CONSERVATION OF CHARGE IN GRAVITATION

density vanishes everywhere that the field equations
are satisfied and hence is unsatisfactory since the only
acceptable solutions to the field equations are those
which satisfy them everywhere. Thus, for this solution,
our current density would be everywhere zero. We
believe, however, that it is necessary to consider solu-
tions of the field equations which do not satisfy them
everywhere. In certain small regions of space it might
well be that the field equations are not even valid. One
can take the position that the field equations describe
correctly the interaction of elementary particles but
are insufficient to describe the particles themselves and
hence, at small distances from these particles, must be
replaced by some other kind of mathematical construc-
tion.* If such were the case we would no longer need to
restrict our solutions and the current density of Eq.

4 This view is diametrically opposite to that held by Einstein.
He contends that his field equations are everywhere valid, i.e.,
that they do correctly describe the elementary particles.
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(16) could be nonzero for certain regions of space. In
fact, if one takes seriously the relation between in-
variance and conservation laws, one is almost forced
into this latter position. Regardless of the form of the
Lagrangian, the current density which follows from
gauge invariance will vanish whenever the field equa-
tions are satisfied.

The only way out seems to be to construct a theory
in which it is impossible to introduce potentials. While
there would still be an invariance associated with the
conservation of charge, it may be of such a nature that
the current-density need not vanish when the field
equations are satisfied. For instance, the energy-
momentum tensor associated with arbitrary coordinate
invariance does not vanish when the field equations are
satisfied. It is evident that a theory for which it is
impossible to introduce potentials will differ from the
present theory and hence lies outside the scope of our
investigation.
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In this paper, we investigate the existence of gravitational radiation within the framework of the ETH
approximation method. Following a prescription introduced by Infeld, the radiation terms of the EIH
expansion are begun with functions of the time alone. We find that these terms do not have physical sig-
nificance if they are introduced in the scalar or longitudinal components of the gravitational potentials.
However, if the radiation terms are introduced in the fifth order of the transverse-transverse components,
one finds a contribution to the curvature tensor in the seventh order, a contribution to the equations of
motion in the ninth order, and radiation in the tenth order. The existence of radiation is determined by
calculating the energy passing through a spherical surface which is an infinite distance from all source
points. This definition of radiation agrees with that used in the theory of electromagnetism.

I. INTRODUCTION

N recent years there has been some controversy

concerning gravitational radiation. Infeld and
Scheidegger have maintained that the possibility of
radiation does not exist within the framework of the
EIH (Einstein, Infeld, and Hoffman) approximation
method.*~* This conclusion has been accepted for the
scalar and longitudinal components. Indeed, in his
book Bergmann has shown® that in the linearized
gravitational equations these terms do not contribute
to radiation ; however, the transverse-transverse compo-
nents do make a contribution. It was on this basis
that the proof set forth by Infeld and Scheidegger was

1 L. Infeld and A. E. Scheidegger, Can. J. Math. 3, 195 (1951).

2 A. E. Scheidegger, Phys. Rev. 82, 883 (1951).

3 L. Infeld, Can. J. Math. 5, 17 (1953).

4 A. E. Scheidegger, Revs. Modern Phys. 25, 451 (1953).

5P. G. Bergmann, Iniroduction to the Theory of Relativity
(Prentice-Hall Publications, Inc., New York, 1947), pp. 187-189.

first criticized.® This paper will attempt to clarify the
situation by proposing an unambiguous definition of
radiation.

II. EIH APPROXIMATION METHOD

In a previous paper? the surface integrals leading to
the equations of motion were found without recourse to
an approximation method. The possibility of doing so
depended on the existence of superpotentials for the
components of the energy-momentum psuedo-tensor :*

Ty= Uu[W]. a: (1)
T’ is the energy-momentum psuedo-tensor and U 7]

6 P. G. Bergmann (private communication).

7J. N. Goldberg, Phys. Rev. 89, 263 (1953).

* The energy-momentum pseudo-tensor does not have simple
geometrical transformation properties (see reference 5, page 196).
Hence, the word pseudo-tensor should not be confused by the
current use of the prefix pseudo- to describe a density of weight one.
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is the antisymmetric superpotential. As a result, it was
shown that whenever the field equations of a covariant
field theory are satisfied on a two-dimensional closed
surface, that is,

L4=0 2

on the two-dimensional surface, the following integrals
taken over that surface vanish:

Z“Ef(U“Ms]’ 4+t”3)n3d5=0. (3)

In the above equations, L4 are the field equations and
¢’ is equal to the energy-momentum psuedo-tensor
when the field equations are satisfied:

b= —08,"L+y4,,04"L. 4)
The above surface integrals, Eq. (3), were shown to be
equivalent to those used by EIH in their solution of
the problem of motion in the general theory of rela-
tivity. They are independent of the surface chosen in
the sense that the restrictions placed on the coordinates
of any singularities enclosed by the surface are the
same regardless of the choice of surface. For our
purposes it will be convenient to discuss the EIH
approximation method using the notation of this
paragraph.

The method of EIH310 assumes that the particles
generating the gravitational field are represented by
singularities in the field and that the velocities of these
particles are small compared with that of light (v/c<1).
It follows that the derivative of the field variables
(gravitational potentials) with respect to time will-be
of a higher order in /¢ than the derivatives with respect
to the space coordinates. One introduces a parameter =
such that 7=Ax*(A=v/c). Derivatives taken with re-
spect to 7 are assumed to be of the same order as those
with respect to the space coordinates. 7 differentiation
will be represented by a zero following a comma; i.e.,
Y4,4=M\y4,0. For the sake of consistency, in the following
Greek indices will run from 0 to 3. This notation has
the advantage of constantly reminding us of the nature
of the approximation method. As usual, Latin indices
run from 1 to 3. Finally, the field variables, y4, are
expanded into a power series in \:

ya= 2. AN"Ya. (3)
n=0

As a result, the field equations and the surface integrals
will also be power series in A and the coefficients of the
various powers of A may be equated to zero separately:

(6)
™

JLA=0,
=0,

8 Einstein, Infeld, and Hoffman, Ann. Math 39, 66 (1938).
9 A. Einstein and L. Infeld, Ann. Math 41, 455 (1940).
1 A, Einstein and L. Infeld, Can. J. Math 1, 209 (1949).
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Let us assume that the field equations have been
solved and the surface integrals satisfied through the
nth order. Therefore we know oya, ---, »ya. The
superpotential ,U,P¢ contains terms which are linear
in ,y4 as well as the lower order field variables in
combinations of higher degree. In the surface integrals,
however, this term is differentiated with respect to 7
and therefore is of order #4-1. The components of the
weak energy-momentum psuedo-tensor #,” are homo-
geneous quadratic in the first derivatives of the field
variables and therefore knowledge of the field variables
to the nth order gives us ¢, at least to the (n-+1)th
order. Therefore, if the solution of the field equations
up to the nth order is to be consistent, the surface
integrals in the (%z-+1)th order must vanish. In general
one cannot expect these surface integrals to be satisfied
when the surface encloses a singularity. However,
Einstein and Infeld have shown!® that in the theory of
gravitation ,y12.4 may be satisfied by the addition of
poles in the nth order and .12, by the addition of
dipoles in the (#—1)th order. When the solution has
been carried as far as desired, the sum of all the dipoles
added is set equal to zero. That this process yields the
equations of motion for the singularities follows from
the fact that the surface integrals are merely conser-
vation laws for linear momentum. For arbitrary particle
motions, linear momentum can be conserved by the
addition of appropriate time dependent dipoles. The
ultimate prohibition of such dipoles forces the particles
to move in such a manner as to conserve linear mo-
mentum.

There is still a certain amount of arbitrariness in the
solution and hence in the equations of motion which
has not been discussed. In the nth order the field
equations will consist of linear terms involving the field
variables of the nth order and linear as well as nonlinear
terms involving the field variables of lower orders.
Thus in each order, except for the lowest, one has to
solve inhomogeneous linear partial differential equa-
tions. Therefore, to the solution of the inhomogeneous
equations one can add an arbitrary solution of the
homogeneous equations. One must decide in advance
what singularities are to be permitted if unique equa-
tions of motion are to be obtained. Having chosen a
particular solution in the lowest order, EIH prohibit
the addition of any other arbitrary solutions of the
homogeneous equations.

Apart from the above, there is an additional arbi-
trariness which results from the question of radiation:
Should one choose a retarded, advanced, or a linear
combination of retarded and advanced solutions? ETH
avoid the question of radiation by choosing the standing
wave solution (retarded plus advanced).

In the theory of gravitation it is convenient to
introduce linear combinations of the deviation from
flat space as the field variables in the approximation
method:

@)

Y= hfw"' %ﬂ#vn"hpn
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where
Byy= guv—"p (9)

is the deviation from flat space. 9., (—1, —1, —1, +1)
is the Minkowski metric. The +,, are then expanded
into a power series in A beginning with A2:

0 o0
Yoo= 2_ A** anvoot+ 2 A2 45,1700,

n=1 n=l1

0 0
Yor= 2 A" ot rvert 20 A2 5 i0von (10
n=1

n=1

o o0 .
Yrs= Z )\2"+2 21»—{-2'Yrs+ Z )\2n+3 2n+3Y rse
n=1

n=1

As indicated above, the expansions of the v,, separate
into two independent sets. The field equations have
the property that each set must be introduced sepa-
rately. By comparing the above expansion with the
corresponding expansion of the electromagnetic theory,
Infeld! concluded that the first set represents an
advanced plus retarded field (standing waves) while
the second set represents a retarded minus advanced
field. Therefore, he called the second group of terms
the “radiation terms.” The solution of EIH considers
only the standing waves.

In the theory of electromagnetism, the radiation
terms start off with a function of time alone. Arguing
by analogy, Infeld assumed that this situation should
also be true in the theory of gravitation. Together
with Scheidegger, he has shown that any function of
time introduced into the radiation terms can be elimi-
nated by means of a coordinate transformation.!
Therefore, they concluded that gravitational radiation
does not exist in the ETH framework.

The fallacy of their argument can be shown at this
point. Let us consider the curvature tensor (see Ap-
pendix 2). The linear terms of this tensor contain only
second derivatives of the field variables while higher
degree terms contain a part which is homogeneous-
linear in the second derivatives and a part which is
homogeneous-quadratic in the first derivatives of the
field variables. It is clear then that the introduction
of an arbitrary function of time into the nth order of
the radiation terms may make a contribution to the
curvature tensor not in the sth order, but in the
(n+2)th order. Thus, to say that the arbitrary function
of time which has been introduced may be transformed
away in the nth order is trivial, for it does not contribute
to anything physical in that order. It follows, then,
that one must investigate the higher order terms in
order to determine whether anything physical results
from the introduction of a function of time into the
radiation terms.

This discussion may be clarified by examining the
corresponding situation in the theory of electromag-

11, Infeld, Phys. Rev. 53, 836 (1938).
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netism where we know what the physically meaningful
variables are. In this case the field equations for the
radiation terms of the vector potential are

2100, 55= 20—100,00,  2n4-2Pr, s5= 20 Pr, 00, (1)
with the gauge condition
20 +190,0— 24207, =0, (12)
If we choose to begin the radiation terms with
2n¢r=fr(7), (13)

this term may be removed by the gauge transformation
generated by

2n¢= - xnfn-

However, .o, does not contribute to any physical
quantity in the (2#)th order, but rather in the (2n+1)th
order. Choosing

(14)

2nt100=0, (15)
we find for the electric field strength
2n+lE1= 204190, r™ 20Pr, 0— — fr, 0. (16)

Clearly the gauge transformation of Eq. (14) which
removes s,¢, introduces

an

so that Eq. (16) is maintained as it should be. Had the
higher order effect of the gauge transformation been
neglected, we would no longer have been considering
the same physical problem we started with.

In our investigation, the coordinate transformations
will be used to simplify the necessary calculations.

2n+100=— %" 5 0,

III. DEFINITION OF RADIATION

Thus far nothing has been said about how one is to
know whether or not radiation exists. Certainly the
existence of so-called “radiation” terms does not prove
that radiation occurs. In the theory of electromagnetism
one calculates the energy flux through a closed two-
dimensional surface. If there is a finite flux through
the surface when the surface is infinitely far from all
source points, one says that radiation occurs. The
existence of the strong conservations laws in the general
theory of relativity allows the same definition to be
applied in this case. The energy and momentum density
of the gravitational field, including the source points,
is given by (1/16m«)T,° where « is the gravitational
constant. Thus, the total energy and momentum, P,,
contained in a volume V with a surface S is given by

1
f T.04V.
16w v

The negative time derivative of P, yields the flow of

P,=

(18)
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energy and momentum, W,, out of the volume V:
1

Wy=— fT,‘O, oV
16mxd
1

= fT,ﬁ 7dS.
16w«

In the last step, we have made use of the strong conser-
vation laws

(19)

T,,,=0,

and then applied Gauss’ theorem. If the field equations
are satisfied on the surface .S, the weak energy-mo-
mentum tensor, Eq. (4) may be substituted into Eq.

(19):
1
W“=——ft,ﬁ nsdS.
16w«

We shall say that gravitational radiation exists if the
surface integral of Eq. (20) with u=0 yields a finite
result when the surface is infinitely far from all source
points. The total flow of momentum may be similarly
defined with u=1, 2, 3.

By means of the surface integrals of Eq. (3), or
directly from the definition of the superpotentials in
Eq. (1), the radiation may be defined in terms of the
superpotentials. However, as pointed out previously,
the superpotentials contain linear terms whereas the £,”
do not. Therefore, once the field equations have been
solved up to a given order, Eq. (20) permits calculation
of the radiation to a higher order than does the corre-
sponding surface integral involving the superpotentials.

One can easily show, though we shall not do so here,
that with the above definition of radiation the solution
obtained by EIH does not contain radiation and hence
corresponds to a standing wave.

(20)

IV. TRANSFORMATION EQUATIONS

We shall be concerned with coordinate transforma-
tions which change the coordinate values by an amount
proportional to a given power of A:

xp=x"P4A" 00 (2). (21)

In order to preserve the slow time variation of the field
variables, the transformation functions should also
possess this character. From the transformation prop-
erties of the gravitational potentials, the g,”, one can
establish that the v,, transform as follows:

(a) m'y,00= mY00— mvn, ny

(b) m7,0r= m’Yl)r"I"mvo, ry

(C) m’Y’rs =mYrs— mV", s— m¥°, r+6rs m0" ny (22)
@ mt 1Y 0= mi1Y00Fm1®, o,

(e) m+1'Y,07‘= m+1Y0r— m'vr, 0y

(f) m—!—l’Y,rs = m+17n+6rs mvo, 0.
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In the above equations all functions are considered to
be functions of the new coordinates and all derivatives
are taken with respect to the new coordinates.

There are other higher order effects of the transfor-
mation which we shall not consider. These higher order
terms will combine with the untransformed solution to
produce solutions either of the homogeneous or inhomo-
geneous equations in the higher orders. Since the
solution of the inhomogeneous equations will be gener-
ated as we proceed with the approximation method,
we lose only solutions of the homogeneous equations
by disregarding higher order terms in the transfor-
mation equations. In view of the previously discussed
ambiguity of the solution all such solutions of the
homogeneous equations may be discarded. It is clear
from the above discussion that the prohibition of
solutions of the homogeneous equations is not a co-
variant requirement. Beyond the lowest nonvanishing
order we shall always prohibit the appearance of arbi-
trary solutions of the homogeneous equations in that
coordinate system in which we are working. Whether
or not there exist other coordinate systems, in which
this condition is also satisfied, will not concern us.

We are now prepared to solve the field equations for
the radiation terms. The fundamental problem to be
considered is that of two point masses interacting.
EIH have already solved the stationary wave part of
this problem. We shall look for a nonsingular solution
of the field equations (radiation terms) which cannot
be removed by a coordinate transformation. Having
found such a solution, we must then investigate, in the
manner of Sec. ITI, whether or not radiation of energy
occurs. The introduction of radiation terms will not
alter the EIH solution. Fortunately, for our purposes
we shall only require ays. As has been mentioned
previously, we do not question Infeld and Scheidegger’s
result if the radiation terms are begun in the scalar or
longitudinal components. However, for the sake of
completeness we shall consider these cases as well as
that of the transverse-transverse components.

In order not to obscure the principal argument with
long cumbersome equations, we shall put the gravita-
tional field equations into an appendix and bring
forward only those terms required for our purposes.
Equations in the appendices will be referred to as
Eq. (A7), etc.

V. SCALAR AND LONGITUDINAL COMPONENTS

Although the radiation terms may be introduced in
any order, we shall do so as early as possible, i.e., into
3Yo00, 4Yor, and sy,.. The argument is not confined to
this choice, for the same types of terms are combined
in the field equations and the surface integrals regard-
less of the order. The field equations in any order may
be found from Appendix 1. In all our considerations
we shall begin by assuming the standard coordinate



GRAVITATIONAL RADIATION

conditions introduced by EIH:
(23)
(24)

mY 00,0 mt1Y0r, r = 0;
mYrs, s=0~

However, we shall not restrict the coordinate transfor-
mations to those which preserve these conditions.

The field equations for the scalar and longitudinal
components, in the third and fourth orders respectively,

are
(25)
(26)

3Y00,ss— Oy
4Y0r, ss— 0.

In the above equations, the coordinate conditions have
already been introduced. Following the prescription
given by Infeld,"! we start the scalar term with the
solution

svoo= f(7). @7

Before proceeding to the next stage of the approxi-
mation, the surface integral .o [Eq. (3)] should be
evaluated to insure the consistency of the solution syoo.
Since the value of the surface integral is independent of
the specific surface of integration, the only terms of the
integrand which can lead to a nonvanishing integral
are those which have an »—2 behavior. Clearly, such
terms cannot appear in ;3o and as a result the con-
sistency of the solution in the third order is assured.
This argument will be valid throughout our discussion
as we proceed from the solution in one order to that in
the next. Therefore, in all such cases we need not be
concerned with the surface integrals.

The solution for sy, which is consistent with the
coordinate conditions is given by [Egs. (26) and (23)]

(28)

Now another question arises in relation to the surface
integrals: Is it necessary to examine gyoo and syo, for
consistency before carrying out a coordinate transfor-
mation to remove gyo? More generally the question is
whether it is necessary to examine the consistency of a
solution before carrying out a coordinate transformation
which affects that solution. If the solution is not
consistent, then appropriate poles and dipoles must be

—1
Yor=3%"f, 0.

added to it. After carrying out the transformation, .

we must examine the transformed solutions for con-
sistency. The net result will be to alter the poles and
dipoles which had been added. Therefore, we can delay
investigating the surface integrals in a given order until
a coordinate transformation has been carried out which
affects the solution in a lower order only. As a result
of this and the previous argument we shall not need
to consider the surface integrals until the solutions
have been carried as far as desired.

A coordinate transformation may now be carried out
to remove yyo. From Eq. (22), with

3,Dr=i_xrf(7.),

(29)
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and
a=—1 [ s(syar,
we find
87" 00=0, (30a)
and
o 0r=15%"f, 0. (30Db)

Clearly the coordinate conditions in the fourth order
have been altered by the transformation. In the fifth
order, the field equations are

8Yrs, nn " 6Yrn, sn" 5Ysn, rn_l_ars 5Y nm, mn

= —4Yo0r,0s 4Y0s, or 28,5 Yon, 0n— Ors 3Y00, 00 (31a)
5Y00, nn= 5Ymn, mn, (3 lb)
and the coordinate conditions are
5Yrs, s=0. (310)
Hence,
5’Y,rs, nn= %57‘31., 00, (323,)
57100, nn=o- (32b)

The solutions of these equations may be found in a
straightforward manner:

57 rs= (1/15)8,57%f 00— (1/30)x7%° f. g0,

57 00=0.

(33a)
(33b)

Another coordinate transformation may be carried
out to eliminate the longitudinal component in the

‘ fourth order. Consider

== (1/24)r*f,. (34)
From Egs. (22), we find that
&Y re=[(1/40)8,*— (1/30)"2* ] f,00,  (35a)
5" 00=— (1/24)*{, 0. (35b)
The field equations in the sixth order are
6Y0s, nn " 67 0n, ns = 5¥rs, 0r ™ 5700, 0s, (36a)
with the coordinate condition
6Y0s, s— 5Y00,0=0. (36b)
From Egs. (35), we obtain
67" 05, nn=—(1/12)x" f, 000, (37a)
6" 0s, s = — (1/24)7*f, 000 (37b)
The solution of these equations is
6" 0s=— (1/120)%°72f, o00. (38)

Now, one final transformation may be carried out
which wipes out the entire solution. An examination
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of the transformation equations shows that

5‘1)"= - (1/120)x8r2f, 00 (39)

is the desired transformation function.

Now let us examine what happens if the radiations
terms are begun in the longitudinal components with
the solution '

ovor=f (7).

In this case the proof is much simpler for we need not
consider the higher order solutions. Let

w= [ fwyar.

(40)

(41)

An examination of Eqs. (22) shows that sy, vanishes
and that no other term is affected. Thus, the entire
solution is wiped out by the coordinate transformation.

One may argue that if higher order effects of the
coordinate transformations had not been neglected,
the solution as a whole could not have been removed
by the transformations considered. Furthermore, by
our stated intent to keep solutions of the homogeneous
equations in the lowest nonvanishing order, we should
have been obliged to consider the higher order effects.
In the lowest orders the solutions introduced by these
higher order effects could have been of two types:
nonsingular functions of time alone and singular func-
tions with time dependent coefficients. The purely time
dependent functions could be removed by coordinate
transformations and hence are of no consequence. The
singular terms, on the other hand, would correspond to
time-dependent multipoles. Such terms cannot be of
physical importance because we always have the possi-
bility of altering the equations of motion by the addition
of multipoles.

VI. TRANSVERSE-TRANSVERSE COMPONENTS
The field equations for v, in the fifth order are
(42)

if the coordinate conditions given in Egs. (23) and (24)
are used. Therefore, in this case the solutions may also
be started off with an arbitrary function of time:

577‘.; = frs (T> . (43)

The transformations to be considered in this case
are handled in the same manner as those in the previous
section. Therefore, in order to avoid the monotony of
repetition, we shall merely state the results of the
transformations and relegate the explicit treatment
of the coordinate transformations to the Appendix
(Appendices 4 and 5).

Starting from an arbitrary, though symmetric, set of
functions f,*(7) one can always transform the set to
another, f.;(r), with vanishing trace (Appendix 4);
i.e., such that

f os(1)=0.

5Yrs, nn= 07

(44)
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This result is in agreement with the discussion of
gravitational radiation given in Bergmann’s book.?
Continuing the solution with the above condition, we
find, after the appropriate transformations, that the
lowest nonvanishing order is the seventh (Appendix 5).
In the seventh and eighth orders the solutions are

Yrs™ (12/77)72frs, 00— (18/77)95" (xrfns+xsfnr), 00

+ (3/7)5nsxmx"fmn, 00, (453.)
7Y00=0, (45b)
gYor=0. (4:5C)

The standard coordinate conditions are satisfied by
these solutions.

The question still remains whether the above solution
leads to anything physical. An examination of the
curvature tensor is the simplest test of this point.
From Eq. (A15) we find that the (s00,7) component of
the curvature tensor in the seventh order is

7Ia¢:00r= —%(7‘/00, rs+77nn, rs)- (46)
Substituting Eqs. (35), we have
Rs00"=— (9/22) f s, 00. (47)

Thus, it is clear that introducing the radiation terms
through the transverse-transverse components has a
physical significance.

Before computing the radiation in the tenth order,
we shall examine the surface integrals in the ninth
order, 99 _m, to establish the consistency of our solution
and also because there is a contribution to the equations
of motion in this order. From Eqs. (A9) and (A10), we
find

QZm= f[_ﬂms, 00_%8sm 2Y00,r 7¥nn, r
+11‘2'YOO, n 7Y nn, s+71'2700. s 7Y nn, m]nsds- (48)

Previously, we stated that the problem we were con-
sidering involved two particles interacting. Up to this
time we have not required this information. The
solution of yyg involving two particles is*10

2Y00=—4(m1/r1+ms/rs),
(r1)?= (x*— &) (x*— &),
(r2)?= (x*—n°) (x*—17°),

& and 7° specify the locations of the particles. Inserting
Eqgs. (45a) and (49) into (48) and taking a surface
which encloses only the first particle, we find the
following contribution to the equations of motion:

1/4m)92_ = (18/11)m1£™ f nm, 00-

The surface integrals have been computed with the aid

(49)

(50)
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of Appendix 3. One cannot say more about this contri-
bution to the equations of motion until information is
available as to the form of f,..

If the momentum passing through a surface at
infinity which encloses both particles is now computed,
[Eq. (20)], one obtains

oW m=(9/22«) (m1£"+mm™) fum, oo. (51)

This momentum transfer vanishes if the origin is taken
at the center of mass of the system. Since the momen-
tum transfer is of a higher order in v/¢ than the energy
" transfer, there can be no passage of momentum through
a surface at infinity in this order. This result implies
that the radiation appears to come from the center of
mass of the system. Indeed, if in the solution for 7y,s,
x is replaced by x—x’, where x’ is the center of mass,
the momentum transfer vanishes regardless of the
location of the origin. For the sake of simplicity we
shall assume the origin to be at the center of mass.

Because of the quadratic nature of the #,*, solutions
of higher order than the eighth cannot contribute to
the radiation in the tenth order. Also, we shall not add
the dipole to ryoo as this term cannot contribute to the
radiation because it falls off too rapidly as a function
of 7. Therefore, the only terms we need be concerned
with are 7y,s [Eq. (45a)] and yyoo [Eq. (49)]. We find
from Eq. (A9) that these terms make the following
contribution to £°:

10f0°= — % (2Y00,0 7Y nn, s+ 2700, ¢ 7V, 0)- (52)

If the above expression is now integrated over an
infinite spherical surface centered at the origin, we
obtain, with the aid of Appendix 3,

10W o= (9/55k) [ (m1£"£%, o+man™®, 0) frs, 00
=2 frs, 000(mr&7EH-man™?) .

Thus, the introduction of the radiation terms through
the transverse-transverse components in the fifth order
lead to gravitational radiation in the tenth order and
thereby justifies the nomenclature.

There is one other point which requires discussion.
In a recent paper,® Infeld has shown that one can
eliminate the contribution to the equations of motion
in all orders higher than the sixth by an appropriate
choice of coordinate conditions. The equations of motion
through the sixth order are independent of the coordi-
nate conditions. However, in his proof he does not
consider the radiation terms. By the same method,
one can prove for the radiation terms that the contri-
bution to the equations of motion through the ninth
order does not depend on the coordinate conditions in
the seventh order. Indeed, one can go further and prove
that the radiation in the tenth order also does not
depend on the coordinate conditions in the seventh
order. Therefore, gravitational radiation has an in-
variant significance.

(53)
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VII. CONCLUSION

We have examined the effects of introducing functions
of time into the fifth order of the radiation terms and
have found that they lead to a finite curvature tensor
in the seventh order, a contribution to the equations of
motion in the ninth order, and gravitational radiation
in the tenth order. However, these results in no way
constitute a proof of the existence of gravitational
radiation for a detailed discussion of these effects
cannot be given without knowing the specific form of
the functions f,, which were introduced in the fifth
order. Clearly the choice of the f,; will depend on what
radiation effects are sought—those resulting from an
externally applied field or from the interaction of two
or more mass points. If we restrict our attention to the
latter case, which is the case of principal interest, the
frs are no longer arbitrary. Once we decide to consider
a retarded (or advanced) solution, the starting functions
in the radiation terms are related to the standing wave
solutions in a precise manner. For example, consider
the retarded and advanced potentials '

Jlt=r/0) flr/c)
= =

4 r

o

If these functions are expanded into a power series in
1/c, we obtain for the standing wave solution

(o + )—1[ t)-l-l T e O+ ]
2\p— €0+—r f( c"’2!dt2f) R

Similarly, we obtain for the radiation terms

l[d 1 2 43 4
o= pp)=—— —f(O)+———fB)+--- |.
(o e == =10+ = =10 ]

Thus, the starting term for the radiation terms is just
the time derivative of the starting term for the standing
wave solution. In general, however, the relationship is
not as simple. Consider a function g(r,;,\) where
A=1v/c. By generalizing a calculation by Page for the
Liénard-Wiechert potentials!? we find

ifdrsd
g5 (r,8,2£N) =g (7,4,0) i—[—(—g (7,6,\) )
cLdi \d\ A=0

2 o>]+
—r—g(r, cee,
rdtg 7.

where the subscripts — and + mean that the function
is to be evaluated at the retarded and advanced times
respectively. Clearly, in order to determine the relation-
ship between the radiation terms and the standing
waves, the explicit dependence of g on A must be known.

The EIH approximation method cannot reveal this

21, Page, Phys. Rev. 24, 296 (1924).
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dependence. Hence, it is not the appropriate formalism
to use for an investigation of gravitational radiation
and an approximation method which does not restrict
the particle velocities must be found. The only purpose
of the present paper is to show, contrary to previous
results, that the EIH does not exclude the possibility
of radiation.

In an accompanying paper,’ Dr. Scheidegger remarks
that our treatment of the transformation equations
alters the physical situation because we neglect higher
order solutions of the homogeneous field equations. On
the other hand, keeping these terms violates the EIH
method of approximation.’® Therefore, he concludes
that the starting function for the radiation terms must
be rejected as a possible solution for freely interacting
particles. It would appear, however, that a more
reasonable solution of the problem, if the physical
situation is altered by the transformations, would be to
reject the transformations themselves. Indeed, Infeld?®
rejects a coordinate transformation which eliminates
the perihelion precession of a double star system pre-
cisely because the transformation violates the EIH
prescriptions. Since these prescriptions are rather
stringent, it is hardly surprising that there exist some
coordinate transformations which are not allowed.
However, our purpose was to show that there exists a
nonsingular solution for the radiation terms which
cannot be removed by a coordinate transformation and
which leads to the radiation of energy. Inasmuch as we
know nothing about the form of the gravitational
radiation terms, if any, the existence of a nonsingular
solution which leads to radiative effects shows.that
radiation of energy by freely interacting masses cannot
be ruled out. Only by finding another approximate
solution for the gravitational field equations—one
which does not depend on small particle velocities—
can we determine whether or not freely interacting
bodies radiate energy.

However, one can say that if gravitational radiation
exists, it plays a very small role in the problem of
motion. The EIH solution has been carried out to yield
the equations of motion through the sixth order in v/c.
This solution is sufficient to give the perihelion preces-
sion of a double star system.* On the basis of the
present calculation, radiation effects should first appear
in the eleventh order (one order above that in which
the radiation of energy occurs). In addition Eq. (53)
implies that, to be observable, the radiating system
should not only have a large moment of inertia, but
also a large rate of change for its moment of inertia.
If these conditions are satisfied, the ETH approximation
method may be poor and other methods will have to
be found.

I should like to express my appreciation to Professor
Bergmann for discussions on the significance of the

1 A, Scheidegger, following paper [Phys. Rev. 99, 1883 (1955)].
14 H. P. Robertson, Ann. Math 39, 101 (1938).
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EIH approximation method as well as for a critical
reading of the manuscript.

APPENDIX 1. FIELD EQUATIONS

In all covariant field theories whose field equations
are derivable from a variational principle, the strong
energy-momentum psuedo-tensor has the form?!®

W=—Fa,2ypLA+41,. (A1)

The F4,B” are certain constants, y, are the field
variables, L4 the field equations, and ¢, the weak
energy-momentum psuedo-tensor defined by Eq. (4).
Since the T’ may be derived from the superpotentials,

Ty= U#[W], 4] (AZ)

it follows that linear combinations of the field equations
may be expressed in terms of the superpotentials:

_FA“BP yBLA: U“[wr]' o t“r. (As)

We shall find it convenient to use the field equations
in this form. If, as in the general theory of relativity,
the Lagrangian density is homogeneous quadratic in
the first derivatives of the field variables,

L=A4"27y4 ;38,4 (A4)

the weak energy-momentum psuedo-tensor takes the
simple form:
L= —08,"A4PBoy, g o +2A4Boy, yyp .. (AS)

Specializing the above relations to the theory of
gravitation, we find

—Fap)u g/ =GP =2/—gG,>  (A6)
AlaB) p(vd)o= \/8_ g{gaﬁ (gTPg§V+g7¢g5F)

g7 (grgPrtgo7gPe) g7 (g*78P 4 g*0gP T — 2gg"")
— L (gP7g’+%"")+£% (g8 +g%¢*) 1}, (AT)
and!é
Ull=/—g{8,’(g""g" — g"g*") —3u" (8”78 — g"28*")
5, (778 — g8} g . (AB)
In terms of the v,”, (AS) and (A8) become:

= —38,"(Yap, Yab, o= 2V b, oY pe, 6= 5V, 5, 0)
+%77"(7aﬂ, WYab o 2V e, kY pas, B 37, Y, p)

-+ terms of higher degree, (A9)
16 P, G. Bergmann, Phys. Rev. 75, 680 (1949).
16 P, Freud, Ann. Math 40, 417 (1939). The definition of T’
given here differs from that of Freud by a factor of 2. Therefore,
in reference 7 Eq. (2.23) should be multiplied by 2.
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Uu[vo'] - (6“0 .r’v)\._a“v n)\u).yp)‘. p+ (nv‘r n)\a_nv)\ nar).y")" .
+ (6;;' n°T— 5#’ 7]”) (_'Yp) Yo, 'r+'Y‘r)\'Yp)\, p
=3V or o F VXY or AT VY, e 57 0rY, 1)
+ (77,)‘77”._77»)‘770?) (%‘Y'YMX, T YorYu\ 0
—YxoYup, 1+%’Yu)\7, r)
~+terms of higher degree. (A10)
In order to simplify the appearance of the above
equations we have used the following notation:
NP Y upYvo=YusYvo="YusYvs—YusYrsy (All)
Y="Y0p- (A12)
The expansions in Egs. (A9) and (A10) are sufficient to
give us the field equations and surface integrals to all
orders of interest. The field equations are obtained by
substituting Eqgs. (A6), (A9), and (A10) into (A3); the
surface integrals, by substituting (A9) and (A10) into
Eq. (3); and the radiation, by substituting (A9) into
Eq. (20).
APPENDIX 2. CURVATURE TENSOR

In terms of the Christoffel symbols, the curvature
tensor is

S N e M N M N

Introducing the v,,, we have

R.a'= %ﬂ”[('sz, AT YN %nl.p'Y, )\+%77L7\7. P). X
- (7Kp, AT Y, p_%ﬂxp')’, )\+%77AK'Y, p), ::]
~terms of higher degree. (A14)

In particular, we find for the (s00,7) component:
Re00"= —5 (¥ re, 00— Y20, 00—"Y 10, 0s— 37157, 00
~ 57, re Y00, re)+ -, (A15)
APPENDIX 3. TABLE OF SURFACE INTEGRALS

The following table is helpful in evaluating the
surface integral:

1
I. — @ #7dS=0,
4arr?

1
II. —
4arr?

1
— @ nnm,dS5=0,
4y

1 1

IV —_— nmnnnrn,d5=—(5mn5n+5m5m+5ms§m)-
47r? 15

In the above, the #, are the components of the outward
normal to the surface:

ns=x°/r
for a spherical surface.

1
N Ns3S =0,
3

III1.
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APPENDIX 4. PROOF THAT ONE MAY CHOOSE f,,=0

We start with the following solutions in the fifth
and sixth orders:

5Yrs™ fn*(T)y

(A16a)
5Y00= 0, (A16b)
#vor=0, (A16¢)

where f,.* is a symmetric set of arbitrary functions of
time. Consider the coordinate transformation generated
by

o)== [ furn,  (A17)

/(1) = 307 (2).

From the transformation equations Egs. (22), we find

(A17D)

57,rs=%frs*—%6rsfnn*5frs(7'), (A18a)
57 00=0, (A18Db)
67,07 = %x"fr'n*, 0. (A18C)

Clearly, fan=0; however, f,,* still contributes to the
solution through ¢y’o,. The remainder of the discussion
will show that solutions of the higher order field
equations can be determined so that they depend only
on frs.

In the seventh order the field equations are

Yrs,an~7Yrn, sn"7Ysn, ratOrs Ymn, mn
= — §Y0r, 0s— 6Y0s, 0r 2075 6Y0n, 0n
+ 5V rs, 00— 8rs 5700, 00+ N.L.  (A19a)

7Y00, nn=7Ymn, mn+N-L- (Algb)
with the coordinate conditions
7Yrs,s=0. (A19C)

The nonlinear terms, N.L., contain products of gy
and gy,s only. Hence, they do not interest us because
they depend on f,, and not on f,*. Therefore, after
the substitution of Egs. (18) the above equations

become
W/rs, nn=™ frs, 00*+N-L-,

77,00, nn " N.L.

(A20a)
(A20b)

The solutions of these equations consistent with the
coordinate conditions [Eq. (A19c)]

Y =‘2—272frs, oo*—ﬁx"(xrfan*‘l‘x"fm*), 00
3
110
7v'00=N.L.

+

1
x'x’fnn*—ﬁ(—)snrzfm.*+N.L., (A21a)

(A21b)
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The following transformation in the sixth order
removes gy or:

0= FX™K™ foun, 0™ (A22)
In the seventh order, we find [Eq. (22)]
Y 2e =1V ra—§0r XM frun, 00%, (A23a)
77" 00="7v"00— §&™%" frnn, 00%, (A23b)
and the coordinate conditions are
7Y v, s= —1%" fur, 0. (A23c)
The field equations in the eighth order are
&Y 0r, nn—8Y0n, rn=7Yrn, no—7Y00,0r+N.L., (A24)
with the coordinate condition
8Yor, »=7Y00, 0- (A25)
From Egs. (A23), we find for these equations
&Y 0, an=—22"f1s, 000" +N.L., (A26)
&Y or, v =—%2"%" frun, 000" +N.L., (A27)
and the solutions
gy or="— i04?'1’6"‘1’6"]' mm, 000° ——%"2 [, 000"
56 56
1
+—2" frn, 000"+ N.L.  (A28)
280

A final transformation eliminates the “linear” terms
in 7y"00 and gy"”’o» and brings back the standard coordi-
nate conditions in the seventh order:

1

= ——EEE" fum, 00— —%"72 fur, 000®
56 56

1
+—%"7fnn 00%. (A29)
28
As a result of the above transformation, the solutions

in the seventh and eighth orders are

81 3
/"rs='—r2 rs, *—"_"xn(xsfrn*_‘"xnfsn*), 00
"= s T I
+—x"%° fun, 00* ——0rs?% fn, 00
77 308

3
— " N L (A30a)
" w=N.L., (A30b)
s’y"'or = NL. (A3OC)

A little arithmetic shows that Eq. (A30a) may be

GOLDBERG

written as
"’ =ﬁ1’2f 00— —2™(&" fonT2°frn), 00
154 ° 77 ’

(A31)

- ;6”96"‘95”]',,, n, 00y

where f,, is defined by Eq. (A18a). Clearly, the solution
no longer depends on f,s*.

APPENDIX 5. SOLUTION FOR THE TRANSVERSE-
TRANSVERSE COMPONENTS

In this case the initial solutions in the fifth and sixth
orders are

§Yrs= frs(7), (A32a)
5Y00=0, (A32b)
¢Yor=0, (A32¢)
with (see Appendix 4)
Sss(r)=0. (A33)

The coordinate transformation generated by the fol-
lowing functions eliminates gy, :
s =%x"frn (7). (A34)

From the transformation equations, Eq. (22), we find

5’Y,rs=0, (A353.)
57 00=0, (A35b)
G'Y’Or= - %xnfrn, 0- (A35C)

Comparing Eq. (A35¢) with (A18c) we observe that
the solutions differ only by a factor of two. Therefore,
the remaining transformations required for this dis-
cussion will follow the pattern of the previous Appendix.

In the seventh order the field equations are [Egs.
(A19) and (A35)]

7Y 15, nn= frs, 00, (A36a)
700,12 =0, (A36b)

and the coordinate conditions are
7Y'rs,s=0. (A37)

If no additional harmonic functions are added to our
solution, we obtain in a straightforward manner

77’78 = _'r2frs, 00— Hxn (x2fns+xafnr), 00y (Asga)

7’Y,()o=0. (A38b)

This solution differs from that of Eq. (A31) only by a
harmonic function.
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With the choice of transformation function
600=3X"%" f1un, 0,

(A39)

the longitudinal component gy’o, can be eliminated. In
addition, in the seventh order we find

7Y e =1V vt £07sX™E" finm, 00 (A40a)
7Y" 00=£5™%" frun, 00, (A40Db)

and the coordinate conditions
7Y 1= 35" fur, 00- (A40c)

An examination of the transformation equations, Eq.
(22), shows that these solutions cannot be removed by
any coordinate transformation in the seventh order.

From Eq. (A9) it follows that the solutions in the
seventh order cannot give rise to radiation effects
until the tenth order. Therefore, we require the solution
in the eighth order. The field equations in the eighth
order are [Eqgs. (A24) and (A40)]

&Y 0r, nn=3%"fr, 000, (A41a)
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and the coordinate condition is

+=77"00,0=3%%"%" f o, 000. (A41b)

The solution of the above equations is easily found to be
8" 0r=(1/28)x"%™ (%™ frr4%" frm), 000.  (A42)

It is now possible to carry out another coordinate
transformation which not only will eliminate »y"o and
#Y"'or, but also returns the standard coordinate condi-
tions in the seventh order. This transformation is
characterized by

"= (1/28)x"%™ (%™ frr+%" frm), 00-
By means of Eq. (22), we find
”,rs = (12/77)r2frs, 00— (18/77)x"(xrfns+xsfnr). 00

”n
8Y or,

(A43)

+ 3/7)8:s%™%™ frun, 00, (Adda)

7" 00=0, (A44b)

&Y' 0r=0, (Ad4c)
and the coordinate condition

77" s, 6=0. (A45)
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Recently, several solutions of the field equations of general relativity theory have been published which
are based upon the Einstein-Infeld-Hoffmann approximation method and claim to represent radiative effects
in the motion of freely gravitating particles. These solutions are analyzed and it is shown that none produced
to date represents a satisfactory discussion of the possibility of radiation by freely gravitating particles.

The problem of the possibility of gravitational radiation by free particles is then investigated upon general
grounds. It is shown that the possibility of such radiation depends on the definition of free particles. This
definition depends on the (unproven) assumption that the Einstein-Infeld-Hoffmann method is, in its
physical outcome, independent of the coordinate system. If this assumption were not true, this would
constitute a severe limitation of the method and imply that all results have to be expressed in a standard
coordinate system. Under these circumstances, the definition of free particles is obviously equivalent to a

postulate of absence of radiation.

T has been claimed by Infeld and the author'— that
gravitational radiation within the framework of the
Einstein-Infeld-Hoffmann (EIH) formalism® of solving
the field equations of general relativity theory does not
correspond to radiation from a purely mechanical
system. In fact, it was shown that the introduction of a
“radiation” term (for the latter’s definition see
Scheidegger®) at any stage of the EIH procedure
corresponds to altering the coordinate system at that

1L. Infeld and A. E. Scheidegger, Can J Math. 3, 195 (1951).
2 A. E. Scheidegger, Phys. Rev. 82, 833 (1951).

3 A. E. Scheidegger, Revs. Modern Phys 25, 451 (1953).

41, Infeld, Can. J. Math. 5, 17 (1953).

5 See, e.g. A. Einstein and L. Infeld Can. J. Math. 1, 209 (1949).

stage of the procedure, and therefore it was reasoned
that the solution could always be continued in such a
manner so as not to contain any radiation at all. The
last train of thought is dependent upon the assumption
that the EIH procedure, including the prescription
for the characterization of freely gravitating particles,
is a consistent formalism, yielding equations of motion
that are physically independent of the formal choice of
the coordinate system. As the latter assumption has
never been proven, the argument of Infeld and the
writer suffers from the same deficiency.

Every once in a while some calculations are published
which seem to show explicitly that gravitational



