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Computation of Mean Debye Temperature of Cubic Crystals from Elastic Constants. II
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Quimby and Sutton have presented, in an array of equations, an improved, accurate method for com-
puting the mean Debye characteristic temperature of cubic crystals from the elastic constants. The present
paper gives an equivalent, simpli6ed, explicit equation. The pertinent integral is also expanded in a Taylor
series to the fifth term by a special device and a method of getting the general term made evident. The erst
two terms of this series constitute Born's equation which is shown to be usually inaccurate since the series
is slowly convergent. This series is useful, however, in estimating the correction to the simple equation erst
mentioned. This correction is analyzed in more detail and extended to values of the anisotropy factor less
than unity. Graphs are given permitting rapid calculation of Debye temperatures with an uncertainty due
to the approximation made in the method of about 0.1 percent.

INTRODUCTION

''N a previous paper by Quimby and Sutton, ' a
~ - method was presented for computing the mean
Debye characteristic temperature, Or&, of cubic crystals
from the elastic constants. It involves the evaluation
of an integral

1 dQ

~p ' (C+s;)1 4pr

where C=c44/(cii —c44), c;s are the elastic constants,
dQ is an element of solid angle, and the z, are the three
real roots of a cubic equation. The z; depend on the
direction cosines for a given direction, n, P, y, and on

(c12+c44)/ (cii c44) .
An approximate formula for Y, denoted Yg, is de-

vised by Quimby and Sutton' by a modification of the
method of Hopf and Lechner. ' The function f(s)
= (C+s) & is represented by a fifth-degree polynomial

[f(s)]z given by the expression

[f(s)]Ii=ap+ ais+ ass'+ ass'+ aps'+ cps', (2)

and the a, are so adjusted that the value of [f(s)]z
coincides with that of f(s) at six appropriately chosen
values of z. Formulas are given for the a; and a formula
is given for Yg in terms of these a;. The error involved
in the substitution of Fz for I' in Eq. (1) is evaluated
in terms of the anisotropy factor 2 = 2c44/(c» —c») of
the crystal, so that a suitable correction can be made.

The foregoing procedure is subject to improvement
in two particulars. First, the considerable labor incident
to the separate computation of the a; can be eliminated,
with no increase in the complexity of the resultant
expression for Yg. Second, the correction to Yg in fact
depends upon the values of C as well as of A. This
circumstance is ignored in reference 1.

The usefulness of the method is further increased by
extending the curves for the correction of Yg to values
of A less than unity.

' S. L. Quimby and P. M. Sutton, Phys. Rev. 91, 1122 (1953).
«L. Hopf and G. Lechner, Verhandl. deut. physik. Ges. 16,

643 (1914).

I"ip =3mp+ [12(15—2x)mi+288ms+1112. 4mp
1155

1
+825.6m4+135mp]+ —[54(ms —mp)+576(m4 mp)]

C

54 1036.8
+—[mi —ms]+ [ms —m4]

864
[m,—m,], (3)

where

mp= f(0),
mi=f(1) —mp,

mp ——f(x)—mp,

mp ——f(2x/3) —mp,

m4 f(1 x) m——p,
— —

mp' ——f(1—4x/3) —mp,

c= 1—2$)

d= 3—2$)

f=3 5x, —
g= 3—7$)

x= (1—E)/2.

Table I exhibits the variation of Yg with x and C.
The indicated range of values of x covers all the cubic
crystals listed by Hearmon' with the exception of Na,
K, and NaC103. C, for the cubic crystals listed by
Hearmon, ' ranges from 0.095 to 1.15 except for Na, K,
and beta brass.

A correction to Eq. (3) is shown in Figs. 1 (a) and
1 (b). The method of deriving this correction is dis-
cussed in a later section.

The computation of a Debye temperature proceeds
directly from the elastic constants by calculating C, E,
and x. Equation (3) then yields F'z. This value of Fir
may then be checked by comparing it with Table I.
(Equation (3) must be used since interpolation using

P R. F. S. Hearmou, Revs. Modern Phys. 18, 428 (1946).

EXPLICIT FORM FOR Fg

If the expressions for the a; (reference 1) are sub-
stituted in the expression for Yg and the result simpli-

Qed, it is found that
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Table I is of limited accuracy. ) This value of I'B is
then corrected using Fig. i. The estimation of position
of curves of C intermediate to those shown rarely will
introduce error over &0.3%%uo in final F. The curves
themselves may be in error by a like amount, so that
the error in the computed mean O~n, stemming from
the computation, may be about 0.2%%uq.
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TAYLOR'S SERIES EXPANSION OF Y

As an aid to the evaluation of the eGect of C on the
correction to I'~, it is desired to expand V in ascending
powers of x. If f(z) is represented by a polynomial of
the tsth degree, there are e+1 coefficients a; to deter-
mine. Further, if, instead of forcing agreement with

f(z) at rt+1 different p'oints, it is required that
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where (m+1) ((n+1)/2 and f'(z) denotes the jth
derivative of f(z), then an equation for F results whose
first m+1 terms in powers of x are identical with the
first et+1 terms of the Taylor expansion for F' (see
Appendix A).

The series, denoted I'z, obtained in this manner is

I'r= L2C &+ (C+1)—&]—L(6/5)8]x
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—25620(C+1) "'+13335C '"]
15015

+L870728 127200(C+1) ' ' 90480C

—146160(C+1) "'+81900C '"+523530(C+1) ""
X4

+206246.25C '"'] (5)
255255

where 8=C '~' (C+1) s~'. The—first term is the term

TABLE I. Values of FB computed by using Eq. (3).

(b)

Fto. 1. Correction function E.

for an isotropic body. The second term is that given by
Born and v. Karman. 4 ' The first three terms can be
obtained from an expansion of I'B, Eq. (3), since this
is the case of m= 2, e= 5.

The Taylor's series must diverge for x)
~
C ~, and

converges slowly for x(
~
C

~

.
I'z is always less than the true I' for x(0 and thus

constitutes a lower bound for V. For x)0, the terms of
the series alternate in sign so that I'y alternately bounds
above and below as terms are added.

An upper bound for F can be had for x &0 by using
is= 5 and m= 1 in Eq. (4) and then passing the Lf(z)]B
through z=x and z=1—4x/3. This Lf(z)]B is then
tangent to f(z) at B=0 and s= 1 and lies wholly above
f(z) throughout the root ranges. (It can be shown that
Lf(s)]B cuts f(s) only at the points chosen. )

—0.8—0.7—0.6—0.5—0.4—0.3—0.2—0.1
0

+0.1
+0.2
+0.3
+0.4

41.231
22.508
16.716
13.968
12.461
11.608
11.128

15.651
10.444
8.240
6.990
6.201
5.677
5.324
5.093
4.959

.21.887
8.916
6.515
5.332
4.605
4.114
3.765
3.511
3.325
3.191
3.099
3.058

5.974
4.614
3.872
3.391
3.052
2.802
2.613
2.466
2.354
2.267
2.203
2.158
2.131

ESTIMATE OF CORRECTIONS

The true correction to Yg is given by

(6)

4 M. Born, Atomtheorie des festen Zustandes, Enc. Math. Wi'ss.
(Teubner, Leipzig), Vol. 3, p. 648.

s M. Born and Th. v. K6rman, Physik. Z. 14, 15 (1913).They
appear to have neglected to cancel a factor of 47f-. See reference 10,
page 18.
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It should be noted that there is good agreement with
the Griineisen and Goens method in this range, too,
as mentioned in reference 1. The methods agree to
about 0.4% in F for Au and Ag, Nssstg the same data.
(The trapezoidal averaging method of Gruneisen and
Goens can be improved by dividing by the sum of the
actual area factors used, rather than using the factor
sr/rt. This raises F values usually about 0.6%. The
need for this improvement is easily demonstrated by
applying their method to the isotropic case.)

In summary, it is estimated that the curves of Fig. 1
are accurate to about 0.3%. Interpolation for inter-
mediate C values may double this error. The percent
error in the computed 0& introduced by the substitu-
tion of the corrected F~ for F in Eq. (1) is one-third
the percent difference between them. Therefore, the use
of Eq. (3) and Fig. 1 should result in the mean 0&
accurate to about 0.1% on a given curve or, when
interpolating curves, to about 0.2%. This is about an
order of magnitude less than the errors introduced in
On by the present experimental uncertainty in the c;;.

Use of Eq. (3) and Fig. 1 reduces the arrival at an
accurate 0'n to a short operation taking, at most, a few
minutes. This makes possible computations of 0'n for
Inany values of elastic data without being prohibitive
in time and eGort, and enables the experimenter to
compute easily the effect on On of variation of such
parameters as temperature, cold work. , radiation dam-
age, or alloy proportion.

COMPARISON OF FORMULAS

Figure 2 compares terms of I'p to V~. The dashed
curve is the "true" I' as discussed above. It is apparent
that I'g fits the "true" curve best. For positive r, Yp
to the term in x4 is nearly as good as I'&,. for negative r,
it fails much beyond r= —0.5. It appears that I'z
would have to be carried out several further terms in
order to compete with I'~ near r= —0.7 where many
of the metals occur. (As a consequence, I'r is chiefly of
value in computing Q.) Also, the equation given by
Born 5 is quite inaccurate except close to isotropy,
say r &

~

0.1
~

. (From Hearmon's Table, ' only tungsten
falls in this category. ) Figure 2 may be used as a guide
to use of I'z for substances of small x. It is plotted for
C=1 but the variation of C does not change these
curves substantially.

Two papers by Blackman seem to complement the
method here described. The 6rst permits calculation of
OD for cases where (cts+c44)«c~t, i.e., for very positive
r.~ The second applies where c~~—c~2 is small, i.e.,
r=' —1.' The formulas he proposes are relatively simple
but may be in error by several percent.

Bhatia and Tauber' give an equation for I" which is
also accurate to several percent. This is derived using
the 6rst three Kubic Harmonics for the integrand.

' M. Blackman, Proc. Roy. Soc. (London) A149, 126 (1934).' M. Blackman, Phil. Mag. 42, 1441 (1951}.' A. B.Bhatia and G. E. Tauber, Phil. Mag. 45, 1211 (1954).

Equation (1) may be written

1
t

dQI'=—2 i f(z') «'—
4x '~z; ds;

(1A)

where (dQ/dz~)dz; is the solid angle associated with the
ith root lying between z; and z~+dz;. The de6ning
equations for y; are

z,=1+y&x,
S2=$2$)

S3=$3Ã.

Then Eq. (1A) becomes

1 t." tr dQ)
f(z~)( x—fdy;,E«;j

(2A)

(3A)

where the k; are appropriate constastts (all ranges of z;
are proportional to x). Also

I
s'( dQ)

t
dQ—«,=4sr. (4A)

~ 0 4 dze~ ~zedze

Taylor's series for f(z) at z=0 for zs and zs and at
z=1 for z& yields ((ks~ ) (ks( and ys

——ys ——y)

1 t t' dQq f '(1)
I

x—I& x~y, ~ dy,
4sr 4s ( dzt) i j!

dQ dQ f t&'& (0)+ x—+x—P x&'y&—-dy . (SA)
o dzs dzs. i J!

'z M. Blackman, Repts. Progr. Phys. 8, 19 (1941)."F.Seitz, 3Ioeterrs Theory of Sotsds (McGraw-Hill Book Com-
pany, Inc., New York, 1940},p. 111.

n P. M. Sutton, Phys. Rev. 91, 816 (1953),'data at 'O'K.

Their equation contains the same m; as Eq. (3), but the
coefFicients are constants.

It is worth noting that the Hopf and Lechner' treat-
ment necessarily gives a value of OD which is too high
(low F') for all substances of negative x. The metals
are in this category. The Hopf and Lechner repre-
sentative function. intersects f(z) only between z=0
and a=1 and as a consequence is lower than the true
f(z) throughout the root ranges. The wide use of the
Hopf and Lechner method may be one reason for the
fact that 0'z& from elastic data is frequently high com-
pared to the On from specific heat data. ""As an
example, even for nearly isotropic Al (r= —0.1561)'s
the Hopf and Lechner method gives a I' which is 1.7
percent low; for more negative r it worsens rapidly.
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APPENDIX A
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On the other hand, use of a representative polynomial where

(6A)

yields

1 t's'( dQ) s f' s i!a;
I

~—IP ~'yi'& .
4gr "p 4 dst) f=p ( 2 (i j—)!j!2

fpg ( dQ dQ$
l

x—+x—lP x&yfa;dy . (7A)
~ p 0 dss dsg) f=p

A jth term in Eq. (5A) or (7A) must be at least of
order j in powers of x since it is proportional to

Et= (1—Eg)

Kg ——(1—3Kg+ 2E'),
P —crgPg+Pgyg+ ygrrg

x=~'P'y'

Equation (8A) is obtained directly from the basic
cubic in s. The eleven integrals needed for n=9 may
then be obtained, and give the following averages over
the unit sphere: I", 1/5; y, 1/105; I", 1/21; I'y, 1/385;
Is, 61/5005; ~g, 1/5005; I'g~, 1/1365; r4, 277/85085;
I'x', 5/85085; I'x, 205/969969; yg, 5/969969. Hopf and
Lechner' give the first four of these.

The final equation for Fz for v= 9 is"

Ey 9 E2
Fir ——3ap+P a ——P ja+ P ja;

5 ~=2 i05 ~=3

t "'( dory r "'! dQy
x&

l
x—ly&dy & x&k;&

l
x—ldy =]4grx&k, &'l

( ds) &p ( dsj
j(j—3)

+
21 i=4 2

EyEg
a, — — p j(j—4)a;

385 ~=5

61&i' g (j ~' l &g' ' j(j 5)—
zi —Z (j-~) l~,+

5pp5;=p &3 n=s ) 5005 f-p 2

and the inequality would fail for x sufficiently near
zero if the jth term were of order less than j in x.

Therefore, the requirement of Eq. (4) forces Fig to be
identical to V for all powers of x&' where j&m as can be
seen by comparing Eq. (5A) with Eq. (7A). Equation
(4) constitutes 2(ggg+1) conditions on the (gs+1) co-
eKcients a; so that (gg+1) )2(ggg+1). Thus expansion
of F'rg in powers of x yields the first (m+1) terms in the
Taylor's series for I' in powers of x.

The Tir needed to give the 7'7 of Eq. (5) has gg=9
and ggg=4. Hopf and Lechner' give P;s, ' up to j=5
(case of I=5). To obtain Erg for e) 5, use is made of
the recurrence relation

277Eg4
+ 2 (j 2 (j N))rr+ — (2~s+9~g)

1365 ~=& =6 85085

5E F2' 205 (EtgEg)
(8as+ 27ag)— (9ag)

85085 969969

5Eg'
(3ag). (9A)

969969

p,s, =p,s, -t-lC, r p. -g+Z,xp, s, -s,

"Terms of Eq. (9A), without ag, are given by K. Fuchs in
powers of E in Proc. Roy. Soc. (London) A153, 622 (1936) and
A157, 444 (1936).An error in the coeKcient of ag in A153 is cor-

8A rected in A157.


