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Conservation of Charge in Einstein's Generalization of Gravitation Theory*
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The consequences of ) invariance in Einstein s new modified 6eld theory are investigated. It is shown that,
as a consequence of this proposed invariance, it is possible to replace the antisymmetric part of the metric
tensor with a four-potential. By further postulating invariance of the theory under a gauge transformation
of the theory, it is possible to arrive at a quantity which can be interpreted as a current density four-vector.

INTRODUCTION changes by an amount

~~ROM our previous experiences, we have come to
expect that theories which are invariant with

respect to one or more continuous groups of transfor-
mations have associated with them a like number of
conservation laws. For instance, rotational invariance
leads to the conservation law of angular momentum
while gauge invariance of electromagnetic theory leads
to the conservation of charge. It is important to note
that the charge conservation law divers from the
angular momentum conservation law in that the charge
law is valid at each space-time point independent of
whether the 6eld equations are satisfied at this point
while the angular momentum law depends upon the
satisfaction of the field equations. This difference is
intimately related to the nature of the related invariance
group. The rotation group is a six-parameter Lie group
while the gauge group is an in6nite parameter Lie
group; it is necessary to specify a function of the four-
coordinates in order to specify a member of the group.
The same situation pertains in general relativity. There
it is necessary to specify four functions of the coor-
dinates, the relations between the old and the new
coordinates, in order to specify an element of the group.
The corresponding conservation laws are those of energy
and momentum.

In a revised version of his generalization of gravi-
tation theory, ' Einstein has proposed that his theory
be invariant under a new type of invariance, the
X invariance. Under a X transformation the Christoffel
symbol F",.transforms according to

rx —rx +$x )t (i)
where 8", is the Kronecker delta tensor and X„ is a set
of four arbitrary space-time functions. Under this
transformation, the Lagrangian
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Here g'." represents the antisymmetric part of g'". The
change in the integrated Lagrangian is thus

provided of course that X,vanish on the surface bounding
the region of integration. Now in order that the theory
be invariant under arbitrary ) transformations, the
change in the integrated Lagrangian must vanish
identically. Since the X, are completely arbitrary we
can conclude from Eq. (5) that

(6)g'-", „—0.

These are the "Bianchi" identities associated with
X invariance. While it is true that they are already in
the form of conservation laws, we cannot interpret
them without further work.

FOUR-POTENTIALS

The Eqs. (6) are identities; they are valid regardless
of any particular dependence of the field variables on
their arguments. However, it is clear from the form of
Eqs. (6) that we would encounter an inconsistency in
the requirement of X invariance if we interpreted the
g'-" as the fundamental field variables. The Eqs. (6)
can only be satis6ed by a very restricted set of 6eld
variables. On the other hand, if the tIt'" were themselves
to depend upon other 6eld variables, then it should be
possible to arrange this dependence in such a manner
that Eqs. (6) are really identities in these new field
variables.

In order to 6nd these new field variables and the
dependence of 0'" on them, we define the dual gi. to
g'-" by the equations

where

(3)
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where g„„,„ is the Levi-Civita tensor density. Written.
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in terms of g„„, (6) becomes

(g KX, p+ g/4K, X+ gXJI, K)

from which it follows that g„, can be written as
V'

and thus we can write

(8)

with the associated conservation law

The total charge enclosed in a region 0 is given by

Q
— I riaa41IR de

0
(18)

gfK —rrlLK/lVg —
1riCKpV(~ ~ ) which, by Gauss' theorem can be written as
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Our field equations are then

airs~ —
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(The notation is that of Einstein. ) These equations are
equivalent to those obtained by Einstein provided we
choose X„so that F„=0 with the exception that now y„
has replaced g'-' as a fundamental variable.

CURRENT DENSITY

As we mentioned in the Introduction, we can expect
that a law of charge conservation will be associated with
some invariance property of the theory akin to gauge
invariance. The simplest way to introduce this invari-
ance is to postulate that the theory is invariant under
the potential transformation

pa~ ps+A, &,

where A. is an arbitrary function of the space-time
coordinates.

In order that the Lagrangia, n (11) be invariant under
this transformation, it is sufhcient to require that

~CKXPg =0

as can be seen from Eq. (12). Because of the sym-
metry properties of p'""& it is evident that the left-hand-
side of (15) is indeed identically zero. It does not seem
unreasonable therefore, to take as our current-density
four-vector

It is therefore reasonable to take as our fundamental
field variables the "potentials" q), . In terms of them
Eqs. (6) are indeed identities.

With these new variables the Lagrangian of the
theory becomes

(gcK+gLKxpio~ )R (11)

and thus, considering the g-'", q~, and F",„as inde-
pendent field variables, our variational principal
becomes

Q
— risc4rR (18)

where do-„ is a surface element with normal along the r
coordinate axis. It is evident from Eq. (17) that, for a
charge concentrated within a 6nite volume, the integral
is independent of the surface Z provided only that it
completely enclosed the charge. We should require this
property if the integral is to represent the charge
enclosed within a given region of space.

DISCUSSION
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g
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and indeed it is true that
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g
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so that the quantity appearing on the right-hand side
of (20) is conserved. However, it is not at all evident
that there are not many other quantities which possess
this property and indeed we have found one such addi-
tional quantity. We believe that one must have a
choice based on a general principle applicable to all
cases, such as the aforementioned relation between
invariance and conservation laws.

Our choice (16) however is not completely free from
objection. Einstein has pointed out' that our current-

In order to obtain any information at all from a
theory like the one we have been considering, it is
necessary to construct quantities like the energy-
momentum tensor and the current-density vector in
order that a connection can be made with experiment.
The field equations by themselves tell us nothing since
in general we do not know how to interpret the field
variables which appear therein. In order that quantities
which represent the physical observables of the theory
are not introduced in a completely ad hoc manner, we
look for some guiding principle to aid us in our choice.
At present that principle seems to lie in the close con-
nection between invariances of the theory and the
corresponding conservation laws. Ke have used this

~ principle in postulating that the right-hand side of Eq.
(16) really does represent the current density of the
theory.

Our assertion differs from that made by Einstein. He
postulates that

~~X—
g

C KXJgg (16) A. Einstein (private communication).
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density vanishes everywhere that the field equations
are satisfied and hence is unsatisfactory since the only
acceptable solutions to the field equations are those
which satisfy them everywhere. Thus, for this solution,
our current density would be everywhere zero. We
believe, however, that it is necessary to consider solu-
tions of the 6eld equations which do not satisfy them
everywhere. In certain small regions of space it might
well be that the field equations are not even valid. One
can take the position that the field equations describe
correctly the interaction of elementary particles but
are insufficient to describe the particles themselves and
hence, at small distances from these particles, must be
replaced by some other kind of mathematical construc-
tion. ' If such were the case we would no longer need to
restrict our solutions and the current density of Eq.

4 This view is diametrically opposite to that held by Einstein.
He contends that his field equations are everywhere valid, i.e.,
that they do correctly describe the elementary particles.

(16) could be nonzero for certain regions of space. In
fact, if one takes seriously the relation between in-
variance and conservation laws, one is almost forced
into this latter position. Regardless of the form of the
Lagrangian, the current density which follows from
gauge invariance will vanish whenever the field equa-
tions are satisfied.

The only way out seems to be to construct a theory
in which it is impossible to introduce potentials. While
there would still be an invariance associated with the
conservation of charge, it may be of such a nature that
the current-density need not vanish when the field
equations are satisfied. For instance, the energy-
mornentum tensor associated with arbitrary coordinate
invariance does not vanish when the field equations are
satisfied. It is evident that a theory for which it is
impossible to introduce potentials will difIer from the
present theory and hence lies outside the scope of our
investigation.
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In this paper, we investigate the existence of gravitational radiation within the framework of the EIH
approximation method. Following a prescription introduced by Infeld, the radiation terms of the EIH
expansion are begun with functions of the time alone. We find that these terms do not have physical sig-
ni6cance if they are introduced in the scalar or longitudinal components of the gravitational potentials.
However, if the radiation terms are introduced in the 6fth order of the transverse-transverse components,
one finds a contribution to the curvature tensor in the seventh order, a contribution to the equations of
motion in the ninth order, and radiation in the tenth order. The existence of radiation is determined by
calculating the energy passing through a spherical surface which is an infinite distance from all source
points. This definition of radiation agrees with that used in the theory of electromagnetism.

I. INTRODUCTION

N recent years there has been some controversy
~ - concerning gravitational radiation. Infeld and
Scheidegger have maintained that the possibility of
radiation does not exist within the framework of the
EIH (Einstein, Infeld, and Hoffman) approximation.
method. ' This conclusion has been accepted for the
scalar and longitudinal components. Indeed, in his
book Bergmann has showns that in the linearized
gravitational equations these terms do not contribute
to radiation; however, the transverse-transverse compo-
nents do make a contribution. It was on this basis
that the proof set forth by Infeld and Scheidegger was

' L. Infeld and A. E. Scheidegger, Can. J. Math. 3, 195 (1951).' A. E. Scheidegger, Phys. Rev. 82, 883 (1951).' L. Infeld, Can. J. Math. 5, 17 (1953).
e A. E. Scheidegger, Revs. Modern Phys. 25, 451 (1953).
5P. G. Bergmann, Introductiorl, to the Theory of Relativity

(Prentice-Hall Publications, Inc. , New York, 1947), pp. 187—189.

erst criticized. This paper will attempt to clarify the
situation by proposing an unambiguous definition of
radiation.

II. EIH APPROXIMATION METHOD

In a previous paper~ the surface integrals leading to
the equations of motion were found without recourse to
an approximation method. The possibility of doing so
depended on the existence of superpotentials for the
components of the energy-momentum psuedo-tensor:*

g v U' (vo]

T„"is the energy-momentum psuedo-tensor and U„&" &

e P. G. Bergmann (private communication).
s J. N. Goldberg, Phys. Rev. 89, 263 (1953).
~ The energy-momentum pseudo-tensor does not have simple

geometrical transformation properties (see reference 5, page 196).
Hence, the word pseudo-tensor should not be confused by the
current use of the pre6x pseudo- to describe a density of weight one.


