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The asymptotic value of the Hall constant of semiconductors as the magnetic field becomes very large is
shown on general grounds to be 1/(p—n)ec, where p and # are the concentrations of holes and of electrons
respectively; this result is independent of the band shapes in the neighborhood of energy maxima or minima.
The unscattered motion of electrons, which determines the saturation Hall constant, is examined by means
of the usual crystal momentum force equation, and also through direct investigation of the properties of
stationary states in crossed electric and magnetic fields. The saturation magnetoresistance is also discussed,
within the framework of the crystal momentum approximation.

INTRODUCTION

HE Hall constant of semiconductors may ex-

hibit considerable variation with magnetic field

strength. At vanishingly small fields, the Hall constant
of extrinsic semiconductors takes the form

Ry=4—— (1)

where 7, is the concentration of holes (+) or of elec-
trons (—), w is the drift mobility, ug is the Hall
mobility, and e and ¢ have their usual significance. The
ratio ug/u in general differs from unity, since electrons
in different states may be deflected through different
individual Hall angles.

As the magnetic field is increased the Hall constant
changes, and may eventually approach a saturation
value, R,. Theoretical calculations of Hall constant
versus magnetic field strength have been carried out for
certain special types of energy band—those having
spherical® or ellipsoidal? surfaces of constant energy in
crystal momentum space. In these instances the satura-
tion Hall constant is

R.,==41/nec. 2)

In this note we shall examine specifically the theory of
the saturation Hall constant, and shall attempt to
generalize somewhat the conditions under which for-
mula (2) is valid.

I. PHYSICAL INTERPRETATION OF THE
SATURATION CONSTANT

At saturation the longitudinal current can be calcu-
lated exactly as though the particles were unscattered,
that is, as though they followed their natural motion
in the electric and magnetic fields.

The reasoning leading to this conclusion, and to the
value of the saturation constant itself, is especially
straightforward if all the particles have a single effective
mass, m*. The orbits of such particles in crossed electric

L A. H. Wilson, Theory of Metals (Cambridge University Press,
Cambridge, 1953), Chap. VIIIL.
2 Motoichi Shibuya, Phys. Rev. 95, 1385 (1954).

and magnetic fields are well known; they are cycloids
with angular frequency

w=eH/m*c (3)
and translational velocity
v=(E/H)c 4)

in the direction (EXH). A simple proof of this consists
in transforming to a coordinate system moving with
velocity vo relative to the initial system. In this new
coordinate system there is no electric field.

Let the mean free time of a particle in a given
cycloidal orbit be 7. Then on the average a particle will
traverse the angle

0 =wr, (5

before being scattered. If 6’ is small, the Hall angle 6
between current and electric field is given by

0= WTH, (6)

where 74 is a weighted average of the mean free times
for different orbits, in general not identical to the
average used in calculating the drift mobility. The
definition of the Hall mobility,

0
pr=c lim —y (7)
H-0 7

leads to the equation
pu=(e/m*)rn. )

This abbreviated conventional analysis shows that
the Hall constant at low magnetic fields depends on the
distribution of mean free times.

When the magnetic field is sufficiently large, 6’ for
all particles becomes greater than 2w, while § cannot
exceed m/2. The particles follow their natural motion
for one or more revolutions, and hence between col-
lisions possess average velocity . Since 6 approaches
w/2, this velocity has the direction. of the normal
longitudinal current. It is reasonable to suppose that
collisions merely carry a particle from one orbit to
another without adding any characteristic displacement
in the longitudinal direction. In this event the longi-
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1800 JOHN A.
tudinal current 7; is
11==nev,

©9)
and the saturation Hall constant is clearly given by
Eq. (2).

The fact that scattering may be ignored at high
fields leads us to make a more general analysis of the
motion of electrons in crystals under crossed electric
and magnetic fields. Proof that scattering does not
affect the saturation Hall constant in the general case
will be deferred until Sec. III, since it will be desirable
to have the theory of the unscattered motion already
in mind when considering this and related questions.

II. MOTION IN CROSSED FIELDS
Orbits in Momentum Space

The particle orbits in momentum space are deter-
mined by the force equation

dP/dt=— e E+ (vXH)/c], (10)
and the associated velocity equation
V= aW/aPi, (11)

where P is the crystal momentum, v the velocity, and
W the band energy. This description of the motion
does not include quantum effects specific to the oscilla-
tion of the particle in its orbit. We shall discuss this
question in Sec. IV.

In order that P; may be continuous we shall not
employ the reduced zone scheme initially, but instead
allow P; to take on all real values. The energy in one
band then becomes a periodic function of crystal mo-
mentum, i.e., three primitive P-vectors may be defined
such that any displacement which is a sum of primitive
displacements leaves the energy function unchanged.
The images of the orbits in the reduced Brillouin zone
will be discussed later.

Let us set up a right-handed coordinate system with
orthogonal unit vectors u,, u,, and u, pointing in the
direction of the w, v, and z axes respectively. The direc-
tions of the electric and magnetic fields are specified
as follows:

E=Eu,,
=—Hu,, (12)
so that the vector (EXH) points in the direction of
the y-axis.
The motion is confined to a plane in momentum
" space
P,=const. (13)
The other component equations of (10),
P,=—¢ E—v,H/c], (14)
P,=—ev.H/c, (15)
can be combined to yield
dP,/dP,= (cE—u,H)/v,H, (16)
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which in conjunction with Eq. (11) determines the
orbit. A more informative equation is obtained by
using the well-known relation

W=v-dP/dt, @17)

which follows from Eq. (11). Substituting the expression
for dP/dt given by Eq. (10), we have

= —¢FEy,, (18)
and from Egs. (15) and (18) it follows that
AW /dPy= vy, (19)

where v, has the value ¢cE/H, as in Eq. (4). We shall
base our further discussion on this relation.

The orbits in P-space, as given by Egs. (13) and (19),
may be visualized as follows: Confining ourselves to
the plane P,=const, let the energy as a function of
P, and P, be plotted in what was formerly the P,
direction. Then the orbits in P-space are the projections
on the plane P,=const of the intersection of planes
with slope dW/dP,=1v, with that energy surface.

It is clear that all of the orbits in P-space are either:
(a) infinite in extent with average direction along the
electric field, or (b) reentrant. For if an orbit were
confined to a bounded region of the plane P,=const
and were not re-entrant, there would have to be an
infinite number of distinct intersections of a particular
plane of slope (19) with the energy surface, and this is
of course impossible in cases of physical interest.

If o, is different from zero and not too large, orbits
of both type (a) and type (b) exist. The orbits are
obviously reentrant near a maximum or minimum of
the energy surface (i.e., the surface which represents
energies in the P,=const plane, and conceived in the
preceding as erected above that plane), providing v is
small enough. It will be shown later that orbits of
type (a) must then also exist. The special case 2p=0
corresponds to an infinite magnetic field or zero electric
field. In this case all orbits are constant energy con-
tours. For o= o all the orbits are infinite straight lines,
corresponding to motion in a pure electric field.

We are interested primarily in the time average of
the velocity of particles in these momentum orbits.
Using the angular parentheses to designate the time
average of the included quantity, we find from Egs. (14)
and (15) that .

(v)=vo+(Pr)c/eH, (20)

(vsy=—(P,)c/eH=0, (21)

the last equation following from the fact that P, is
bounded (since the energy in one zone is bounded).
Furthermore, for any re-entrant orbit (P,) is zero,
and thus

(22)

It is Eq. (22) which allows us to realize the more general
validity of Eq. (2).
We next consider the images of these orbits in the

(v,)=1y (all reentrant orbits).



SATURATION HALL CONSTANT OF SEMICONDUCTORS

reduced Brillouin zone. Let us select one plane P,= const
and one energy plane W=19oP,+const. Then if there
exists no vector in the direction of the electric field
which can be expressed as a sum of the primitive
momentum displacement vectors, the image of the
orbits so defined will be everywhere dense in the funda-
mental zone or on a surface in the fundamental zone.
Let us for simplicity choose a direction for E which
contains such a vector. Then the orbits in the topo-
logical space of the reduced zone are “closed” curves.
We may generate a complete set of such closed orbits
by imagining the reduced zone to be completely popu-
lated at one instant of time by the array of points
representing the stationary states. The orbits subse-
quently traced out by these points give us our com-
plete set.

Having a complete set of orbits in the reduced zone
we can attach a more definite meaning to the terms of
‘the following statement: the sum of the average
velocities associated with all orbits is zero. (If several
orbits coincide, the contribution of each must, of course,
be counted.) This must be so since the total current
contributed by a full Brillouin zone is zero. One should
recall here that the flow of points in P-space is “incom-
pressible.” Since all the reentrant orbits have the
average velocity vo, those orbits which are not reentrant
in the infinite P-space have on the average an opposite
velocity. Both reentrant and non-re-entrant orbits must
exist in general in order that the sum of all average
velocities be zero.

Application to the Hall Effect

Let us suppose that the great majority of electrons
in a given band have energies less than a certain energy
W . Consider the volume in extended P-space composed
of points associated with energies less than or equal to
W. If this volume is composed of subvolumes which are
finite in extent and disjoint, then the current carried by
the corresponding filled orbits in the fundamental zone
is —#n_evo, where n_ is the number of electrons in the
band. This follows from the fact that the electrons are
confined to these disjoint regions if the velocity v, is
small enough. If there are several partially filled bands,
each satisfying the above criterion, the same formula
for the current will apply, with #_ equal to the total
number of electrons in such partially filled bands. The
image of the disjoint regions on the reduced zone may
be either connected or disconnected.

The same result clearly holds for holes. An empty
orbit can be considered to carry the current —evo.
If the regions in P-space corresponding to all relevant
unfilled states are finite in extent and disjoint, the
current is 7,.ev,, where n, is the number of unoccupied
states.

Experimentally, saturation of the Hall constant is
obtainable only if the mean free time is sufficiently
large that at available fields most of the particles
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average at least one traversal of their orbits between
scattering collisions. If the electrons are inhomo-
geneous, i.e., are spread among several bands or differ-
ent energy minima, the saturation condition may be
realized by different groups of electrons at different
field strengths. As a result the Hall constant may still
change materially after the first apparent approach
to saturation.

We conclude this section by pointing out that when
both holes and electrons are present the longitudinal
current density is

1=evo(ni—n_), (23)
and the Hall constant is
R,=1/(n.—n_)ec. (24)

This is a well-known formula, now validated more
generally. For a near-intrinsic semiconductor the cri-
terion for saturation is somewhat different, as explained
in Sec. III.

III. STATISTICAL TREATMENT

In this section, we shall apply the Boltzmann trans-
port equation to the problem of determining the distri-
bution function at high fields. This analysis enables us
to show that the high field Hall constant is determined
by the free motion of the carriers. The discussion also
leads naturally to a study of the saturation magneto-
resistance.

Let f be the probability of occupation of states of a
band in the reduced zone of P-space. If the concentra-
tion of carriers is uniform in space, the Boltzmann
equation for this band is

JP af
V=B XIS 0
dt ot coll

where the symbol Vp denotes the gradient with respect
to crystal momentum. The right member of Eq. (25)
represents the net rate of change of occupation prob-
ability due to scattering collisions.

From Eq. (25) one can deduce in a general manner
the behavior of the electric field as the magnetic field
increases without limit while the longitudinal current
density remains constant. Since the right member of
Eq. (25) remains finite while the force dP/d¢ becomes
infinite, the gradient of the distribution function along
the direction of the force must approach zero. Thus the
distribution function tends to become constant along
the unscattered orbits. It follows that the electric field
must become infinite; otherwise, the limiting distribu-
tion function would have zero current associated with it.
However, the component of the electric field in the
direction of H will remain finite, since a finite electric
field is sufficient to cause a current in that direction.
In the limit the electric field therefore becomes per-
pendicular to the magnetic field.

It follows from the above that the current density at
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saturation in the plane perpendicular to H is deter-
mined by the unscattered motion of the carriers in the
magnetic and transverse electric fields. This current,
as we have seen, is orthogonal to both fields. Should the
magnetic field be applied in a direction not perpen-
dicular to that of the longitudinal current density,
a finite electric field in the same direction as the mag-
netic field is required to produce a balancing current,
such that the resultant current lies in the longitudinal
direction. The current density due to the unscattered
motion of the particles in the magnetic and Hall electric
fields is thus the projection on the axis perpendicular
to E and to H of the longitudinal current density. It
follows that the saturation Hall constant is determined
by this unscattered motion, and has the same value
for all directions of H, provided that the definition of
the Hall constant is generalized in the usual way:

Eyz=—R(@iXxH), (26)

in which Eg is the Hall field, and i the vector current
density.

In the following we shall treat the saturation Hall
constant and also the magnetoresistance in a more
rigorous fashion for the case in which the magnetic
field is perpendicular to the longitudinal current density.
We will adopt the same notation and direction for
each field as in the previous section.

It is convenient for the analysis to constrain one
field to be a constant multiple of the other, i.e.,

E=Hu/c. 27

The constant v, determines a set of unscattered orbits
in the crossed fields. Let us define for every such orbit
a specific orbit time ¢’ such that ¢ is the time (measured
with respect to an arbitrary fixed reference moment) at
which the particle occupies a particular point of its
orbit in a magnetic field of unit strength. In a general
field H, the corresponding time ¢ is related linearly to ¢’

'=Ht, (28)
and Eq. (25) becomes in terms of ¢/
Hdf/dt'=[8f/ 0t Joon. (29)

In Eq. (29) the right member is a partial derivative
with respect to time at a fixed point in momentum
space, while the term df/dt’ is a total derivative with
respect to specific time along the orbit passing through
the point in question.

Let us assume that at sufficiently high fields the
following expansions are valid:

f—fo=hothH F+hH - - -, (30)
[af/dtTeon=so+s:H 45 H 24+ --. (1)

It will prove useful to define the additional quantities
ho= fotho, (32a)
hi=hi (i50). (32b)

SWANSON

The quantity %o is the saturation probability distribu-
tion function for the particular value of v, selected.

Applying Eq. (28) to the expansions (29) and (30)
we find that

d}-Li,H/dt,: Sie (33)
The first equation of the set is
dho/dt' =0 (34)

showing that Ay is constant along each of the orbits
determined by wo. Thus, provided that the series (30)
converges, the saturation Hall constant is rigorously
shown to be determined by the unscattered motion.
It should be noted, however, that Eq. (34) does not
determine the distribution of electrons among the
orbits. As one would expect, this distribution is de-
termined by the law of scattering.

Let us in fact note that every s; must satisfy the

condition
f S idl‘ /= 0.
w0

The loop integral sign indicates that the scattering
function s; is to be integrated around one complete
revolution of the particle in one of the orbits deter-
mined by the constant v,. The proof of Eq. (35) con-
sists in integrating Eq. (33) with respect to the time
around one of the closed orbits. The integral of the
left hand member is the change of %; around the orbit,
which must be zero.

Equation (35) constitutes a condition on /%, since %;
determines s; through the scattering law. This condition
is needed to specify %; uniquely, since to any #; satis-
fying (33) we can add a function constant along the
orbits but otherwise arbitrary, thereby obtaining a new
solution. In particular, the value of %, along a given
orbit is determined by Eq. (35) as applied to s,.

Rather than discuss the general case further, we
shall suppose that a mean free time exists. The problem
is then greatly simplified, since the functions s; are
given in terms of %; by the relation

§i= '—hz/T (36)

The set of equations resulting from substitution of
this expression for s; into Egs. (33) is easily soluble,
and moreover the solution may be found along each
orbit independently. For suppose /%; has been deter-
mined; then we may determine %;y; by integrating part
way around an orbit:

(35)

tl
hH_l(P) —IZ¢+1(P0) = —f ]’lidi,/’r. (37)
2o’

Here P, and ¢, are the coordinates of an arbitrary
reference point on the orbit, and P and ¢ are the
coordinates of a general point. Equation (36) deter-
mines %1 along every orbit to within an arbitrary
constant. This constant is determined from the con-
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dition

(38)

f h,’.*_ldt’/T:O,
0

following from Eq. (33).

We next show that the series (30) obtained in this
manner converges if H is sufficiently large. We note
that the maximum absolute value of %;,; along a par-
ticular orbit is less than the maximum absolute value
of %; integrated around the complete orbit. This follows
from Eq. (37). Indicating the maximum absolute value
along an orbit by the subscript #», we have

hﬁ-l, m<h1" m f dt'/r.
v0

Since /4; must take both positive and negative values,
the inequality (39) is in general rather strong. It is
useful for our purposes to express this inequality in a
different form. Taking the line integral with respect to
the actual orbit time / we have

hi 1,m
il <f dt/r.
Ry, mH v0

The left member of Eq. (40) is the ratio of the maximum
absolute values of adjacent terms in the series (30).
Thus the series converges for a given orbit if

f dt/r<1.
20

This condition may be assured for all relevant (occupied)
orbits by choosing a sufficiently large magnetic field.

Thus if a mean free time exists, the convergence of
series (30) for sufficiently high magnetic fields can be
proven rigorously. We note, however, that the series is
not convergent for all magnetic fields. In fact, it is not
difficult to show that for the condition

f dt/7>2xm
v0
the series diverges.

When the left member of inequality (41) is very
small compared to unity, it is approximately equal to
the probability of the occurrence of a scattering collision
during the time of one revolution of the particle. We
may consider the maximum absolute value (along an
orbit) of the ¢th term in the series (30) as a rough
measure of the ith order current contributed by a
particle in that orbit. Applying inequality (40) to the
first and second terms of the series (30), we see that
the major part of the current contributed by particles
occupying a given band and region of momentum space
is due to the unscattered. motion of these particles if
the probability per revolution of scattering in that
band and region of momentum space is small.

(39)

(40)

(41)

(42)
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It would be wrong, however, to conclude that the
saturation Hall constant is effectively reached when the
preceding sentence is true for all relevant bands and
regions of momentum space. The condition for the
saturation of the Hall constant is that the current
density due to the first term of (30) is much larger
than the current density due to the second term. But if
both nearly empty and nearly filled bands must be
considered, the contribution to the current of the holes
balances the contribution of an equal number of elec-
trons as far as the current due to the unscattered
motion is concerned. The magnitude of the current due
to /o is therefore reduced, and the current associated
with %; may continue to be dominant or appreciable at
fields much higher than those required to reduce the
probability of scattering per revolution to a very small
quantity for all orbits. This enables us to understand
the implausible discontinuity exhibited by formula (24)
at the intrinsic point. At any given finite field the Hall
constant is continuous as a function of the net impurity
concentration, but in a region of concentrations close
to intrinsic it will not have reached its saturation value.
Only in the limit of infinite magnetic fields will the
Hall constant have reached saturation for all impurity
contents, and therefore it is only in this unrealizable
case that the discontinuity exists.

To conclude this section we discuss briefly the possi-
bility of expanding the distribution function in the
following manner:

=t E(@H g0+ - ). (43)

This expansion is incomplete in the sense that terms of
order higher than the first in the electric field are
omitted; nevertheless the differential equation govern-
ing the g’s can be solved in a manner similar to that
employed above, with the integrals in this case taken
along constant energy contours. The previous expansion
is complete since it contains all powers of E by virtue
of the constraint Ec=voH. This constraint does not
detract from the generality of the solution, since 7o is
arbitrary.

Saturation Magnetoresistance

Let the Hall angle 6 be expressed as

0=m/2—¢. (44)
Then near the saturation of the Hall constant
d=ig / i1, (45)

where ; is the current due to the free motion of the
particles, and ¢g is the current in the direction of E.
The electric field E; in the direction of the longitudinal
current can be expressed in terms of ¢:

E,=E¢. (46)

The resistivity at infinite magnetic field, p,, which
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’ is given by

(47)

we shall call the “‘saturation resistivity,’
po=Ei/t1=¢E/i1=R, Hig/.
In general the difference in resistivities
Ap=pe,—po,

where po is the resistivity at zero magnetic field, does
not vanish, and a “saturation magnetoresistance”
exists, proportional to this difference. Since /%, does
not give rise to current in the direction of the electric
field, the saturation magnetoresistance is determined
by hl.

The form of the functions %¢(P) and %;(P) depends
on the value of v,. Thus it may be that the saturation
magnetoresistance is current-dependent. In the follow-
ing we shall be concerned with the limiting value of the
magnetoresistance as the longitudinal current density
is reduced to zero. The saturation magnetoresistance
should not deviate appreciably from this limiting value
if the longitudinal drift velocity is much less than the
thermal velocity associated with each energy minimum.

We wish to obtain a formula for %;, but in order to
do so it is necessary first to determine %,. Let us con-
centrate our attention upon a particular orbit and a
particular constant energy contour (energy Wo) which
intersects it at a point Po. Then, if v, is sufficiently

small,
JSoW) = fo(W o)+ (8 fo/ IW) (W —W ), (48)

where W is the energy along the orbit. Now consider a
point on the energy contour and the adjacent point on
the orbit which has the same P, coordinate. Then,
in view of (19),

fo(W)— fo(Wo)= (8fo/dW)vo(Py— Py,).  (49)

Since Py, is arbitrary we may set (W) equal to fo(Wo).
Then Eq. (37) (for 4=—1) constitutes a condition
on Py,:

f (P,— Po,)dl'/7=0. (50)

Since we are specializing to cases in which 2o is smalls
the condition (50) may be approximated by

f (P— Poy)dt /=0, (51)

an integral around a constant energy contour. Re-
writing Eq. (49) we have
ho(W)=fo(W)— (8fo/ W )vo(Py—Puy).  (52)

The two terms on the right-hand side of this equation
must correspond to the first two terms of the expansion
(43). In fact, had we solved the latter expansion we
should have found that

g1=—(3fo/ OW) (Py— Puy), (83)
where Py, is determined by Eq. (51). One may employ

JOHN A. SWANSON

(52) as an adequate approximation of the correct
function near each energy minimum when v, is small.
The resultant formula for 4, is

dfo ¢
hl(P)_h1(Po)=£‘vu f, (Py—Py)dt' /7. (54)

To Eq. (54) must be added the usual condition

f Indt! =0.
w

Equations (50), (53), and (54) determine the satura-
tion magnetoresistance. Should the contours of constant
energy in a given plane P,=const have a center of
inversion in the point of maximum or minimum energy,
and should the mean free time possess the same sym-
metry properties, the problem is further simplified. For
then the constant Py, is the same for all the contours
in the plane P,=const, and in fact is equal to the
P,-coordinate of the center of inversion.?

It should be noted that this method of finding the
magnetoresistance is related to Shockley’s ‘“tube in-
tegral” method* discussed further in the Appendix.

The quantity

(55)

(56)

is independent of vy. Let I be the operation (consisting
of the usual integration over P-space) which, acting on
a distribution function, yields the value of the current
density in the x-direction (direction of E). Then it is
easy to see by virtue of Eq. (47) that

g2=h1€/‘vo

67

IV. STATIONARY STATES IN CROSSED FIELDS

Po= Rw2]g2-

Thus far we have described the unscattered motion
of an electron in a periodic potential under crossed
electric and magnetic fields in terms of the crystal
momentum, i.e., in terms of the stationary states which
exist when these fields are absent. In this approximation
the electric and magnetic fields are treated as perturba-
tions, a procedure which loses its justification when
these fields become excessively large. It is then more
appropriate to discuss the motion of the electron in
terms of the true stationary states which exist in the
presence of the crossed fields. We shall investigate the
properties of such stationary states which are relevant
to the saturation Hall constant, but not those relevant
specifically to the saturation magnetoresistance. That
is, we shall attempt to calculate the expectation value

3 With constant Py, formula (53) represents a displacement of
the equilibrium distribution in P-space, and can be obtained by
simpler arguments if one assumes that the effect of electric and
magnetic fields is to produce such a displacement. See the paper
of M. Kohler, in which the saturation magnetoresistance of metals
is regarded from a point of view similar to ours [M. Kohler, Ann.
Physik 38, 283 (1940)].

4W. Shockley, Phys. Rev. 79, 191 (1950).
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of velocity of an electron in such a state, but not the
probabilities of scattering into other states.

In the following we shall find it convenient to dis-
criminate between “restricted band states’” and general
states. The term ‘restricted band state” shall refer to
states resulting from a superposition of states primarily
from one band or group of degenerate bands. Though
not, in general, stationary, such states may be “quasi-
stationary” in the sense that the probability density is
essentially constant over ordinary time periods. Since
the probability of field-induced transitions to higher
bands is usually small, most electrons will in fact occupy
such states. From the familiar result that a full band
carries no current it follows that not all restricted band
states can have the same expectation value of velocity.
However, this conclusion does not apply to the true
stationary states.

Before beginning a direct calculation of the velocity
expectation value we take cognizance of an exact solu-
tion previously obtained for a special case. The problem
of charged particles in crossed electric and magnetic
fields in free space has already been treated quantum
mechanically by Titeica,® whose work was concerned
with the magnetoresistance of metals. He found that
stationary states exist having the form

R A N )

in which f,(x) is the harmonic oscillator wave function
corresponding to the angular frequency w=eH/mc and
quantum number #. The average position of the elec-
tron, xo, is arbitrary. It is easily seen by direct applica-
tion of the velocity operator that the average velocity
1S 7g.

In this case we see that each wave function belongs
to a class, the members of which differ only by relative
translations along the x-axis and a corresponding phase
factor. Such classes exist in general, a fact which
enables us to deduce the expectation value of velocity
for stationary states when the electron is contained in
a crystal, as shown below.

The Hamiltonian for our problem is

1 eH \?
H='2—"[Px2+ (Pl/__x) Pzz]_l'eEx‘*_ Vp(x7y:z)) (59)
m c

where V, is the periodic potential. We have chosen the
gauge which gives to the Hamiltonian the maximum
translational symmetry in the y-direction. We note in
passing that if the y- and s-directions are collinear
with lattice displacement vectors the solution of
Schrddinger’s equation can have a form very similar
to (58):

¥(x,9,2) = dn(,3,5)e 0™, (60)

where ¢, is periodic in the y- and z-directions.
It will now be shown that, given any solution of
Eq. (59) with expectation value of the wx-coordinate

5 S. Titeica, Ann. Physik 22, 129 (1935).
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(®)=x0 and energy W,, infinitely many solutions exist
of identical form except for a phase factor, having each
a value of (x) and a related energy Wo+8W such that

eE ((x)—xo)=0W. (61)

Let a be a general lattice displacement vector. Then,
simultaneously with the coordinate transformation

r=r'+a, (62)
let us introduce the gauge transformation
A,=A4,"— (eH/c)a,. (63)

In the new coordinate system and gauge the original
Hamiltonian is recovered except for the additive term
¢Ea,. Thus if (1) is a solution in the old gauge, ¥ (r)
is a solution in the new gauge.

It follows from gauge transformation theory and may
easily be verified directly, that the new wave functions
in the original coordinate system and gauge have the
form

VD=4 (r—a)ecmira,

where 6Py,=¢Ha./c.

Let us suppose that a wave packet has been con-
structed by superposition of states of the form (64).
Then the group velocity of this packet is

9y=0W /6P =1y, (65)

which is consequently the expectation value of velocity
for the component states.

This result has been shown to apply to all true
stationary states. We will show below that it applies
also to all quasi-stationary restricted band states satis-
fying a certain condition. This condition is that the
restricted band states in question can be generated
from stationary states in the magnetic field alone by
regarding the electric field as a perturbation. It is clear
that the unperturbed states must be localized with
respect to the x-coordinate and must have essentially
uniform probability density in the y-direction in order
that the electric field constitute a perturbation; but it
is probable that in general a complete set of states in
the magnetic field can be found having this property.
The unperturbed states are automatically restricted
band states. Consequently, the perturbed states, if they
exist, are also restricted band states.

The expectation value of velocity for the perturbed
states will now be calculated directly. Letting the
symbol 6 indicate the change in the conjoined quantity
induced by the perturbation, we have

(64)

1 eH
O sip——8 ). (66)
m c
But to first order in electric field we have
How pynot pyncH nd’
My =% — (67)
n Wo—Wa,
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and
HOn”an'{—xOnIInU”
¥ay=2_" )
n Wo—W,

(68)

where W, is the energy of the nth unperturbed state
and H,,’=H,,"” are the matrix elements of the per-
turbation. The sum is taken over all values of # except
n=0, this value indicating the initial unperturbed state,
\1/0 (x7y ,Z) .

The perturbation H' is eEx. However, on transform-
ing to a new coordinate system defined by

x=a'—mc?E/eH?,

r=r'+}a,

(69a)
(69b)

where a is a lattice displacement vector, the term eEx
drops out of the Hamiltonian (59), and is replaced by
the term 9¢p,. In this new coordinate system one can
therefore treat vop, as the perturbation. Out of all the
states having the same form except for a phase factor
and a displacement let us choose as the unperturbed
state in this new coordinate system ¥,(x’,y’,2’). Then
the same perturbed state will be obtained in both cases.
This is easily seen if ¥, has the form (60). For neither
perturbation changes this form nor the value of ,. But
for any given orientation of the lattice relative to the
magnetic field we may choose another orientation
arbitrarily close to the first such that the wave functions
may take the form (60) in the new orientation. [It
should also be noted that a succeeding infinitesimal
rotation about the y-axis insures that the discrete set
of values of E allowed by Eqgs. (69) is everywhere dense.
The restriction to a discrete set is therefore not sig-
nificant. |

Now if we compute &p,) in the original coordinate
system (H'=eEx) and &(x) in the second coordinate
system (H" =wvop,), the resultant expressions when sub-
stituted into Eq. (66) cancel. However, we must correct
&(x) by the amount of the coordinate shift —mc2E/eH?,
and this gives us finally the desired result

5(2,)=1o. (70)

Relation to Orbits in Momentum Space

Let us consider the classical ensemble of particles
satisfying the equations of motion (10) and (11), all
occupying a given orbit in crystal momentum space
and all having the same average value of x-position, but
having random y- and z-coordinates. The probability
of finding a particle at a given location is stationary
for such an ensemble. We shall say that a quasi-
stationary restricted band state ‘“‘corresponds” to an
orbit in momentum space if the expectation values of
energy and of position are the same for the wave
function as for an ensemble of particles in the given
orbit. This notion of correspondence allows us to con-
nect the results of the present section with those of
Part IL ’
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Not every orbit will possess a corresponding wave
function. The localization of the electron by the mag-
netic field, which leads to the displacement property
expressed by Eq. (64), leads in an intimately related
way also to the discrete quantization of the energy of
an electron having a given expectation value of position.
Thus only orbits belonging to a discrete set possess
corresponding wave functions.

This quantum effect, regarded from the viewpoint of
the crystal momentum approximation, may be called
“orbital quantization.” The orbital motion of the elec-
tron in space results in quantum mechanical inter-
ferences which act to select those particular “orbits”
for which the interferences are constructive. A first
approximation to the resultant energy levels may be
found by regarding P, and x as conjugate oscillatory
variables to which the Bohr-Wilson-Sommerfeld phase
integral condition may be applied. Through use of
Eq. (15) this condition is easily transformed to

s
— f P,dP.= ]{ PP, =—— (3.  (71)
eH

The integrals are equal to the area contained by the
orbit. It is interesting to note that this condition yields
the correct energy levels for the free particle and for
the “pseudoparticle” with different longitudinal and
transverse masses.

In cases in which bands overlap, the unperturbed
wave functions, as stated earlier, must be assumed to
involve superpositions of states from each of the de-
generate bands. If there should be degeneracy among
the unperturbed states, the correct zeroth-order wave
functions are to be selected for use in the perturbation
calculation. The resultant quasi-stationary states corre-
spond simultaneously to several orbits of equal energy
in different bands.

It is reasonable to suppose that as the electric field
approaches zero, perturbation theory should become
applicable to almost all quasi-stationary states. How-
ever, we should like to know to what states in particular
the theory is applicable at given values of field strength.
We shall not attempt to answer this question rigorously,
but instead shall make use of a plausible argument sug-
gested by the correspondence developed here. It is
natural to suppose that if the motion of the electron in
a magnetic field, as it is described by means of the
crystal momentum approximation, is merely perturbed
by the electric field, the actual motion is correspondingly
perturbed by the electric field, and not altered essen-
tially. But the reentrant orbits are perturbed constant
energy contours, while the nonreentrant orbits are
altered in essential form. Thus we should expect re-
entrant orbits to correspond to perturbed states, and
nonreentrant orbits to correspond to those ‘“extra-
ordinary” restricted band states which cannot be
generated by means of perturbation theory from states
stationary in the magnetic field alone.
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Such extraordinary states, since they do not occur
near the top or bottom of a band, are not likely to be
of interest in connection with the semiconductor Hall
effect. However, they do play an interesting role in the
one-electron theory of the full band. By setting the
expectation value of acceleration equal to zero for a
quasi-stationary state, it is easily seen that the velocity
expectation value is v if and only if the average force
exerted by the lattice on the electron is zero; the
corresponding statement in the crystal momentum
approximation is contained in Eq. (20). In a full band
the electrons must, however, exert a force on the lattice
ions equal and opposite to the direct force due to the
electric field. This force is exerted by electrons in the
extraordinary states. Correspondingly, the condition
that formula (24) hold is that the relevant electrons
and holes exert no average force on the lattice.

In conclusion we point out that at sufficiently high
magnetic fields, given constant longitudinal current, a
significant number of electrons will make transitions to
higher bands. This phenomenon, which is essentially
Zener breakdown due to the transverse electric field,
could in principle be observed, since it would not be
preceded by avalanche breakdown.

APPENDIX. INTEGRAL SOLUTIONS OF THE
BOLTZMANN EQUATION

If a mean free time exists, the solution of Eq. (25)
can be written in integral form for arbitrary values
of H. We have used a series expansion in the preceding
work since it simplifies the discussion of saturation
effects. The integral solution is given here for the sake
of completeness.

The basic idea of this solution is due to Shockley,*
though his treatment is somewhat generalized here.
Let the magnetic field, H, have an arbitrary magnitude,
and an arbitrary orientation with respect to the longi-
tudinal current density. The electric field, E, will have
a component E; parallel to H, and a component E,
perpendicular to H. The set of orbits in momentum
space of which we shall speak are those defined by E,
and H. Generalizing notation employed by Shockley in
treating constant energy contours, we define an angle
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variable 6 for each orbit such that =2xt/T, where ¢ is
the time corresponding to a point of the orbit, and 7" is
the period of one revolution. We further define

w=2w/T,
g=Jf—Jo
Then Eq. (25) can be written in the form:

dg g 9dfoe
22 Ry,
dfd wr Ww

in which a term ¢E;-Vpg has been dropped, since it is
small compared to eE,- Vpfo, a quantity included in the
right member. This linear equation must be solved
subject to the boundary condition g(f) = g(6-+2x). Such
a solution is given by the expression

g0)=4

0—2m

fo(l—f)E-v(@) exp[—— fo ,o do"/m]do',

where

A= —e(kTw)—l[l—exp( - ]{ do"/m)]ﬂ,

all integrals being taken along the orbit. The equivalent
quantity — fo(1—fo)/kT" has been substituted for
dfo/0W. Shockley obtained a solution correct to first
order in the transverse electric field by integrating
instead along constant energy contours. This approxi-
mation should be adequate for normal- longitudinal
drift velocities. In this case 6 is the angle for zero electric
field, and the factor fo(1—fo) may be placed outside
the integral sign. One may integrate g(f)v around the
contour in order to obtain the contribution to the
current of states along the contour. The resultant
multiple integral, though of somewhat different form,
is equivalent to Shockley’s integral.

By expanding the exponentials in power series one
effectively achieves an expansion in terms of 1/H. How-
ever, the simple results regarding saturation quantities
obtained by the direct power series expansion in con-
junction with a discussion of the orbits are not apparent
from these integrals.



