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Oscillator Strengths for Transitions between 2p'3p and 2ps3s in Oxygen I,
Including Configuration Interaction*
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(Received May 27, 1955)

Oscillator strengths are calculated for transitions between the various terms of 2p33p and 2p33s of oxygen I.
Term energies for the two configurations are calculated with the inclusion oi the L(L+1) correction of
Trees and with configuration interaction. The configurations included with 2p'3s are 2p'4s and 2s2p' while
2p34p is included'with 2p33p. It is shown that the L(L+1) correction should be assigned to the parent ion.
Configuration interaction is included in the calculation of 0-2 as well as in the energies. The radial wave
functions used in the calculation of 0-2 are Hartree wave functions without exchange.

INTRODUCTION
''T has been pointed out by Condon and Shortley'
~ ~ that one should expect configuration interaction to
play a significant role in the determination of the energy
levels for oxygen I since the terms of the series based
on diBerent parent terms of the ground state of oxygen
D lie close together. For this reason, if one is to calculate
oscillator strengths for transitions between excited
states of 0 I, the wave functions for the various states
should be linear combinations of the wave functions
for the separate configurations. The proper linear
combination will be that obtained by the unitary
transformation which will diagonalize the energy
matrix. In this work, oscillator strengths for transitions
between the odd-parity levels predominantly of the
2p'3s configuration and the even levels, for which

2p'3p is the most important configuration, have been
calculated.

OSCILLATOR STRENGTHS

The oscillator strength, f, for a transition between
the levels ySI.J and y'5'L'J', de6ned in TAS 9, may
be written in the form

f(ySLJ,y'S'L' J')
v (ySLJ,p'S'L' J')S(ySLJ,y'S'L' J')

(1)
3R(2J'+1)as'es

where v(ySLJ, y'S'L'J') is the wave number difference
between the two levels, E is the Rydberg constant
expressed in wave numbers, ao is the radius of the first
Bohr orbit, 2J+1 is a weighting factor for the initial
level, and S(ySLJ,y'S'L'J') is a parameter called the
line strength for the transition between the two levels.
The line strength for a line is the sum of the strengths
of the components of the line:

S(ySLJ,y'S'L'J') =+sr +sr s(ySLJM, y'S'L'J'M'),
M'= M, M&1. (2)

*This paper is part of a thesis presented to the University
of Pennsylvania in partial fulfillment of the requirements for a
Ph.n. degree.

f Now at Trinity College, Hartford, Connecticut.
' E. U. Condon and G. H. Shortley, Theory of Atomic Spectra

(Cambridge University Press, Cambridge, 1935) (This shall
hereafter be referred to as TAS) 2 .

For electric dipole radiation, the line strength of the
component of a line is the square of the matrix element
of the electric dipole moment connecting the two states
involved in the transition.

s (ySLJM, y'S'L'J'M')

I %(ySLJM)P%(y'S'L'J'M')dr . (3)

Line strengths may also be written in the form'

S=Si(L)Ss(M)a',

where Si(L) is a factor which depends on the particular
line of a multiplet and Ss(M) depends on the particular
multiplet of the transition array under consideration.
The quantity o is the integral [use/(4P 1)lj-
)&j'R„i(p)pR„ i i(p)dp, where R(p)/p is the radial wave
function of the jumping electron in atomic units.
S,(L) may be obtained from tables given either by
White and Eliason' or by Russell, ' while tables for
Ss(M) are given by Goldberg. ' '

It has been pointed out by Chandrasekhar7 and
others' ' that, where R(p) is a solution of the Schrodinger
equation, the dipole moment, dipole velocity, and
dipole acceleration forms for the oscillator strength
are equivalent. When, however, the wave functions
are chosen on the basis of a variational calculation for
the energy, these wave functions are most exact at
moderate radial distances. This leads to a preference
for the dipole velocity form. Since the radial wave
functions used in these calculations were obtained by
the Hartree method, "the integrals which were actually
calculated were the dipole velocity integrals.

s D. R. Bates and A. Damgaard, Trans. Roy. Soc. (London)
A242, 101 (1949).

s H. E. White and A. Y. Eliason, Phys. Rev. 44, 753 (1933).
4 H. N. Russell, Astrophys. J. 83, 129 (1936).' L. Goldberg, Astrophys. J. 82, 1 (1935).
s L. Goldberg, Astrophys. J. 84, 11 (1936).
r S. Chandrasekhar, Astrophys. J. 102, 223 (1945).
s L. C. Green and N. E. Weber, Astrophys. J. 111, 582 (1950).
9 M. N. Lewis, National Bureau of Standards Report No. 2457,

1953 (unpublished).
"D.R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).
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Ra, t (p)pRn, i-1(p)dp

Ac~p

dR„, , (p)
R., i i(p) -R„,i(p)+ dp. (5)

p dp

P, Q;. a,a,'iP, (y,SLJM)

XPiP,'(y'SL'J'M')dr . P)

The dependence of each of the integrals on I., J, 3f, I.',
J', and 3f' will be the same as it would have been if the
states were uniquely assigned to configurations. Si(L)
and Sp(M) will, therefore, be the same for each integral
but the a' will be diferent and will be of the form

In order to determine the proper linear combination
of configuration wave functions, the matrices for
electrostatic interaction were calculated, including the
off-diagonal elements connecting the different con-
figurations. In the case of the p'p matrix, there are, in
addition, off-diagonal elements connecting terms in the
same configuration, having the same term designation,
but built on different terms in the parent ion. These
matrices were diagonalized, and the radial integral
parameters were adjusted to give the best fit between
theoretical and experimental" term values. When this
had been done, the unitary transformation matrix which
would perform the diagonalization was determined. This
unitary matrix determines the proper linear combination
of configuration wave functions.

In the next two sections, the procedures used to
diagonalize the two energy matrices will be discussed
in some detail.

ODD-PARITY CONFIGURATIONS

The configurations that are most likely to interact
with the 2p'3s configuration are those with terms

"C. E. Moore, National Bureau of Standards Circular No.
467, 1949 (This is in book form under the title Atomic Energy
Levels. )

When the initial and final states can be assigned
uniquely to single configurations, 0-' will be common to
all transitions between the configurations. When,
however, this unique assignment is impossible, 0 will

depend on the pair of terms which are involved in the
transition. The wave functions for the various states
will be linear combinations of the individual configura-
tion wave functions.

+(VSLJM) ~1+1(71SLJM)+rs2+2(72SLJM)+ ' ' '
~

(6)

The formula for the line strength will then be of the
form

s (ySLJM,y'S'L'J'M')

TABLE I. Matrix elements of odd-parity condgurations.

Off-diagonal
Term Diagonal elements elements

('S)ns 'S Ep (ns) 15F—s—3Gi (ns) RQ 3Rj,

('S)ns 'S Ep (ns) 1—5Fs+Gg (ns) RQ+RI
('D)ns 'D Ep(ns) —6Fs—2G& (ns) RQ —2R1

('D)ns 'D Ep(ns) 6Fs- RQ

(sF)ns 'F Ep (ns) 2G—. q(ns) RQ 2R]
(sF)ns'F Ep(ns) RQ

2s2p' 'I' E,(sp&) V2RI', V2RI"

2s2 p5 'I' Ep(sp') v2R, '; vZR, "
Ep(ns) 3F=p(2p, 2p)+3Fp(2p, ns)+integrals over closed shells,

Ep(sp') = 10Fp(2p)2p)+SFs(2p, 2s)—20Fs(2p)2p) —Gi (2p, 2s)
+integrals over closed shells,

Rp= 3Rp(2p3s, 2p4s)+integralp over closed shells,

F2 ——Fs(2p, 2p), Ri =Ri(2P3s, 4s2P),

G~(ns)- G&(2p,ns), R y' =Rr (2s3s, 2p2p),

Gi(sp~) =Gi(2p, 2s), R&"=R&(2s4s, 2p2p).

—2Gi (sp')

which lie nearest to the terms of 2p'3s. The configura-
tions included here are 2p'4s and 2s2p'. The diagonal
matrix elements for a p's configuration are given in
TAS 5' in terms of three parameters, Ep, F2, and G~.
They were checked and it was found that they were
all correct, except that for '5 the coefficient of G~ should
be +1 instead of —1. This correction agrees with the
relations as given by Johnson" and by Edlen. " The
2s2p' configuration has but two terms and two
parameters, Eo and G~. The off-diagonal elements of
the matrix contain four additional parameters. The
matrix elements are given in Table I. There are,
therefore, in all twelve different parameters which can
be adjusted in order to fit the experimental term values.
F, involves only 2p electrons, which are assumed to
remain unchanged, and this parameter was considered
to be the same for both configurations 2p'3s and
2p'4s. Of the fourteen possible term values eleven are
known experimentally. " The other three were deter-
mined by extrapolation of the Ox isoelectronic sequence.

The parameters were evaluated in a step-by-step
process. First, a least-squares calculation was made
using the diagonal sums of the submatrices. This
calculation gave values for Ep(sp'), Gi(sp') and Fp and
the sums Ep(3s)+Ep(4s) and Gi(3s)+Gi(4s). Next, a
least-squares calculation was performed using the four
two by two submatrices to determine Ep(3s), Ep(4s),
Gi(3s), Gi(4s) Rp, and Ri. Lastly, a least-squares
calculation was made with the two three by three
subrnatrices to determine R~' and R~". The results
of these calculations are given in Table II, column b.
The fit for the 'P and 'P terms is not at all satisfactory.
Several other procedures were tried, but none gave
satisfactory results although it was possible to reduce

's M. H. Johnson, Phys. Rev. 39, 197 (1931).
"H. Edlen, Kgl. Svenska Vetenskapsakad. Handl. (3) 20,

No. 10 (1943)



i848 R. F. KI NGSB UR V

Calculated
value, K Diff

73 766 —2
95 433 +33
76 544 —251
96 513 +287

101 130 —13
122 335 +85
102 511 —151
122 878 +79
110 677 —3239
140 327 +4590
124 952 —1352
119470 +3552
140 515 +4432
181 855 —7982
(D'/N) & = 3042

eters used:

120385 K
140 534
180 921

2961
730
232

31 982—1485—626
5075—1286

Observed
value, KTerm

(3s)'S
(4s)'S
(3s)'S
(4s)'S
(3s)'D
(4s)'D
(3s)'D
(4s)'D
(3s)'P
(4s)'P
(sp')'P
(3s)'P
(4s)'P
(sp')'P

73 768
95 476
76 795
96 226

101 143
L122 250$

102 662
122 799
113 916

L135 733$
126 304
115 918

F136 083]
L189 837j

Values of param

Eo(3s)
Eo(4s)
Eo(sp')
p~
G&(3s)
G&(4s)
G&(sp')
E.p
E1
~1
g II

Calculated
value, K Diff

73 702 —66
95 444 —32
76 798 +3
96 324 +98

101 168 +25
122 282 +32
102 718 +56
122 720 —79
113 715 —201
135 858 +125
126 380 +76
115 859 —59
135 904 —179
190 077 +240
(D'/N) & = 105

114880 K
134 798
189 902

2585
796
198

31 949
917
499

2061
1249
565

TABLE II. Term values of 2p'3s, 2p'4s, and 2s2p5,
in kaysers. (1 K= 1 cm '.)

with terms lying directly above it, 2p'4p. There are,
for these configurations, oG-diagonal elements connect-
ing terms having the same term designation in the
same configuration but based on diGerent terms of the
parent ion, in addition to the off-diagonal elements
connecting terms in diGerent configurations.

The wave functions for the p'p configurations were
determined in the same manner as were the p's wave
functions, by the application of the vector coupling
formulas given in TAS 6'. With these wave functions,
the matrix elements for electrostatic interaction were
calculated, and the results, given in Table III, were
compared with the matrix elements determined by
Yarnanouchi. '5 They are in accord except for the sign
of the coeS.cient of 62 in the matrix element connecting
('D)sE with ('E)sE and the signs of four of the off-
diagonal elements connecting terms with diQerent
parentage. Yamanouchi obtained these off-diagonal
elements by the method of spectroscopic stability, and
the relative phases of his wave functions cannot be
determined. In this paper, the relative phases of the
wave functions for the terms of the parent ion were
made to agree with Racah. "

A preliminary calculation was made on the 2p'3p
configuration, ignoring the off-diagonal matrix elements,
in order to obtain approximate magnitudes of the

the standard deviation to 1463 K. This particular
procedure is described, and the term values obtained
with it are reported, so that they may be compared
with the term values obtained by a modification of this
procedure which is discussed in the next paragraph.

In order to improve the fit, the L(L+1) correction
of Trees'4 was included in the diagonal elements of the
2p'3s and 2p'4s configurations with rr taken to be
the same for both configurations. This correction was
not included in the diagonal terms of 2s2p' since any
such correction could be absorbed in the value of
Es(sp'). The same procedure was followed as that
described above, and the value of n was determined by
least squares using the diagonal sums. The results of
this calculation are given in column c of Table II. The
agreement between calculated and experimental values
is all that can be expected in view of the extrapolation
required for some of the experimental values. The
extrapolated values are enclosed in brackets in column
a of Table II. The ht might possibly be improved
slightly by the inclusion of the three-by-three matrices
in the determination of the parameters which eGect the
separation of the terms of the submatrices, but because
of the other sources of error present this does not
seem to be justi6ed.

EVEN-PARITY CONFIGURATIONS

The only configuration which was included in the
interaction with the 2p'3p configuration was the one

'4 R. E. Trees, Phys. Rev. 84, 1089 (1951).

TABLE III. Matrix elements of even-parity configurations.

Term

(2D)3F
(2D) 1F
('D)'D
('P)'D
(2D) iD
(2P)'D
(4~)»
('~)'P
('D)'P
('P)'P
('D)'P
(2P)'P
(2P)8g

(2P)15

Diagonal elements'

Bp —6F2 —Go —4G2
Ep

—6F2 —Gp+2G2
Ep

—6F2 —Go —(17/2) G2

Bo —Go —(11/2) G2

Eo —6F2+2Go+ 2G2

Bp+ (3/2) G2

Ep
—15F2 —Go —10G2

Ep
—15F2+ (1/3) Gp+ (10/3) G2

Ep —6F2+ (2/3) Go —(59/6) G2
Bp

—(15/2) G2

Ep —6F2 —Gp —(11/2) G2

Ep —Gp —(5/2) G2

Bp —Gp —10G2
Ep+3Go

Off-diagonal elements,
different configurations,

same parentage

Ro —Rp' —4R2'
Ro —Rp'+2R2'
Ro —Ro —(17/2)R2'
Ro —Rp' —(11/2)R2'
Rp+2Rp'ggR2'
Rp+ (3/2) R2'
Rp —Rp —10R2'
Ro+ (1/3) Ro'+ (10/3) R2'
Ro+ (2/3) Ro' —(59/6) R2'
Ro —(15/2)R2
Rp —Rp —(11/2)R2'
Rp —Rp —(5/2) R2
Ro —Ro' —10R2'
Rp+3Rp'

Off-diagonal elements, Off-diagonal elements,
Connected same configuration, different configurations,

terms different parentage different parentage

(2D) 8D —(2P)8D pe ( —2F2'+G2) A%3 ( —2R2+R2')
(2D) iD —(2P) 1D V3 L

—3F2'+Gp —(7/2) G2j V3 L —3R2+Ro' —(7/2) R2'g
( D) P —( P) P ($ +15)(9F2 —Go+2G2) (a +15) (9R2 —Rp'+ zR2')
(D) P-(~) P —(5&5) (Go+G2) —(-; ~s) (Ro'+R2')
(2P)'P —(4S)8P p8(Go —5G2) p/3 (Ro' —5R2')
('D) 'P —('P) 'P (~a V'15) (2F2' —G2) ($+15) (2R2 —R2')
Bp =3Fp(2p, 2p) +3F0(2p,np) +integrals over closed shells,
Rp =3Rp(2p3p, 2p4p) +integrals over closed shells,

F2 =F2(2p, 2p) Rp' =Rp (2p3p, 4p2p),
F2' =F2(2p,np) R2 =R2(2p3p, 2p4p),
Gp =Go(2p, np) R2' =R2 (2p3p, 4p2p),
G2 =G2(2p, np).

"T. Vamanouchi, Proc. Phys. -Math. Soc. Japan 20, 547
(1938)."G. Racah, Phys. Rev. 63, 367 (1943).

a Diagonal elements of the two configurations have the same form and
are obtained by replacing either 3p, or 4p for np in the parameters.



TRANSITIONS BETWEEN 2p'dp AND 2p'3s IN 0

2p84p
Calculated

99 389
102 810
125 932
126 522
134 072
125 707
127 042
136 993
139 294
139 672
145 782
139983
149 991
160 202

2P'3P
Observed Calculated Diff ObservedTerm

(4S)'P
(4S)'P
(SD)SD
(SD)8P
(SD)SP
(SD)IP
(SD)IP
(SD)ID
(2P)3S
(2P)sD
(2P)sP
(2P)IP
(2P)ID
(2P)IS

Values o

86 629 86 393
88 631 89 148

113295 113 158
113 719 113698

117 158
113307

113995 114206
116630 117294

126 298
127 286 127 048

127 811
127 667 127 940
128 595 128 161
130 943 130 886

f the parameters used

Zp(3p) = 131 233
&0 4p)=139 883
Gp 3P)= 4233
Gp(4p) = 1671
GS(3p) = 143
GS(4p) = 45
F2 = 2585

—236 99 094
+517 99 680—137 125 780—21

+211
+664

—238

+273—434—57

, in K:
FS'(3p)= 258,
FS'(4p) = 81,
Z. =5950,
Rp' =2900,
R2 = 80,
Z, ' = 108,
a = 565.

Diff

+295
+3130
+152

12 G. Racah, Phys. Rev. 62, 438 (1942).' H. Greyber, Ph. D. thesis, University of Pennsylvania, 1953
(unpublished).

parameters Gp and G2. The L(L+1) correction of
Trees was included with the I value from the terms
in p'p. The value of F2 was taken to be the same as for
the 2PSsss configurations. When a least squares calcu-
lation was made to determine the values of Ep, Gp, G2,
and a, it was discovered that the terms grouped them-
selves in such a way that the terms having the same
parentage had approximately the same error. Other
instances where the errors in the calculated term values
are a function of the I. value of the parent term have
been reported by Racah." If the errors in the terms
built on the ('S) parent are minimized by adjusting
Ep, the errors in the other terms were approximately
equal to the L(L+1) correction to the 2PSsss configura-
tions for terms with the same parents. This suggested
that the L(L+1) correction, in all the configurations
of the form al"bl', was that of the parent ion.

To check this suggestion, the values of F2 and 0.

were calculated for the ground state of 0 xr. This
could be done exactly since there are three terms and
three parameters. This calculation gave F2 ——2627K
and +=531 K. These values are in reasonable agree-
ment with F2——2585 K and +=565 K found by least
squares on the odd-parity configurations.

In addition Greyber' has shown that, if an interaction
of the form p, , p l, .lp is considered, for configurations
of the form al"M' (which is the form considered here)
the predominant part of the interaction energy will be
proportional to L(L+1) for the L of the parent term.
In the configurations under consideration, therefore,
the L(L+1) correction is assigned to the parent ion.
(This is equivalent to building the term values on the
experimental values of the parent ion. )

TABLE IV. Term values (in I) of even-parity con6gurations.

TABLE V. Calculated values of 0'.

Transition
Wave number

of line

b
C tr2

Bates and
Conf. 1nt. Damgaard

(4S)3p 'P (4S)—3s 'S
(4S)3p 'P —(4S)3s 'S
('D)3p 'F ('D)3s—'D
('D)3p 'D —('D)3s 'D
('D)3p 'P ('D)3s —'D
('D)3p 'F ('D)3s '—D
(SD)3p 'D—('D)3s 'D
('D)3p 'P—('D)3s 'D
('P)3p 'D—('P)3s 'P
('P)3p 'P ('P)3s—'P
(SP)3p 'S—('P)3s 'P
(2P)3p ID (2P)3s IP
(SP)3p 'P —(SP)3s 'P
('P)3p 'S—('P)3s 'P

12 861
11 836
12 576
12 152

L15 990]
11 333
13 968

t 10 589j
13 370

L14 096$
[12 583]

12 677
11 749
15 025

9.85
10.75
10.20
10.38
5.98

11.49
7.44

11.61
7.31
6.76
9.37
9.57
8.24
6.28

7.86
9.53
8.80
8.62

8.30
7.89

7.63

8.41
8.48
7.64

In order to determine the radial integral parameters
with con6guration interaction included, some other
procedure than the one applied in the case of the odd-
parity configurations was necessary. This is so since
there are only thirteen experimentally known term
values, and there are in all twelve parameters to be
determined, while the diagonal sum of but a single
submatrix is known. To employ a least-squares calcu-
lation to determine all the parameters would be un-
satisfactory. In a least-squares calculation no distinction
is made between large and small parameters and in
order to get the best possible agreement with experi-
ment the calculation may give unreasonable magnitudes
to some of the smaller parameters.

In order to calculate some of the parameters approxi-
mately, without resort to least squares, all those which
consist of only one radial integral were calculated
using the same radial wave functions employed in the
calculation of the 0' for the oscillator strengths. This
left Ep(3p), Ep(4p), and Rp to be determined. They
were determined by a least-squares calculation on all
the two-by-two subrnatrices. This calculation resulted
in values of Ep (3p) and Ep(4p) which made the diagonal
element for (4p)'S slightly smaller than that for
(3p)'S. Some arbitrary adjustments were made in the
larger parameters, therefore, in order to put these
matrix elements in their proper order. This adjustment
actually resulted in a better 6t for all of the calculated
term values. The term values obtained from the final
calculations are given in Table IV.

Except for the values for the 'I' terms, the calculated
energies are in reasonable agreement with the experi-
mental values. The reason that the (4S)SP terms do
not agree with experiment seems to be that, with
comparatively large off-diagonal elements ( 6000K
to 2000 K), configuration interaction with 2p'5p and
2p'6p would be important. The term (4S)5p SI' lies at
103 869 K and (4S)6p SI' lies at 105 911K, about
4000K and 6000K respectively above the experi-
mental value of the (4S)4pSI' term. Interaction with
these configurations would lower the calculated term
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TAsLE VI. Absorption oscillator strengths 2p'3s —2p'3p.

2p33$ 2p33p
Parent level level

('D)

('D)

'D3 3F4 0.448
'D3 3F3 0.038
3D3 'F2 0.001
'D2 'Fe 0.433
3D2 3F2 0.048
'DL 'F2 0.488

'D3 'D3 0.302
'D3 'D2 0.038
'Dg 'D3 0.053
'D2 'Dg 0.237

o.051
'D 'D 0.085
'DL 3DL 0.255

('D) 'Da 'P2 0.157
'Dg 'P2 0.039
D2 PL 0 118

'DL 'P2 0.003
'DL 'PL 0.065
'DL 'Po 0.087

('D) 'D2 'Pa 0.470

('D) 'Dg 'Dg 0.296

(2D) ~D, ~P, O.2O2

2p33$ 2p33p
Parent level level

('p) 'P2 'D3 0.219
3D, 0.039
3DL 0.003
'D2 0.196

0.065
'Po 'DL 0,261

(2P) 3P, 3P, 0.262
0.087

'P2 0.145
0.087

'Po 0.116
'Po 'PL 0.349

('P) 'Ps 'Sy 0.107
'SL 0.107

'Po 'SL 0.107

('P) 'Pi 'Da 0.537

(~p) &Pq &Pq 0 272

('p) 'Pi 'So 0.086

('S) 'Ss 'Pa 0.479
'S2 'P2 0.342
5S2 5P 0.205

('S) 'Sz 'Pm 0.605
'SL 'PL 0.363
'SL 'Po 0.121

values and would have the greater effect on the
('S)4p 'I' term which has the larger error.

It should be pointed out that for configuration
interaction between configurations of the form al"bl'
the coefficients of the parameters in the off-diagonal
elements are the same as those of corresponding
parameters in the diagonal elements. Because of this,
large diagonal elements will be associated with large
off-diagonal elements. The resulting term values will be
insensitive to changes in the parameters in the oG-

diagonal elements, since such changes can be approxi-
rnately compensated by changes in the corresponding
diagonal elements. This compensation will occur in
each of the submatrices. As an example, where the
coefficient of Go is positive that of Eo will also be
positive. As a result, making Eo' smaller and simul-
taneously making Go for the lower configuration larger
and Go for the higher configuration smaller may result
in little change in the term values. To see the effect
of this, one can compare the values of Go and G2
obtained by ignoring ofI-diagonal elements with those
where Go and G& are first approximated by radial
integrations and configuration interaction is included.
Several investigators have determined these parameters
without taking into account oft-diagonal elements.
Edlen" obtained GO=839K and G2=67K; Yaman-
ouchi" did not give values for 0 z but they may be
approximated to be Go 1000 K and G2 50 K by

interpolation in the graphs in his paper. The pre-
liminary calculations for this work gave Go ——990 K and
G2= 46 K. In the final calculations including con-
figuration interaction the values Go= 4233 K and
GO=143 K were used.

RESULTS

When the term values have been determined it
is a straightforward calculation to determine the trans-
formation matrices which will diagonalize the in-
dividual submatrices and thus determine the a~'s and
a2's of Eq. (6). When this had been done, the various
values of 0' were calculated from Eq. (8). It was
necessary to evaluate only the four integrals between
the two sets of configurations 2p'es and 2p'ep' since
the integrals between 2p'ep and 2s2p' will vanish.
The values for 0-' thus calculated are given in column g.

of Table V. In column b of Table V are given values of
o-' calculated by the method of Bates and Damgaard~
which uses hydrogenic wave functions and effective:
quantum numbers determined from experimentaI
energies. The values for the wave numbers given in
Table V are the differences between the centers of
gravity of the experimental term values where these:
are known. If the line has not been identified, the values,
given (enclosed in brackets) are the differences between
the calculated term values. Table VI gives the absorp-
tion oscillator strengths calculated by Eqs. (3) and (1).

Except for the transitions arising from 'I' levels, the
values of 0-' are as accurate as one might expect using
the one-electron approximation and Hartree radial
wave functions without exchange. The Hartree wave
functions were determined by a self-consistent field
calculation for the 2p'3s configuration. The wave
functions for 3p, 4s, and 4p electrons were calculated
assuming the wave functions of the core electrons to
be the same as for 2p'3s.

The results of the calculations could be improved
if more energy levels were known for 2p'4p and if
higher even-parity configurations were included in the
calculations. This latter is not possible at present since
only one term value is known for each of the next two
configurations.

In conclusion, the author wishes to express his
appreciation to Professor C. W. UGord for suggesting
this problem and for the valuable and patient assistance
which he has given the author throughout the calcu-
lations. He also wishes to express his thanks to Professor
L. C. Green for the help received during several informa-
tive discussions.

' The calculated values of the dipole velocity integrals are—5.812 for 3s—3p, —0.504 for 3s—4p, 5.547 for 4s—3p, and—12.395 for 4s—4p. As a check on the wave functions, the dipole
moment integral was calculated for 3s—3p. It was —5.818.


