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Uniform Strains and Deformation Potentials

R. H. PARMKNTER
RCA laboratories, Radio Corporation of America, Princeton, Sex Jersey

(Received May 31, j.955)

A perturbation method of calculating the energy levels of a crystal modi6ed by an arbitrary uniform
strain is studied. A modified form of first-order perturbation theory is used, a form particularly appropriate
to cases where the unperturbed wave functions are expanded in terms of orthogonalized plane waves. Not
only are the conventional uniform strains considered but also the special types of deformations whereby
the relative positions of the atoms in a unit cell are changed without distorting the Bravais lattice of the
crystal. Thus the results of this paper may be applied to the deformation-potential theory of mobility
with regard to both acoustic and optical lattice vibrations.

I. INTRODUCTION
' 'X a previous paper the effect of a uniform dilation
~ - upon the one-electron energy bands of a monatomic
crystal was determined. ' In this paper we will generalize
this to the case of an arbitrary uniform strain. Ke will
use the same method of calculation used in the previous
paper; namely, a modified form of first-order pertur-
bation theory which will be discussed in detail in the
following section. The quantities to be determined in
the present study may be referred to as "deformation
potentials, " a deformation potential for a given energy
level and for a given strain being dehned as the dif-
ference in energy between the energy level in the
strained and unstrained crystals. The deformation
potential will, of course, be a linear function of the
amount of strain. The concept of a deformation poten-
tial was hrst introduced by Bardeen and Shockley' in
connection with the study of the scattering of electrons
by lattice vibrations in crystals. They demonstrated
the fact that a long-zvaveleegth lattice vibration has the
same effect locally upon an electron of the crystal as
does the locally equivalent uniform strain. By assuming
that this is also true to a good approximation in the
case of short-wavelength lattice vibrations, these
authors were able to compute the electron mobility
from a knowledge of the deformation potentials. As-
sociated with each sinusoidal lattice vibration, there
may be considered to be a sinusoidally varying defor-
mation potential which will scatter electrons in the
crystal, the dependence upon position in the crystal of
the deformation potential resulting from the dependence
upon position of the local strain resulting from the
lattice vibration. The long-wavelength acoustic lattice
vibrations give rise to conventional strains in the
crystal; the long-wavelength optica/ lattice vibrations
do not give rise to any conventional strain, however,
but rather to a special type of deformation whereby the
relative positions of the atoms in a unit cell are changed
without distorting the Bravais lattice of the crystal.
(We restrict ourselves to long wavelengths in order to

' R. H. Parmenter, preceding paper /Phys. Rev. 99, 1/59
(1955)j.' J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
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maintain the condition of local uniformity of strain in
the crystal. ) For obvious reasons we will refer to such
a deformation as an optical strain. When we wish to
distinguish between the two types, we will refer to the
conventional strain as an acoustic strain. In Sec. II, we
will work out the deformation potentials for acoustic
strains, and in Sec. III we will do the same for optical
strains. In Sec. IV, we will show how the modified
erst-order perturbation approach used in this paper is
particularly appropriate for a crystal whose wave
functions and energy levels have been determined by
the orthogonalized plane wave method. ' As an example
we will consider in detail a crystal of the diamond
structure. This is a particularly appropriate case, since
OPW (orthogonalized plane wave) solutions have been
obtained for the three most important crystals of this
type, namely, diamond, ' silicon, ' and germanium. '

Since the crystal potential in Schrodinger's equation
may be chosen arbitrarily to the extent of an additive
constant, it follows that the one-electron energy levels
are arbitrary to the same extent. From the definition of
a deformation potential given in the preceding para-
graph, it now follows that the deformation potential is
also unspecified to the extent of an arbitrary constant
(the same constant for all deformation potentials
associated with a given strain). In the case of a utsi-

fornzly strained crystal, this is of no consequence, since
the only quantities of real physical significance are the
rates of chalge relative io each other of the various defor-
mation potentials with strain, these quantities being
completely specified. On the other hand, in the case of
a noeutsiformly strained crystal (resulting from the
presence of a lattice vibration), the additive constant
in the deformation potential does have physical sig-
ni6cance and is connected with an additional electro-
static potential (varying with position) which may be
set up as a result of the eonltsifornziiy of the strain. In
their paper, Bardeen and Shockley' argue that this
additional electrostatic potential is negligible. Although

s C. Herring, Phys. Rev. 57, 1169 (1940).
4 F. Herman, Phys. Rev. 88, 1210 (1952); 93, 1214 (1954).

T. O. Woodruff, dissertation, California Institute of Tech-
nology, 1955 (unpublished); Phys. Rev. 98, 1741 (1955).' F. Herman and J. Calloway, Phys. Rev. 89, 518 (1953); F.
Herman, Physica 20, 801 (1954).
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this question is perhaps worthy of further study, we
shall in this paper assume the correctness of their con-
clusions. The assumption that this additional electro-
static potential vanishes implies the specification that
the crystal potential in the interior of an ion-core of the
crystal is unaffected by straining the crystal. Such a
specification serves to define uniquely the deformation
potentials. This specification will be followed in the
succeeding sections of this paper.

The primary purpose of this paper is to develop a
method of studying deformation potentials suitable
for detailed numerical computations on specific systems.
As with the previous paper devoted to crystals modified

by alloying or by pressure, ' the present study arose as
a part of a program of computation of various physical
properties of the germanium crystal, a program making
use of the availability of wave functions and energy
levels for germanium. ' No attempt will be made in this
paper to consider further the application of deformation
potentials to mobility theory.

II. ACOUSTIC STRAINS

Consider an unstrained monatomic crystal. The one-
electron crystal potential may be written in the form

where V(r) is an atomic-like potential, the vectors R„
denote the positions of the atoms of the crystal, and
V(0) is a constant which will be specified presently.
The Schrodinger equation for this problem is

where the Hamiltonian is given by

V(e)=g„'V(a t
R„—R ]). (7)

The prime over the summation sign denotes that the
term for R„=R is omitted. We shall restrict ourselves
to crystals having sufhcient symmetry for V(e) to be
independent of the index m. The constant V(0) occurring
in Eq. (1) is now defined as V(e) for e=0. Because of
these additive constants in Eqs. (1) and (6), it can be
seen that, in the neighborhood of any ion-core of the
crystal, the crystal potential can be approximated by
the atomic-like potential centered on this ion core, both
for the strained and the unstrained lattices. Thus the
crystal potential in the neighborhood of an ion-core
is unaffected by straining the crystal, as was specified
in the previous section. Consistent with such a require-
ment, the only simple assumption concerning the vari-
ation of the crystal potential with strain seems to be
that expressed by Eq. (6). The Schrodinger equation
for the strained crystal is

H'@,'(k, r) =E,'(k)%,'(k, r),

where the Hamiltonian is given by

e'= —vs+ Q„V(r—a R.) —V(e).

In analogy with Eq. (4), we have

4','(k, r+a R„')=expLik (a R„')]@,'(k, r). (10)

1 is the unit tensor (whose elements are 8,;), and e is
the symmetric strain tensor. We shall assume that the
crystal potential appropriate to the strained crystal is

(6)

where the constant V(e) is given by

Vs+Q y (r R ) V (0) (3)
We define a ' such that

(We are using atomic units. ) Here q denotes the par-
ticular energy band under consideration, and k deter-
mines the translational properties of the wave function,
l.e.)

%,(k, r+R ') =exp(ik: R„')4's(k,r), (4)

where the R„'denote the positions of the centers of the
unit cells of the crystal. (The R„willnot coincide with
the R„when there is more than one atom per unit cell. )
We wish to consider the effects of a uniform (acoustic)
strain~ upon the crystal, whereupon the positions of the
atoms become a R„where'

a= 1+e.
7 For brevity, the word acoustic will be dropped throughout the

remainder of this section but is to be understood in all references
to strain.' We nse the above symbolic tensor notation (boldface German
script) in order to minimize the number of subscripts in this paper.
a may be considered to be the 3X3 matrix whose elements are u;;.
The dot product of two tensors, a e, is itself a tensor and may be
considered to be the matrix whose elements are Z„u;„e»i.e.,
the product of the two matrices a and e. The double dot product
of two tensors, 6:0 is the scalar de6ned as Z;; a;;e;;, which may
be considered to be the trace of the matrix g C. The dot product
of a tensor and a vector, a c, is that vector whose components

and define

T,'(k, r)=@,(a k, n
—'r). (12)

Making use of Eq. (4) and the fact that

La k] La
—'(a R„')]=k(a.R '),

we have

Y,'(k, r+a R„')=expLik (tt. R„')]Y,'(k, r), (13)

so that T' has the correct translational periodicity
properties for the strained lattice. This suggests that
we take the Y"s as the unperturbed wave functions in
a first-order degenerate perturbation calculation, a
procedure which is quite straightforward once the
wave functions 4 appropriate to the unstrained crystal
have been obtained. There is, however, one basic ob-
jection to the use of I"s as the unperturbed wave
functions. We note that Eq. (12) represents a scaling

are Z~ a;„c„.The dyadic tensor cd is the direct product of the
two vectors c and d and may be considered to be a matrix whose
elements are c;d;. The transpose of cd, namely that matrix ob-
tained by interchanging rows and columns of the cd matrix, will
sometimes be written as cdt.
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(J'dr denotes an integration over the entire volume of
the crystal. ) Assuming the orthogonality of the C's,

)"C,*(k,r)C i(k, r)dr =8, g, (15)

we see that Eq. (14) merely expresses the fact that the
4's are orthogonal to the C's, i.e.,

(16)

In the case of a monatomic host crystal where there is
more than one atom per unit cell of the crystal, the
index s appearing in the last three equations really
stands for two indices, s and 0, where s denotes the
type of atomic orbital from which the Bloch function
is composed, while 0 denotes with which atom in the
unit cell the Bloch function is associated; i.e.,

C, .(k,r) =1V & P„expLik (R„'+%,)j
X q, (r—R„'—St). (17)

The vector %, denotes the position of the 0th atom of
the unit cell with respect to the center of the unit cell.
As before, the Bravais lattice vectors R„'denote the
positions of the centers of the unit cells, while the
atomic positions, previously denoted by R„,can be
written as R„'+S,. X denotes the number of unit cells
in the complete crystal. Let us take the ion-core orbitals

of the wave function appropriate to the unstrained
crystal, this scaling to be done in both r- and t|-space.
In reality, however, when a crystal is strained, the
change in the wave function cannot be represented by
scaling alone (at least in r-space). In fact, in the
immediate vicinity of a particular ion core of the
crystal, the wave function, rather than being scaled,
probably remains unchanged (aside from a phase
factor) since as a first approximation the crystal poten-
tial remains unchanged.

The above objection can be largely overcome by
replacing Y' as our unperturbed wave function for the
strained crystal by another wave function, the latter
having been made orthogonal to the ion-core wave
functions appropriate to the strained crystal. We now
give the details of this procedure. First we consider the
unstrained crystal. We designate by C, (k,r) any ion-
core Bloch wave function appropriate to this case and
by 4'»(k, r) any of the other Bloch wave functions ap-
propriate to this case. Since the 0's and the C's are
solutions to the same Schrodinger equation, the 0"s
must be orthogonal to the C 's. In analogy with Herring's
method of defining an orthogonalized plane wave, ' we
consider a function I"»(k,r) such that

+»(k, r) = I'»(k, r)

—P C, (k, r)~ C,*(k,r)I', (k, r)dr. (14)

on a given atomic site to be orthonormal, and assume
that the atomic orbitals on neighboring atomic sites do
not overlap, i.e.,

p,~(r—R '—%,) q &(r—R„'—$,)dr=8, &5„„8., (18)

We see that Eq. (15) is consistent with Eqs. (17) and
(18). Using the fact that

I', (k, r+R„')= exp(ik R„')I',(k, r),

we see that Eq. (14) can be rewritten

+»(k, r) =I",(k, r) —P q, (r—R )
s, n

(19)

&&]t p,*(r—R )I', (k, r)dr. (20)

By means of Eq. (20), we have broken up the wave
function %»(k, r) into two parts, one part

—P y, (r—R ) "p,*(r—R )I', (k, r)dr
3,n 00

(21)

C...'*(k,r) N, '(k, r)dr, (23)

where

N, '(k, r)=1', (a k, a—'r). (24)

Similar to Eqs. (19) and (20), we have

Q»'(k, r+a R„')=exp(ik a R„')g»'(k, r), (25)

so that

8,'(k, r) = Q, '(k, r) —g»», (r—a R„)
8,n

)& ~~ q,*(r—a R„)(8,'(k, r)dr. (26)

Like 4'„the wave function 6»' consists of two parts,
the portion Q»' having been scaled from the corre-

being appreciable only in the immediate vicinity of
each ion core of the crystal and representing the rapid
variations of the wave function in these regions, while
the other part I'»(k, r) is more smoothly varying and is
of importance throughout all regions of the crystal.

Turning to the strained crystal, we shall assume that
the crystal potential is essentially unchanged by the
strain over the region of a given ion core of the crystal,
so that the ion-core Bloch wave functions are

C,„'(k,r)=S—&g„exp$ik a (R '+%.)$
)& q, (r—R„'—%,). (22)

In analogy with Eq. (14), we construct an approximate
wave function for the strained crystal by writing

8»'(k, r) =—N, '(k, r) —Q C ...'(k, r)
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sponding portion of +, appropriate to the unstrained
crystal. The portion

—p q, (r—a R„) q,*(r—a R„)Q, '(k, r) dr (27)
s, n

has not been obtained by scaling (21), however, but by
replacing (21) by linear combinations of the ion-core
atomic orbitals centered on the atomic sites of the
strained crystal, the linear combinations being chosen
such that the 6,"s so obtained are orthogonal to the

I)C... s, i.e.,

It will be necessary to consider matrix elements of
unity and of the respective Hamiltonians for both the
unstrained and the strained crystals. We may write

@„*(ak, r)%', (a k, r)d~

I
I «(a k, r)

I

'd7 —X + " p, (r—Q.)
QO S,O'

Xi'„*(ak, r)d7 p,*(r—'g, )1',(a k, r)dg, (32)

8,'*(k,r) P,'(k, r)d~

C, .'*(k,r) P,'(k, r)dr=0. (28)

We see that 8,' has the correct translational periodicity
properties for the strained lattice, since

6,'(k, r+ a.R„')= exp(ik a R„')Q,'(k, r). (29)

The ion-core atomic orbitals used in specifying 4 and
C' are chosen such that

X N„'*(k,r)dr q,*(r—a %,) g, '(k, r) dr, (33)

+~*(a k, r)H+, (a k, r)dr

V(r) being the atomic potential occurring in Eq. (1).
This can be done since in the immediate neighborhood
of any atomic site of the crystal, the crystal potential
may be closely approximated (aside from an additional
constant) by the atomic-like potential V centered on
that site. We shall assume that V may be approximated
by the corresponding isolated-atom potential, so that
the y, 's and the E,'s are those for the isolated atom.
Thus, to a good approximation,

I'„*(ak, r)HI', (a.k, r)d7.

—1V Q E, q, (r—%,)I',*(a k, r)d~
S,O 00

y,*(r—g.)I', (a k, r)d~, (34)

t P, '*(k,r)H' P,'(k, r)d~

H q, (r—R„)=E,q, (r—R.),
H'g, (r—a R„)=E,g, (r—a.R„).

(31) 8„'*(k,r)H' g, '(k, r)d7

For a given a k, there will be various sets of degener-
ate wave functions %,(a k, r) associated with the
unstrained crystal, the members of a given set all having
di6erent point symmetries with respect to their argu-
ments in real space so that they are mutually ortho-
gonal. ' There will be corresponding sets of functions

6,'(k, r), the members of these sets serving as our
unperturbed wave functions, the previous objection to
the use of the Y"s as unperturbed wave functions not
applying to the use of the S"s. In other words, for a
given a k, we diagonalize

I

H' —E'(k)] with respect to
each set of functions 6,'(k, r). Since the I', 's have the
same point symmetries as do the corresponding 4,'s, it
follows that the I', 's associated with a given set are
likewise mutually orthogonal. Since uniform scaling in
real space will not acct this orthogonality property, it
follows that the corresponding I,"s are also mutually
orthogonal. Note, however, that the (8,' —I,')'s, and
thus the 6,"s themselves, are not mutually orthogonal.

We are disregarding the possibility of ace@'ental degeneracies.

—X Q E. y, (r—a %.)I,'*(k,r)dr
S,O'

X p,*(r—a |L) N'( kr) rd(35).
Consider a set of m degenerate wave functions
4', (a k, r), q ranging over e values. The secular equation
we must solve is given by

det
~

S,'*(k,r)l H' —E'(k)$P, '(k, r)dr =0. (36)

There will, of course, be I roots E'(k). We make use of

+„*(ak, r)LH —E(a k)$+, (a k r)d7. =0 (37).
(Here we have temporarily dropped the index q on
E(a k) since the energy is the same for all e wave
functions. ) We now divide each element of the secular
determinant appearing in Eq. (36) by the constant
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det1(deta) ' ~ S„'*(k,r)[H' —8'(k)]S,'(k, r)dr

where the velocity v is given by

deta and from the result subtract Eq. (37), so that Eq. We substitute (40) into (39) and expand everything
(36) becomes as a power series in e, retaining only the lowest order

nonvanishing terms. Thus we expand

E(a k) =E(k)+e:[kv(k)+v(k)k], (41)

@,*(a k, r)PI—E(a k)]@,(a.k, r)dr =0. (38) v(k) =-,'V„E(k).
Similarly we expand

(42)

(deta designates the determinant whose elements equal
those of the tensor a.) In the integrals pertaining to the
strained crystal appearing in Eq. (38) we replace the
variable of integration r by a r so that V' is replaced
by a ' V and dr by (deta)dr. Making use of Eqs. (3),
(7), (9), (24), and (32) through (35), we obtain

and

where

—(a-i V)2= —V2+e:2VV,

V(a r) = V(r)+e: 1t'(r),

1V(r)—= rv V(r).

det 1„*(ak, r)[—(a-'V)'yV'

+Z{V(a [r—R-])—V(r—R-)}

—Q'{V(a [R„—R ])—V(R„—R )}]I;(ak, r)dr
W

—E P E, (deta) q, (a [r—g.])1'~*(a k, r)drJ„'

We shall henceforth assume that V(r) is a function of
the mageitude of r alone, so that

(1 dVq
lj'(r) = rr1-

&r dr)

= —V V~
' r U(r)dr 1V(r). —
r

We also expand

X," q.'(a Lr—%.])1',(a.k, r)d
deta= 1+e:1, (47)

q, (r—%.)I',*(a k, r)dr

q. (a r) = q&, (r)+e:—,'[rvq, (r)+{Vq,(r)}r]. (48)

Substituting Eqs. (40), (41), (43), (44), (47), and (48)
into Eq. (39), making use of the facts that

q,*(r—%,)I',(a.k, r)dr f
[%,*(a k, r) —I'„*(ak, r)][II—E(a k)]

—[E'(k)—E(a k)]~I 1'„*(ak, r)I', (a k, r)dr and
f 0„*(a.k, r)t, (a.k, r)dr=0, (50)

X[+,(a k, r) —I', (a k, r)]dr=0, (49)

+XP (deta)Z'(k), ~ q, (a [r—'g, ])
S &0'

Xr„*(ak, r)dr q,*(a [r—St.])1',(a k, r)dr

—E(a k) q, (r—$.)1'„*(ak, r)dr

when P/q, and dividing the Pqth element of the
secular determinant by [I„*(k)I,(k)]'* where

I,(k) = "11,(k)12d.

2

I&I P ~
q&,*(r——%.)I', (k, r)dr, (51)

S,~ J
„

det e.
Since we desire the eigenvalues E'(k) only to the ac-
curacy of terms linear in the strain tensor e, we may
define the tensor P(k), which is independent of e, such
that $„,(k) =—[I&,*(k)I,(k)] & I'„*(k,r)2VVI', (k, r)dr, (53)

Z'(k) =Z(k)+e: E(k).

X ~ q&,*(r—St)1',(a k, r)dr =0. (39) we finally obtain

.{I,(k)+8„,(k)+6,'„,(k)
—[X)(k)—kv, (k) —v, (k)k]8„,}=0, (52)
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6;„,(k) =—P„*(k)I,(k)]—&N +PE(k) —E,]
S,O'

X S„,l ~.*(r—g.)1',(k, r)d~
00

+-', I'„~(k,r) y, (r—$.)dr

X r, (k, r) {(r—%.)v q,*(r—%.)

r, (k, r) q,*(r—%.)dr

I „*(k,r){(r—9t)v p, (r—%.)

Equation (52) immediately may be rewritten in the
form

det{g„,(k)+8„,(k)+5„,(k)
—PP(k) —kv, (k) —v, (k)kgb„,}=0. (56)

Equation (56) symbolically represents six sets of
secular equations, each set individually determining one
of the six components of the desired symmetric tensor
P(k) for all values of k allowed by the periodic bound-
ary conditions. The fact that X) is symmetric follows
from the fact that each of the four tensors 'g, I, IY and
(kv+ vk) are obviously symmetric.

Equation (56) is the general solution to the problem
of uniform (acoustic) strains. Note that for cubic
crystals the four above-mentioned tensors, and thus
also Z), all have cubic symmetry in k-space. Thus for a
given tensor any diagonal element may be obtained
from any other diagonal element by an appropriate
rotation in k-space about one of the cube axes. The
nondiagonal elements are similarly related. Physically
this means that for cubic crystals it is suflicient to study
(for all values of k) the effects of a pure tensile strain
along one of cube axes and the eGects of a pure shear
strain in one of the cube planes.

An interesting special case concerning the cubic
crystal occurs when we examine a eoedegerlerote band
for k lying along a symmetry axis. By a proper orienta-
tion of our coordinate axes (such that one of them lies
parallel to the symmetry axis), we can make P a
diagonal tensor having only three (diagonal) com-

ponents. In general, each of these three components
will be di6erent, but in the case of a three-fold or a
four-fold symmetry axis, two of these components will
be identical (those two associated with the two coor-
dinate directions perpendicular to the symmetry axis).
In this latter case the eR'ect of an arbitrary strain may
be determined from a knowledge of the effects of (u) a
pure dilation and (b) a uniaxial shear along the sym-
metry direction (the latter being defined as a tensile
strain of a given value along the axis and tensile strains
of minus one-half this value along each of the other two
coordinate directions). Such a case is of practical im-
portance since it includes the bottom of the conduction
band in both silicon and germanium, the bottom lying
along the fourfold (100) axes in silicon and along the
threefold (111) axes in germanium. It should be em-
phasized that the above conclusions, which follow from
symmetry considerations, hold only for k along a sym-
metry axis and only for a nondegenerate band along
this axis.

III. OPTICAL STRAINS

In thi.s section, we wish to consider the effects of a
uniform optical strain' upon a crystal. As much as
possible, the notation developed in the previous section
will be used here. Thus the Hamiltonian for the un-
strained crystal is given by Eq. (3), while the Hamil-
tonian for the strained crystal is

EP'= —V'+Q„V(r—R„")—V(e,). (57)

Here V(e.) is a constant which will be defined presently,
and the R "represent the positions of the atoms in the
strained crystal. The positions of the unit cells of the
crystal, denoted by the R„',are unaffected by the
strain, but the positions of the various atoms of a unit
cell relative to the center of that cell are changed by
the strain from%. to

St"=R.+e,.
The e, are in6nitesimal vectors which specify the
strain. It can be seen that

R„"=R„'+R."=R„+e.&„~. (59)

%e shall restrict ourselves to crystals having sufhcient
symmetry for V(e,), defined as

V(e.)=g ' V(R "—R "), (60)

to be independent of the index m, at least in the limit
of small e,. (The prime over the summation indicates
that the term e=m is omitted. ) This is necessary in
order for the crystal potential in the neighborhood of
any ion core of the crystal to be unaffected by the
strain. Noting that, for the case e.=0, Eq. (60) becomes
the V(0) appearing in Eq. (3), we see that, in the
neighborhood of any ion core of the crystal, the crystal

' For brevity, the word Opfica/ will be dropped throughout the
remainder of this section but is to be understood in all references
to strain.
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potential can be approximated by the atomic-like
potential V centered on this ion core, both for the
strained and the unstrained crystals. Since the R„'are
unaffected by the strain, it follows that the translational
periodicity properties of the wave functions for both
the strained and the unstrained crystals are identical.
This fact, plus the fact that here we are dealing with the
vectors e rather than the tensor e, makes the treatment
of optical strains somewhat simpler than that of acoustic
strains.

We shall use the analog of the method used in the
previous section in order to construct an approximate
wave function for the strained crystal. Thus, in analogy
with Eqs. (20) and (26), we take our approximate wave
function to be

g,"(k,r) =I', (k,r) —P q, (r—R„")
8,%

q,*(r—R„")I',(k, r)dr. (61)

Note that here it is not necessary to scale F since the
translational periodicities are unaAected by the strain.
For a given k there will be various sets of degenerate
wave functions +, associated with the unstrained
crystal, the members of a given set all having diferent
point symmetries with respect to their arguments in
real space so that they are mutually orthogonal. ' Since
the F, have the same point symmetries as do the cor-
responding +„it follows that the l", associated with a
given set are likewise mutually orthogonal. There will
be corresponding sets of functions P,", the members of
these sets serving as our unperturbed wave functions.
In other words, for a given k, we diagonalize
LH"—E"(k)j with respect to each set of functions
Q,". Note that the (8,"—I',), and thus the Sq"
themselves, are not mutually orthogonal. It will be
necessary to consider matrix elements of unity and of
the respective Hamiltonians for both the unstrained and
the strained crystals. We may write

e„*(k,r)M, (k, r)dr

I'~*(k,r)HI', (k, r)dr —EP E, p, (r—%,)
a, r J

Xr„*(k,r)dr) y,*(r—%.)r, (k, r)dr, (64)

6„"*(k,r)H"8,"(k,r)dr

I'„*(k,r)H"r, (k, r)dr

—X PE, t ~, (r—%.")r„*(k,r)dr
8 &0'

00

X~ ~,*(r—%.")1,(k, r)d~. (65)

Equations (62) and (64) can, of course, be obtained
directly from Eqs. (32) and (34), respectively, simply
by replacing a k by k. In obtaining Eq. (65) we made
use of the fact that

H"q, (r—R„")=E,q, (r—R„") (66)
to a good approximation, in analogy with Eq. (31).
Consider a set of n degenerate wave functions 4', (k,r),
q ranging over e values. The secular equation we must
solve is given by

det 6„"*(k,r)(H" E"(k—)5+,"(k,r)d7 =p (67)

There will, of course, be n roots E"(k). In Fq. (37) we
replace a k by k and subtract this from Eq. (67),
obtaining

det pn"*(k, r)LH"—E"(k))p,"(k,r)dr

e„*(k,r)[H —E(k))e, (k, r)d& =p. (6g)

Making use of Eqs. (3), (57), (60), and (62) through
(65), we find that Eq. (68) becomes

~r, (k, r) ~~d.—ZP ",,(r—%.)
00 S,tJ

XI'„*(k,r)dr q,*(r—%,)I', (k, r)dr, (62)

det I'„*(k,r)LQ (U(r—R„")—V(r—R„)}
—P (V(R "—R ")—V(R„—R„)}
—B„(E"(k) —E(k)}$r, (k,r)dr

f
+& Q (E"(k) —E.} q. (r %.")I'„*—(k, r)dr

S,o'

g,"*(k,r) P,"(k,r)dr

(I', (k,r) ~'d —1V Q q. (r—%.")

X y,*(r—%.")I',(k, r)d~ —{E(k)—E,}

f
X~ v, (r—%,)I'„*(k,r)d&

XI'„*(k,r)d~
'

p,*(r—%,")I',(k, r)d~, (63) X q,~(r—%.)1',(k, r)dr =0. (69)
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Since we desire the eigenvalues 8"(k) only to the
accuracy of terms linear in the strain vectors e„wecan
expand everything as a power series in the e, retaining
only the lowest order nonvanishing terms. Thus we
define the vector F, such that

Z"(k) —Z(k) =P.e. F.(k). (70)

We shall at this point assume that the crystal symmetry
is such that

w P. V(R.'+%.—%,) =0, (71)

for any two distinct position vectors % and %,. Thus
it follows that

P (U(R„"—R ")—V(R —R ))
=P.(e,—e,) V P V(R '+%.—%,) =0, (72)

%, being associated with R . Similarly expanding the
other terms in Eq. (69), and making use of Eqs. (49)
and (50) with a k replaced by k, we finally obtain

detP. e. t.X„,(k)+.Y~, (k) —5„,F.(k)]=0, (73)

where

method the wave function is expanded in terms of
orthogonalized plane waves X(k;,r), k; being defined as

k,=—k+K;. (77)

K; being a vector of the reciprocal lattice such that

exp(iK; R ')=1, (78)

p, (k;) =S '*exp(—iK; %,) e' "C',*(k,r)dr

pike ,
~ r~ 8(r)d'r

and~where 0/is the volume of the unit cell of the un-
strained crystal. We see now that

for all i and e. X(k;,r) is defined a,s

X(kg, r)=(1Vn) '*e''"—n "Q exp(iK; %,)

Xp, (k~)C, .(k, r), (79)
where

,X„,(k) =I I„*(k)&,(k)j l) I'„*(k,r)1', (k, r)
f

C...*(k,r)X(k;,r)dr=0. (81)

@,(k,r) =P; e,(k;)X(k;,r).

~V(r R„' R.)d—r, (—74) Expanding +~(k, r) in terms of the X's, we have

.Y„(k)=D,*(k)&,(k)g
—'&7 Z.r E(k) —& j (82)

X I'.*(k,r) ~.(r—%.)d. Hence it follows that I', (k,r), as defined by Eq. (14),
can be wntten as

r, (k, r) = (XQ)—l Q; e,,(k,)e"" (83)
X I',~~.*(r—%.)d.

It is because of the simplicity of Eq. (83) that the OPW
method is particularly adapted to the results of Secs.
II and III.

We shall now specialize to the case where the
unstrained crystal has the diamond structure, this being
a case of great practical importance. There are now
two atoms per unit cell such that %,=&% where %
points along the (111) direction, and 2% is the nearest
neighbor distance. The optical strain vectors are thus
given by e,=&e in order that there be no displacement
of the center of mass of the crystal during an optical
strain. It follows that Eqs. (73) and (76) may be written
in the form

I', (k, r) q,*(r—%.)dr

X I'.*(k,r) v ~.(r—%.)d, (75)

and I,(k) is given by Eq. (51). Equation (73) may be
rewritten in the form

detL.X„(k)+.Y~, (k) —5„,F.(k)/=0. (76)

Equation (76) symbolically represents 3v sets of equa-

tions, v being the number of atoms per unit cell of the
crystal, each set individually determining one of 3v

components Ji,~,,„,&(k) for all values of k allowed by
the periodic boundary conditions.

detLX, (k)+Y„,(k) —g,F(k))=0 (84)

where X„,is the difference of the two, X&& and similarly
for Y„,and F. Thus, Eq. (70) becomes

l1
(85)IV. APPLICATION TO THE DIAMOND STRUCTURE & (k) —E(k)=e F(k).

The procedure developed. in the preceding sections is
particularly suited to an unmodified crystal for which

wave functions and energy levels have been calculated

by the orthogonalized Plane wave method. ' In this tf;, i~(k)—= Z *(k,.)O,,(k,.)(K, K,) s;n(K.
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Since we now have The divergence theorem of vector analysis tells us that

X*(k,,r)X(k;,r)dr V[re'""q,*(r)]dr =0

=cos(K,—K,) sf [8;;—(2/Q)g, p,*(k;)p, (k;)], (88)

it follows that

I,(k) =Q S,p'(k) [bg—(2/0) Q p,,*(k;)p, ,(k;)]. (89)

Since for the diamond structure

~ e'""r~tq,*(r)dr

+[k,»;+1]J~e'~"p *(r)dr,

so that

~ e"'*' "rp tq, *(r)d = —[1+k,vi, ;]p,(k;). (101)

rV(r)dr=0,
~)R —R

by symmetry, we have from Eqs. (7) and (46)

P„'M'(R„—R )= —1V(0), (91)
e'""r~y,*(r)dr = —[11k;p'i;t]p, (k;). (102)

(90)
(See footnote 8 for the meaning of abt. ) Similarly

so that we may write

+„11'(r—R„)—P„'g'(R„—R„)
=P; cosK; 'g 5V(K;)e—'*" (92)

where

We now 6nd that

$„,(k) =—(2/Q)[I„*(k)I,(k)] ' Q S@"'(k)

Xg[a(k) —a,](1(2—S„)

'(K;) —= (2/0) e'""ll'(r)dr+8, 01V(0). (93)

With the aid of Eq. (46), we may write

~'(K;) = —K,K;m(K,)+le(K;),

BR and X being defined as

+-,'(k;~ i;+k;~a;t+k;~ a;+k,~ ~,t)}
Xp,*(k,)p, (k;). (103)

In an analogous fashion, we And that

Y„,(k) = (2/0) [I„*(k)I,(k)]—:Q tf!'g-(k)

X&I Z(k) —E.]p,,*(k,)p, (k;). (104)
( sinÃ,r p

~(K;)= —(8~/0) drr'~
~

r'V (r') dr',(x,'»,
t" fsinK, r)

&(K~)=—(8~/fl)
~

~r'V(r)«+&;QV(0) (96)
&, &Zr) (r)=i'r 'Q (r)J "( &)

where

Consistent with Eq. (18), we may define the real
(95) quantity Q„&(r)such that

Similarly, we have

P„~(U(r —R„'—%)—V(r—R„'+%)}
=P; sinK; % K K(K )e'"" (97)

since

Q-~(r)Q- i(r)«=&-,

~'J!P(e,y)*'Jl p '(0;qr)d(v=5(i 5

(106)

(107)

f
(2i/fl) e~K; r+V(1)dr K~K(K~)'

It now follows that

g„,(k)=[I„*(k)I,(k)] & P, e,,"'(k)k,k;,

P„,(k) = [I„*(k)I,(k)] '* Q S,P'(k) K'(K;—K,), (99)
i2

X„,(k) = [I„*(k)I,(k)] '* P C,,"&(k)m(K, —K;). (100)

(Here J'der denotes a surface integral over the unit
sphere. ) 'JJP is defined as

- pe+1~ (i
~

m ~)!
g, (H, p)=

~ ~
P~~ ~(cos8)e' ". (108)( 4~ ) (i+~~~)!

e'~"=47rg P i'ji(k, r)'Ji& (e, y)'Jli (8; p,)*, (109)
i=O m=—t
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(where 8; and y; give the orientation of k;), we have so that

p,.) (k;)=47rg. ((k;)'gg (8;,p;)*, (11o) ,'(k,-v I;+k;p ~;t+k;~I;+k,&a;t) P&(cos8,;)g(k;)g(k, )
= (k,k;/kP) [k;g'(0;)P i(cos8,,)

co—s8;;P~'(c os 8,;)g(k;) ]g(k;)

+ (k,k;/kj)[k;g'(0;)P i(cos8;;)
—cos8;~P &'(cos8;;)g(k;)]g(k;)+ (k,k;)-'

X[k;k;+k,k;]P~'(cos8;;)g(k;)g(k;). (116)

where

g-~(&') —= «0-~(«)i ~(&'«)«

(j~ is the spherical Bessel function of order / )Le.t 8;;
be the angle between k; and k;. Unsold's addition
theorem states that

Analogously to Eqs. (113)and (114),we may now write

i"(8', v ') ~"(8x,~;)*=
~

IPi(cos8') (112)( 4x ) S~q(k) (8n/1l)[1 *(k)I (k)]-;P (B,q(k)

XP (cos8')Z g ~(&')g-~(&)] (113)

Y„,(k) = (8~/n) P„*(k)z, (k)]-~ P C,,-(k)
s7

XP (21+1)P i(cos8;;)P [E(k)—E„&]

If we de6ne
Xg.,(a;)g.,(u;). (114)

u=k, +k; v=k, —k,27

Equations (89) and (104) can now be written as

S,(k) =P m,,' (k)[8,,—(8 /n)g(2i+1)
XQ (21+1)[E(k)—E„g](1(2—8~,)

nl

XP (cos8,;)g (k~)g„(k,)

+ (k;k;/k; )[k,g ~'(k~)P~(cos8;, )

cos8~g'P ( (co»o) g~ i(kg) ]g~ ) (kg)

+ (k;k;/k; )[k;g„((k,)P ((cos8;,)
—c»8' P~ (cos8~J)g ~(»)]g ~(&')

+ (k;k,)
—'[k;k;+k;k;]

XPg'(cos8g)g„((k;)g~((k;)}. (117)

then we have

and
k;k; cos8@=~ (I' v')—

(k;~a~+k, ~a;)= (u~ +vp'„).

Thus it follows that

(k,~x,+k~v x;)k;k, cos8;;=k,k;+k;k;,

[The primes in Eqs. (116) and (117) denote difi'eren-

tiation with respect to the argument. ] In a specific
application, Eqs. (98), (99), (100), (114), and (117)
are what need to be evaluated numerically. The state-
ments made at the conclusion of reference 1 also apply
to these equations.

The writer is indebted to Dr. F. Herman and Dr.
D. O. North for encouragement and for helpful dis-

(115) cus sion.


