
LETTERS TO THE EDITOR

there is a strong absorption band near 52 microns at
both temperatures. Furthermore, there is also high
absorption beyond 100 microns at 297'K. This is
borne out by the transmission curves shown in Fig. 1.
The sample is nearly intrinsic with )t=P=2.4X10te
cm ' at 297'K, while P~10" cm ' and rt((10" cm s at
78'K. The 52-micron band is thus independent of the
carrier concentration and is therefore a lattice band.
The high absorption beyond 100 microns, observed at
297'K seems to be caused by the carriers, ' since the
absorption becomes small at 78'K.

ReAectivity measurements at 297'K on an e-type
sample of )t = 10" cm ' and a p-type sample of p= 10"
cm ' confirm the above interpretation. The same 52-
micron band is present in both samples. Beyond 100
microns, the m-type sample shows an even higher re-
Qectivity than the pure sample at 297'K while the
p-type sample has the low reflectivity shown by the
pure sample at 78'K. Thus we see that the high re-
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FIG. 2. Refiectivity as a function of wavelength for an
InSb sample; E~= j.0'5 cm 3.

Rectivity at long wavelengths is- caused by absorption
due to the conduction electrons.

The strong lattice band near 52 microns indicates
some degree of ionic binding. This absorption gives a
contribution to the complex susceptibility,

InSb. Using the expression'

4orlVe*' (rt'+2)'

3Mcop

This is higher than the mobilities observed around this
temperature for holes as well as electrons, the latter
having a small effective mass.

It is interesting to note that the transmission up to
35 microns decreased with decreasing temperature
within the extrinsic range; at 297'K the sample is
intrinsic. As reported previously, in samples with
S~ ~& 10'~ cm ' the transmission decreases steadily
from 297'K down.

This work was stimulated by some preliminary re-
flection measurements made by E. J. Johnson at the
suggestion of Professor K. Lark-Horovitz.

*Work supported by a Signal Corps Contract.' H. Y. Fan and M. Becker, Symposium Volume of the Reading
Comferercce (Buttervrorth Publishing Company, London, 1951).
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where M is the reduced mass of the atoms and e is the
short-wavelength refractive index, the effective ionic
charge is estimated to be e*=0.34e.

The question arises whether partial ionic binding
would be compatible with the high carrier mobilities
observed. The formula of mean free path for polar
scattering' has been derived for kT&&Aco~, where or~ is
the frequency of longitudinal waves. At 80'K, Ace&

=3.4kT, this gives a mobility
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where Ae, is the contribution to the static dielectric
constant. By comparing the reRectivities on the short-
and long-wavelength sides of this band we estimate
he, (1.5. The dashed curve (Fig. 2) was calculated
with 6)0=3 5X10 sec and 'y=1 3X10 ~ sec ~ and the
limiting value he, =1.5 was used to get the high re-
Qectivity. The discrepancy between this curve and the
curve measured at 78'K may be due to poor resolution.
In fact, the measurements at 52 microns were made
with three NaCl and an InSb crystals as residual
ray plates; with four NaCl plates the measured re-
flectivity was 50% instead of 65%. These observa-
tions confirm the narrowness of the reQection band in

Experimental Evidence for Dislocations
in Crystalline Quartz
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ECKNT measurements of well etched, mounted,
and contoured A T shear vibrating quartz crystals,

shown by Fig. 1, indicate that the Q decreases inversely
proportional to the frequency up to 100 Mc/sec. This
result is indicative of a relaxation. To verify the exist-
ence of such a relaxation, measurements of internal
friction of single crystals have been made from 1.5'K
to 300'K and in the 5- to 80-Mc/sec frequency region.
The, results for a 5-Mc/sec crystal are shown by Fig. 2.
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To justify this division, measurements were made for
a number of crystals whose frequencies ranged from 5
to 80 Mc/sec. In every case two peaks were obtained
and Fig. 3 shows a plot of the relaxation frequencies
against 1/T. There are two relaxation frequencies deter-
mined by the equations of Fig. 3. The high-energy
curve agrees well with one measured previously in
fused silica. ' This peak is thought to be due to impurities
distorting the lattice until it approximates the fused
silica lattice in the neighborhood of the impurities.
The height of the peak is from 1/2000 to 1/20 of the
height of the fused silica peak and the relaxation spec-
trum is much narrower indicating only a small range of
bond angles.

As can be seen, Q
' increases as the temperature de-

creases, shows two maxima and then drops to a low
value which is thought to be determined by the mount-
ing loss. The internal friction, as shown by the dashed
lines, can be divided into three parts labeled mounting
loss, dislocation relaxation, and oxygen vibrations.
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FIG. 1. Experimental measurements of Q of A T quartz crystals
as a function of frequency and size. Dashed line indicates most
probable internal friction as a function of frequency for quartz
alone.
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Fro. 2. Internal friction for a 5-Mc/sec AT quartz
crystal as a function of temperature.
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FIG. 3. Semilogarithmic plot of relaxation frequencies as a
function of 1/T.

The lower activation energy curve is thought to be
caused by dislocations. The relaxation peak is similar
to that found in metals. ' This has been attributed to
pinned dislocations being displaced from their mini-

mum energy position by one atomic spacing in the glide
plane. Another characteristic of dislocation loss is the
exponential increase at high temperatures due to
breakaway of dislocations from their impurity pinning
points. This type of loss in quartz, occurring at high

120
temperatures, is shown by the work of Cook and
Breckenridge. ' From these data and the theoretical
equations of reference 2, one Ands values for dislocation



LETTERS TO THE E D I TOR

N disloc.
per cm'

Loop length
in cm

Ratio of
(2'~s) o/~

number, loop length, and ratio of limiting shear stress
to elastic shear modulus compared with a metal in
Eq. (1). t9

(crlvif)—
87

n(r)q(v; q(r), c(r)).

place of x, we can write (1) in the form:

(3)

Metal
Quartz

10' to 10'
10'

4X10-4
2X10 ' X10 '

4.SX10-'

Dynamics of Rarefied Gases*
MAx KRooK

Harvard College Observatory, Cambridge, Massachusetts

(Received July 21, 1955)

HATNAGAR, Gross, and Krook' have proposed a
model for the statistical representation of mo-

lecular collisions in gases. The model leads to nonlinear
kinetic equations which incorporate the same essential
physical properties as the Boltzmann equation but are
mathematically more tractable. I inearized forms of the
equations have been used to study small-amplitude
oscillations in gaseous systems. ' '

For several boundary-value problems of one-dimen-
sional steady Qow, exact numerical solutions of the full
nonlinear equations can be obtained without excessive
labor. In such problems with simple gases, the state of
a system is specified by a distribution function f(v,x),
where x= position coordinate and v=—(vr, vs, vs) =molecu-
lar velocity. Let ns=molecular mass, n(x)=number
density, q(x) =flow velocity, T(x) =kinetic tempera-
ture, and c(x)= Lk T(x)/ns j& (k = Boltzmann's constant).
In the absence of external forces, the kinetic equation
is then':

s,r)f/r)x= nlrf+nM (—v; q(x), c(x))
with

C(v; q, c)—= (2 c') 'expt —(v —q)'/2c'j; (2)

eI(: is the collision frequency; we have taken ~ inde-
pendent of v or equal to some average over v. (Kinetic
equations corresponding to more general models' can
also be used in this work. )

Introducing r= J'nsdx as independent variable in

The lower value of (Tis)s/p, indicates that the dis-
locations are broader than those in metals. The lower
number of dislocations present accounts for the smaller
dissipation and greater mechanical stability of quartz.
The small residual aging of the elastic properties of
quartz noted after processing the crystal is probably
due to the stabilizing of dislocation positions as a func-
tion of time. This aging should be eliminated if the
crystal is held at a very low temperature.

' See 0. L. Anderson and H. E. Bommel, J. Am. Ceram. Soc.
38, No. 4 (Aprii, 1955).

s W. P. Mason, Phys. Rev. 98, 1136 (1955).
'R. K. Cook and R. G. Breckenridge, Phys. Rev. 92, 1419

(1951);see Fig. 2.

f~(v,a)=A C(v; qi, ci),

f (v)&) =&—'C'(vi q» cs)&
(4)

where the constants q&, q&, c&, c2 are given and A, 8
are to be determined. Various other forms of boundary
condition also have to be considered, e.g., specular
reQection, etc.

Directly from (3), (4), we find explicit expressions
for f~(v, r) as integrals involving n, q, c and A, B.
Multiplying these solutions successively by 1, v, (v—q)'
and integrating with respect to velocity, we obtain a
set of integral equations which sufFice to determine
the unknowns n(r), q(r), c(r), A, 8, and hence also
f(v, r). The integral equations can be solved numeri-
cally by a process of successive approximations which,
in general, converges rapidly. Problems with diGerent
forms of boundary condition can be handled in an
analogous way.

Given a forte for the microscopic boundary condi-
tions, the model enables us to give a unified and con-
sistent treatment of particular Qow problems over the
complete ranges of values of the various dimensionless
parameters (Knudsen number, Mach number, etc.),
that characterize the Qow. We can, for example, trace
the changes in detailed character of a Qow as we proceed
from the continuum regime, through the slip Qow and
transition regions, to the free molecule regime.

The kinetic model can also be used to provide in-
formation on some methodological questions. Various
authors, e.g., Mott-Smith, 4 Wang Chang and Uhlen-
beck, 5 have solved the Boltzmann equation for some
"steep-gradient" problems, but only by approximate
methods of unknown accuracy. The same approxima-
tion procedures can be applied to our kinetic equation
and the results then compared with the corresponding
exact solutions obtained in the above way. This pro-
vides some insight into the accuracy of the various
approximation methods.

Further, the equations of macroscopic gas dynamics
can be derived2 from our kinetic equation by the
Chapman-Enskog procedure; explicit values are thereby
obtained for the coefficients of viscosity and of heat

The variable 7- is analogous, in some respects, to the
optical depth of radiative transfer theory (for an
excellent account of that theory, see KourganofP).

To handle boundary-value problems it is usually
necessary to use the functions f+ which represent
f(v; r) in the half-spaces vi) 0 and vi&0 respectively.
Conditions at the boundaries r=a, b, (a&5), are deter-
mined by physico-chemical considerations. One common
type of boundary condition is represented by


