- 1 2« v sinz[ (1) (2 337
(ql IAI¢>*E(12)% (wq)%—; x(D+x:1(2) ] (3.37)
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F16. 1. Photoproduc-
tion cross section as a
function of emitted
meson angle in the
laboratory system at a
gamma-ray energy . of
285 Mev. The dashed
line is the impulse ap-
proximation, the solid
line is the impulse ap-
proximation with multi-
ple scattering correc-
tions, and the crosses
are experimental points
from Silverman et al.
(reference 10).
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In obtaining these results we have made use of the
assumption of reference 6, that photoproduction of
neutron mesons takes place in a state with J=3
(magnetic dipole). We have not included contributions
from production of charged mesons in S-states. This
contribution has been evaluated numerically and found
to be small. We introduce a simplified form of

(¢| Ts|)-
1 20 0
OO
X[ALx1(1)+#1(2) I+ B(o1+02) -£].

Let the averages over ¢p%(R) be denoted by 4, B, and
((sinz)/z)n. Then the cross section is

=—{-1i2~1—[][il2(5 sin’9+2)
9 K?

(3.38)

dous

aQ

+|B|2—2 cosf Re(4*B)]. (3.39)

We obtain the usual impulse approximation by averag-
ing and squaring Eq. (3.37). We find

v[2 1
=—|—l —(5 sin?042)[{(sinz)/z)a 2. (3.40)
9 K2

dosa

aQ

If we use the Hulthén wave function,

¢D(R>=(3§a)%(ﬂﬂ%m), (3.41)

180°

where a=45.5 Mev, we find that

((sinz)/Z>Av=29_8 ;[ - tanﬁl(zz_a)

+2 tan—l(i—a)——tan—l(%?)]. (3.42)

The functions A and B must be evaluated numerically.
This was done at gamma-ray energies of 285 and 345
Mev. These energies correspond to meson phase shifts
for scattering of about 45° (135 Mev) and 90° (200
Mev). In Fig. 1 we show the results of the calculation
in the laboratory system at K=285 Mev. The experi-
ments of Silverman et al.” are also plotted. We see that
the multiple scattering tends to depress the cross
section by roughly the same amount at all angles. The
magnitude of the cross section was fixed by fitting to
the #° cross section in hydrogen.

In Fig. 2 we also plot the results at K=2345 Mev in
the center-of-mass system. The results are approxi-
mately the same, a depression of the cross section at
all angles.

We have also computed the cross section for a transi-
tion operator which yields a sin? distribution for #°
production in hydrogen. The result is shown in Fig. 3
for K=285 Mev. The correction factor due to multiple
scattering is about the same as in Fig. 1.

10 A. Silverman and M. Stearns, Phys. Rev. 88, 1225 (1952).
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4. CONCLUSIONS

The possibility that the observed depression of the
photoproduction cross section for mesons in deuterium
can be explained in part by inclusion of the effects of
multiple scattering in the calculations seems to be
substantiated by these results. We see that measurement

of the differential cross section at angles further forward
is suggested, in order to look for a quantitative check on
the theory. We also see that little information can be
obtained as to what order of radiative transition is
involved from measurements at these energies. The
quantitative agreement with experiment is only fair.
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This can be explained by remembering that only scatter-
ing on the energy shell was considered. Scattering off
the energy shell, which is expected to be important for
small nucleon separations, would raise the cross section,
perhaps enough to obtain such agreement.

5. APPENDIX

The most general form for the operators ¢; in charge
space is
ci=at+br; 1, (5.1)
where

1=iUXU". (5.2)

Reference 8 contains a complete discussion of these
points. ¢ and b are scalar functions in charge space,
independent of the isotopic spin. 1 is an operator in
charge space which has the properties of an isotopic
angular momentum. The components U; and U,
annihilate and create the sth component of the meson
wave.

If scattering takes place in the state with =%, we
must have

a=2b. (5.3)
Then
Ci=b(2+1i'1).

To obtain a representation for ¢; we choose a set of
basis vectors as follows:

(5.3)

Representation 1

I " 2 nucleon singlet+4®°
II 11%%0,° 2 nucleon triplet+=°
III t ! 2 neutrons +xt
v Hlw? 2 protons +7

Using these states for basis vectors we can construct
the matrix for ¢;. It is

(5.5

2 01 -1

1 0 21 1
Tl 11t of

-1 10 1
If we choose a representation in which the total
isotopic angular momentum is a constant of the motion,

Representation 2

¢ l I
I 0 1
II 1 1 0
III 1 1 1
IV 1 1 2

JOHN CHAPPELEAR

where ¢=isotopic spin of 2 nucleons; /=isotopic spin of
mesons; [=total isotopic spin. We can transform ¢,
into this representation by use of the Clebsch-Gordan
coefficients.!! Then we find

2.0 V2 0
{00 00
Cc1= \/2— 0 1 0 . (56)
00 03
Similarly we obtain
' 2 —V2
C2= (__\/Z 1) . (5.7)

We need retain only two rows and columns (the two
states with 7=1) since the photoproduction takes place
in the state with /=1 and the scattering operators do
not change I. We can also compute {q|7:|¢) and
{q| Ts|¢). We find

< ITI >—e—z‘(q—K).r1 2w xl(]_)vl' 1 7 sg
A= ey lipzl &Y
and
_g—i(qﬂ()-rz 2w xI(Z)yI' 1 1
(q| T2 ¢)= % (12! (wq)%l_—l/\/f_' (5.9)

This result is obtained by writing a transition operator
which leads to the results of reference 6, and then
computing the matrix elements for it in representation
2. To obtain this result we have assumed that produc-
tion in S states does not contribute. This is not correct,
but numerical evaluation shows that this neglect is
unimportant for the #° production cross section.

By reference to Eq. (3.2) we can obtain ~;-q which
we need in computing our cross section.
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