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Quimby and Sutton have presented, in an array of equations, an improved, accurate method for com-
puting the mean Debye characteristic temperature of cubic crystals from the elastic constants. The present
paper gives an equivalent, simplified, explicit equation. The pertinent integral is also expanded in a Taylor
series to the fifth term by a special device and a method of getting the general term made evident. The first
two terms of this series constitute Born’s equation which is shown to be usually inaccurate since the series
is slowly convergent. This series is useful, however, in estimating the correction to the simple equation first
mentioned. This correction is analyzed in more detail and extended to values of the anisotropy factor less
than unity. Graphs are given permitting rapid calculation of Debye temperatures with an uncertainty due
to the approximation made in the method of about 0.1 percent.

INTRODUCTION

N a previous paper by Quimby and Sutton,! a
method was presented for computing the mean
Debye characteristic temperature, ®p, of cubic crystals
from the elastic constants. It involves the evaluation

of an integral
am 1 aQ
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where C=cu/(c11—cu), cji are the elastic constants,
dQ is an element of solid angle, and the z; are the three
real roots of a cubic equation. The z; depend on the
direction cosines for a given direction, «, 3, v, and on
K= (612+C44)/ (611—044)-

An approximate formula for ¥, denoted Vg, is de-
vised by Quimby and Sutton' by a modification of the
method of Hopf and Lechner? The function f(z)

(C—I—z)“f is represented by a fifth-degree polynomlal
[f(z) ]z given by the expression

[/(@)]e=artarz+ e+ e+ azi+asz®,  (2)

and the a; are so adjusted that the value of [f(2)]z
coincides with that of f(z) at six appropriately chosen
values of z. Formulas are given for the a; and a formula
is given for Y5 in terms of these a;. The error involved
in the substitution of Yz for ¥ in Eq. (1) is evaluated
in terms of the anisotropy factor A =2cs/(c11—c12) of
the crystal, so that a suitable correction can be made.

The foregoing procedure is subject to improvement
in two particulars. First, the considerable labor incident
to the separate computation of the @; can be eliminated,
with no increase in the complexity of the resultant
expression for YVg. Second, the correction to Yz in fact
depends upon the values of C as well as of 4. This
circumstance is ignored in reference 1.

The usefulness of the method is further increased by
extending the curves for the correction of Y& to values
of A less than unity.

(1

1S, L. Quimby and P. M. Sutton, Phys. Rev. 91, 1122 (1953).
2L. Hopf and G. Lechner, Verhandl. deut. phySIk Ges. 16,
643 (1914).

EXPLICIT FORM FOR Yg

If the expressions for the a@; (reference 1) are sub-
stituted in the expression for ¥z and the result simpli-
fied, it is found that

1
Y r=3mo+ 155 [12(15—2x)m1+288me+-1112.49ms

1
+825.6m4-+135ms |+ 54 (15— mz)+ 576 (ma— ms) |
c

1036.8
+ Eml—ms]‘l‘—"f—[ms—mﬂ
864
+——Lma—ms], (3)
4
where

mo= £(0),

my= f(1)—my, c=1—2x,
me= f(x)—ma, d=3—2x,
my= f(2x/3) —ma, f=3—35u,
ma=f(1—ax)—mq, g=3—Tx,
ms=f(1—4x/3) —maq, x=(1—K)/2.

Table I exhibits the variation of Y with x and C.
The indicated range of values of x covers all the cubic
crystals listed by Hearmon?® with the exception of Na,
K, and NaClO;. C, for the cubic crystals listed by
Hearmon,? ranges from 0.095 to 1.15 except for Na, K,
and beta brass.

A correction to Eq. (3) is shown in Figs. 1 (a) and
1 (b). The method of deriving this correction is dis-
cussed in a later section.

The computation of a Debye temperature proceeds
directly from the elastic constants by calculating C, K,
and x. Equation (3) then yields Y'z. This value of Vg
may then be checked by comparing it with Table I.
(Equation (3) must be used since interpolation using

3R. F. S. Hearmon, Revs. Modern Phys. 18, 428 (1946).
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Table I is of limited accuracy.) This value of Vg is
then corrected using Fig. 1. The estimation of position
of curves of C intermediate to those shown rarely will
introduce error over #0.39%, in final ¥. The curves
themselves may be in error by a like amount, so that
the error in the computed mean ®p, stemming from
the computation, may be about 0.2%,.

TAYLOR’S SERIES EXPANSION OF Y

As an aid to the evaluation of the effect of C on the
correction to Vg, it is desired to expand ¥ in ascending
powers of x. If f(z) is represented by a polynomial of
the nth degree, there are n+1 coefficients a; to deter-
mine. Further, if, instead of forcing agreement with
f(2) at n+1 different points, it is required that
il

a=Fi0)/jl, & ———=fi(1), j=0,1,2--m, (4)

=i (1—7)!
where (m+1)<(n+1)/2 and fi(z) denotes the jth
derivative of f(z), then an equation for ¥ results whose
first m-+1 terms in powers of x are identical with the
first m-+41 terms of the Taylor expansion for ¥V (see
Appendix A).
The series, denoted Y7, obtained in this manner is

Yr=[2C"+(C+1)"*]-[(6/5)B]x

X
+[24B+150(C+1)~"24 1050—7/2]E

—[—4176B+6000(C+1)~7/>+4440C—72
x3

—25620(C+1)~%24-13335C~9/%]

15015
+[87072B—127200(C+1)~"/2—90480C~"/?
—146160(C+1)—24-81900C—%24-523530(C+1)~1/2

x4

+206246.25C-11/2] NG
255255

where B=C—%2— (C+1)-%/2. The first term is the term

TaBLE I. Values of ¥z computed by using Eq. (3).

0.25 0.50 0.75 1.0

—0.8 5.974
—0.7 21.887 4.614
—0.6 8.916 3.872
=0.5 6.515 3.391
—0.4 15.651 5.332 3.052
—03 10.444 4.605 2.802
—0.2 41.231 8.240 4.114 2.613
—0.1 22.508 6.990 3.765 2.466

0 16.716 6.201 3.511 2.354
+0.1 13.968 5.677 3.325 2.267
+0.2 12.461 5.324 3.191 2.203
+0.3 11.608 5.093 3.099 2.158
+0.4 11.128 4.959 3.058 2.131
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F1c. 1. Correction function E.

for an isotropic body. The second term is that given by
Born and v. Karméin.*® The first three terms can be
obtained from an expansion of Yz, Eq. (3), since this
is the case of m=2, n=35.

The Taylor’s series must diverge for > |C|, and
converges slowly for < |C]|.

Yy is always less than the true ¥ for x <0 and thus
constitutes a lower bound for ¥. For x>0, the terms of
the series alternate in sign so that Y7 alternately bounds
above and below as terms are added.

An upper bound for ¥ can be had for x <0 by using
n=5and m=1in Eq. (4) and then passing the [ f(z) ]r
through z=« and z=1—4x/3. This [f(z)]r is then
tangent to f(z) at =0 and z=1 and lies wholly above
f(2) throughout the root ranges. (It can be shown that
[f(z)1r cuts f(z) only at the points chosen.)

ESTIMATE OF CORRECTIONS
The true correction to Y is given by

dQ dZi
=3 [T ©

4 M. Born, Alomtheorie des festen Zustandes, Enc. Math. Wiss.
(Teubner, Leipzig), Vol. 3, p. 648.

§ M. Born and Th. v. Kdrmén, Physik. Z. 14, 15 (1913). They
appear to have neglected to cancel a factor of 4. See reference 10,

page 18.
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The dQ/dz; are not known analytic functions. The
shapes of the dQ/dz;, however, vary only slightly with x.
This is a consequence of the facts, as discussed in
reference 1, that the intervals (in 2) of the dQ/dz; are all
proportional to x, the maxima of the dQ/dz; always
remain at the same points in the intervals, and the
area under each dQ/dz; is always equal to 47/48. Thus,
if the dQ/dz; are approximated by functions having the
same intervals, having areas under them of 47/48 and
having no change in shape with x, then the approximate
E computed using these functions varies with x in a
way similar to E itself. A first approximation to E,
using constants in place of the actual dQ/dz; and main-
taining the same intervals and area, is denoted by E’.
Both E and E’ depend on C in nearly the same way,
since C enters Eq. (6) only through the known func-
tions f(z:) and [f(2:) Ir.

E’ may be improved as a first approximation to E
by dividing E’ by the quantities Q (14-Gx) for x>0 and
Q(1+Hr) for x<0, where 7 is defined as the ratio
x/C. These factors are evaluated as follows:

Q is determined by taking the ratio of E' to (Y —Yz)
as & — 0. This can be computed since (Y — ¥ g) may be
be replaced by (¥r—Yg) as x approaches zero. Both
E’and (¥ — Yg) are proportional to the third and higher
powers in x. Thus, E'/Q is identical with the true E
to the order a3. Values of Q range from Q=1.4902 for
C=1.136 to Q=1.5298 for C equal to zero.

Since E and E’/Q have no lower powers of x than 3,
both go through zero with no slope or curvature.
Division by Q serves to adjust E’ to agree with E in
general magnitude. Since E’ is computed with a dQ/dz;
of substantially different shape than the true dQ/dz;,
the size of Q is not unexpected.

For £>0, the true value of ¥, and thus E, can be
computed at x=0.5 (i.e., at K=0) since the three
roots of the cubic are here simply o?, 8% and 42 Division
of E'/Q by (14-Gx) further adjusts our error estimate
so that proper choice of G gives a good fit to the exact
errors at x=0.5. Thus, the final error curves in Fig. 1(b)
are E'/Q(14Gx). These curves are precise at either end
and have the required lack of curvature at x=0.
Further, as before stated, E and E’ should vary with «
in a similar manner, so we expect the shape of these
curves to be nearly correct. Judging by the size of the
adjustment necessary at x=0.5 the largest probable
error to be expected in the curves shown is about
+0.3% in Y.

As a check on the foregoing method of arriving at
the error curves in Fig. 1(b), ¥ has been calculated by
the numerical method of Griineisen and Goens® at the
point C=0.25 and x=0.3. This yields ¥=11.409 re-
quiring a correction for Yz of —1.719,. This differs
from the Fig. 1(b) value of —1.449, by less than 0.3%,.
The error in the Griineisen and Goens numerical method
should be an order of magnitude less than the change

¢ E. Griineisen and E. Goens, Z. Physik 26, 255 (1924).

SUTTON

induced in ¥ by omitting one of the points in their
basic triangle. Omission of the worst point increases ¥
by only 1.9 percent, so it is felt that the ¥'=11.409
above is in error at worst by 0.5%,. Thus, use of Eq. (3)
and Fig. 1(b) is of comparable accuracy to the Griin-
eisen and Goens method—and presents much less
computational difficulty.

For x<0, division of E’ by the function Q(1+4Hr)
gives the curves plotted in Fig. 1(a). The value of H
is obtained by choosing it to give the best fit with
values computed graphically for Fe, Au, and Pb.! The
values of C for Fe, Au, and Pb are, respectively, 1.136,
0.3040, and 0.4248. The resultant curves go through
r=0 with the required lack of curvature and approach
infinity at = — 1.0 as they must. Also, as before stated,
their shapes should be nearly correct since E and E’
should vary with x in a like manner. The fact that one
parameter, H, is sufficient to give good fit at the three
different values of 7 for Fe, Au, and Pb seems to sub-
stantiate the accuracy of the shape of these curves
(especially since these three metals cover the useful
region of the curves where the error is large and im-
portant). Judging by the estimated error in the graphi-
cally determined values and the fit obtained, it appears
that an estimate of 0.39, error in the curves of Fig. 1(a)
is reasonable for the range of » from zero to —0.8.
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Fic. 2. Comparison of terms of the Taylor series for ¥ with
Y&, Eq. (3), and the “true” ¥. Born’s equation is shown to be of
low accuracy.
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It should be noted that there is good agreement with
the Griineisen and Goens® method in this range, too,
as mentioned in reference 1. The methods agree to
about 0.49%, in Y for Au and Ag, using the same data.
(The trapezoidal averaging method of Griineisen and
Goens can be improved by dividing by the sum of the
actual area factors used, rather than using the factor
m/n. This raises ¥ values usually about 0.6%,. The
need for this improvement is easily demonstrated by
applying their method to the isotropic case.)

In summary, it is estimated that the curves of Fig. 1
are accurate to about 0.3%,. Interpolation for inter-
mediate C values may double this error. The percent
error in the computed ®p introduced by the substitu-
tion of the corrected Yz for ¥V in Eq. (1) is one-third
the percent difference between them. Therefore, the use
of Eq. (3) and Fig. 1 should result in the mean ©Op
accurate to about 0.19, on a given curve or, when
interpolating curves, to about 0.2%,. This is about an
order of magnitude less than the errors introduced in
®p by the present experimental uncertainty in the c;;.

Use of Eq. (3) and Fig. 1 reduces the arrival at an
accurate @ p to a short operation taking, at most, a few
minutes. This makes possible computations of @p for
many values of elastic data without being prohibitive
in time and effort, and enables the experimenter to
compute easily the effect on ®p of variation of such
parameters as temperature, cold work, radiation dam-
age, or alloy proportion.

COMPARISON OF FORMULAS

Figure 2 compares terms of Y7 to Yg. The dashed
curve is the “true” ¥V as discussed above. It is apparent
that Vg fits the “true” curve best. For positive 7, Vr
to the term in «* is nearly as good as Vg ; for negative 7,
it fails much beyond r=—0.5. It appears that Y
would have to be carried out several further terms in
order to compete with ¥z near r=—0.7 where many
of the metals occur. (As a consequence, Yy is chiefly of
value in computing Q.) Also, the equation given by
Born*% is quite inaccurate except close to isotropy,
say < |0.1]|. (From Hearmon’s Table,? only tungsten
falls in this category.) Figure 2 may be used as a guide
to use of Yy for substances of small x. It is plotted for
C=1 but the variation of C does not change these
curves substantially.

Two papers by Blackman seem to complement the
method here described. The first permits calculation of
O p for cases where (c1a+cas)<Keny, 1.€., for very positive
7.7 The second applies where c¢;1—ci12 is small, i.e.,
r=—1.8 The formulas he proposes are relatively simple
but may be in error by several percent.

Bhatia and Tauber® give an equation for ¥ which is
also accurate to several percent. This is derived using
the first three Kubic Harmonics for the integrand.

7 M.. Blackman, Proc. Roy. Soc. (London))A149 126 (1934).

8 M. Blackman, Phil. Mag. 42, 1441 (195
9 A. B. Bhatia and G. E. Tauber Phil. Mag. 45, 1211 (1954).

1829

Their equation contains the same m; as Eq. (3), but the
coefficients are constants.

It is worth noting that the Hopf and Lechner? treat-
ment necessarily gives a value of ®p which is too high
(low Y) for all substances of negative x. The metals
are in this category. The Hopf and Lechner repre-
sentative function intersects f(z) only between z=0
and z=1 and as a consequence is lower than the true
f(2) throughout the root ranges. The wide use of the
Hopf and Lechner method may be one reason for the
fact that @p from elastic data is frequently high com-
pared to the ®p from specific heat data.0!! As an
example, even for nearly isotropic Al (r=—0.1561)%2
the Hopf and Lechner method gives a ¥ which is 1.7
percent low; for more negative 7 it worsens rapidly.
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APPENDIX A
Equation (1) may be written

Y"‘—' Z f(Z ) dZ,,

2;

(1A)

where (dQ/dz;)dz; is the solid angle associated with the
ith root lying between z; and z;+dz;. The defining
equations for y; are

1= 1+y1x,
2=7Y1%, (24)
23=Y3%.
Then Eq. (1A) becomes
Y~~ > f(z»( )dy,, (34)

where the %; are appropriate constants (all ranges of 2,
are proportional to x). Also

ks
ayi= f —dz,
f ( dZ1,) z,,

Taylor’s series for f(z) at 2=0 for 2z, and 2; and at
g=1 for z; yields (|ks| > | ks3] and y.=y;=1)

Y—*[fkl( dz )Z x]ylf(’)(l o

+ jo. ka[xj—z xgzlz xiy:f (’;(Ozdy] (5A)

10 M. Blackman, Repts. Progr. Phys. 8, 19 (1941).

UF. Seitz, Modern Theory of Sohds (McGraw-Hill Book Com-
pany, Inc., New York, 1940), p

2P, M. Sutton, Phys Rev. 91 816 (1953), data at 0°K.

(4A)
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On the other hand, use of a representative polynomial

[f(Z)]R=§ajzf (6A)

yields

ila;

=$U;kl( dzl)z w :7 (i—=7! ]l)dyl

+f (x—-——l—x— Zx’y’a;dy] (7A)

%9 ng =0

A jth term in Eq. (5A) or (7A) must be at least of
order 7 in powers of x since it is proportional to

x:kvf (x——)dyl |4maikd],

and the inequality would fail for « sufficiently near
zero if the jth term were of order less than j in x.

Therefore, the requirement of Eq. (4) forces Vg to be
identical to V for all powers of x7 where j < as can be
seen by comparing Eq. (5A) with Eq. (7A). Equation
(4) constitutes 2(m-+1) conditions on the (z+1) co-
efficients a; so that (n+1)>2(m-+1). Thus expansion
of Y in powers of x yields the first (m-1) terms in the
Taylor’s series for ¥ in powers of x.

The Y needed to give the Y7 of Eq. (5) has n=9
and m=4. Hopf and Lechner? give 32/ up to j=35
(case of #=35). To obtain Vg for >3, use is made of
the recurrence relation

2aEid=2 @ —

ki

de
dzz g i

K'Y 224 Kox 2 3%, (8A)

PAUL M.
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where
K 1= (1—K2)’
K= (1-3K?4-2K?),
=+ +v?
x =262 v
Equation (8A) is obtained directly from the basic
cubic in z. The eleven integrals needed for =9 may
then be obtained, and give the following averages over
the unit sphere: T, 1/5; x, 1/105; ', 1/21; I'x, 1/385;
I3, 61/5005; x2, 1/5005; I'*x, 1/1365 I'4, 277/85085;
I'x?, 5/85085; I'*x, 205/969969; x3, 5/ 969969 Hopf and
Lechner? give the first four of these.
The final equation for Yg for =9 is'®

Ki 9 Ks 9
YR—3a0~|—Z a,—— > ]a,+— 2 ja;

=1 =2 ]—-3

K29 j(j—3) KiKyso

— aj———2 j(j—4)a;

21 =2 2 385 =5

61K o /5 i K s j(j—3)
- -2 (J“‘%))GH‘ a;

5005 =6\3 »=5 5005 i=6 2

K12K 277K14

Z (4 Z (j—mn))a;+ (2a5+9as)

1365 =1 n—=6 5

5K K22 205(K£K>5)
—— (8as+ 9)——————~(9ag)

85085 969969

( as). (9A)

969

18 Terms of Eq. (9A), without as, are given by K. Fuchs in
powers of K in Proc. Roy. Soc. (London) A153, 622 (1936) and
A157, 444 (1936). An error in the coefficient of a3 in A153 is cor-
rected in A157.



