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is given by the relation

&p/ps a", (9)
for H either parallel or perpendicular to the trigonal
axis. It is noted here that the magnetoresistance of
bismuth single crystals' has a field dependence very
similar to that given by Eq. (9).

Nothing definitive can be said about the temperature
or field dependence of the oscillatory component of the
magnetoresistance. Figure 7 shows that there is a
strong temperature dependence for at least that par-
ticular orientation, but for other directions there seems
to be little change over the range 1.5'—4.2'K. A more
detailed study is needed before any 6rrn conclusions are
drawn. There is one more point, however, that is worthy
of note. It concerns the fact that the amplitude of the
oscillations in magnetoresistance as obtained from
the Hall probes is considerably greater (relative to the
total resistance) than that obtained from the resistance

probes. Speci6cally for Sb IV at 25 kilogauss and j..57'K
the oscillatory component was 0.3 percent of the total
resistance from the Hall probes and only 0.15 percent
from the resistance probes. Aside from that difference
the two magnetoresistance curves are very similar. They
both exhibit maxima and minima at very nearly the
same values of H '. This sort of behavior was also
noted by Berlincourt and Steele' in their work on
graphite. A possible explanation offered there was that
the portion of the crystal between the Hall probes may
have been purer (both from the sing1e crystal and
chemical points of view) than that between the re-
sistance probes.
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A perturbation method of calculating the energy levels of a crystal modi6ed by alloying or by pressure
is studied. Initially the calculation is developed by means of conventional first-order perturbation theory.
It is then shown what is wrong with this approach and how the calculation can be improved by a modiaed
form of perturbation theory. It is further shown that this modified form of perturbation theory is par-
ticularly appropriate to cases where the unperturbed wave functions are expanded in terms of orthogonalized
plane waves.

I. INTRODUCTION

K wish to calculate the electronic energy levels
of a crystal modified in a certain fashion from a

knowledge of the one-electron wave functions and
energy levels of the original unmodi6ed crystal. In par-
ticular, we consider the modilcations of the crystal (a)
under hydrostatic pressure and (b) containing a small
mole-percentage of a foreign atom placed in the crystal
at random. In the following sections we will work out
the general theory for a binary disordered alloy con-
taining a small percentage of one constituent. It will
then be seen that the results can be applied as a special
case to the problem of the pure crystal under pressure.
In Sec. II we will develop the theory by means of con-
ventional 6rst-order perturbation theory. In Sec. III,
we will discuss what is wrong with this approach and
how our theory can be improved by using a modified
form of perturbation theory. In Sec. IV, we show how
the results of Sec. III can be written in a particularly
simple form by expanding our unperturbed wave
functions in terms of orthogonalized plane waves. ' The

' C. Herring, Phys. Rev. 57, 1169 (1940).

special case of a crystal of the diamond structure is
worked out in detail. This case is particularly appro-
priate since the three most important examples of this
crystal structure, namely diamond, ' silicon, ' and ger-
manium, 4 have all been studied by the orthogonalized
plane wave method.

Insofar as it deals with disordered alloys, this paper
is intended to supplement a general discussion of the
problem in a previous publication by the author. '
Unlike the previous publication, however, here we will
study the formal mathematical aspects of a method
suitable for numerical calculations of speci6c physical
systems. In fact, the present study was undertaken with
the purpose in mind of forming a basis for a program of
detailed numerical calculations on the germanium-
silicon alloy and on germanium under hydrostatic

s F. Herman, Phys. Rev. 88, 1210 (1952); 93, 1214 (1954).
T. O. Woodruff, dissertation, California Institute of Tech-

nology, 1955 (unpublished); Phys. Rev. 98, 1741 (1955).' F. Herman and J. Callaway, Phys. Rev. 89, 518 (1953); F.
Herman, Physics 20, 801 (1954); Phys. Rev. (to be published).' R. H. Parmenter, Phys. Rev. 97, 587 (1955).
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pressure. Both the alloy system' and the pressure
system~ have been studied experimentally recently, and
both systems have been discussed from a theoretical
standpoint. s

It should be emphasized that the methods developed
in this paper for handling a disordered alloy are capable
of determining how the energy levels of the original host
crystal are modified by the introduction of an impurity.
These methods cannot, however, determine the new

energy levels associated with localized states that may
occur in the vicinity of each impurity atom. ' Such
localized states will occur when the original host crystal
is a semiconductor or insulator and the valence of the
impurity atom diR'ers from that of the host atom.

Q„v(r—uR„), (4)

s E. R. Johnson and S. M. Christian, Phys. Rev. 95, 560 (1954);
Levitas, Wang, and Alexander, Phys. Rev. 95, 846 (1954).

r W. Paul and H. Brooks, Phys. Rev. 94, 1128 (1954); Fan,
Shepherd, and Spitzer, Atlantic City Conference on Photocon-
ductivity, November, 1954 (John Wiley and Sons, Inc. , New York,
1955); Warschauer, Paul, and Brooks, Phys. Rev. 98, 1193(A)
(1955), and following paper.

One of the most interesting features of these systems is the
fact that, as a function of composition or pressure respectively,
there appears to be a point where the minimum of the conduction
band shifts its position in k-space discontinuously. An explanation
of this effect has been proposed by F. Herman, Phys. Rev. 95, 847
(1954).' L. Nordheim, Ann. Physik 9, 607 and 641 (1931).

II. CONVENTIONAL PERTURBATION THEORY

Consider the case of a host crystal composed of atoms
of type A containing at random lattice sites a small
percentage of atoms of type B. Let f be the fraction of
lattice sites occupied by 8 atoms, where f«1. In the
absence of 8 atoms, we may express our one-electron
crystal potential in the form

Q„V.(r—R„),

where V, (r) is an atomic-like potential characteristic of
A atoms and the vectors R„denote the positions of the
atoms of the crystal. In the case where 8 atoms are
present, we follow Nordheim' in assuming that the
potential may be written as

Q„V.„(r—~R.),
where a„=a when nR„denotes an atomic site occupied
by an A atom, while a„=b when o.R„denotes an atomic
site occupied by a 8 atom. o, is the ratio of the new
lattice constant to the old, and Vs(r) is an atomic-like
potential characteristic of 8 atoms. Since f is small,
we may assume that (o.—1) is proportional to f
(Vegard's law); i.e., we define e and x such that

(3)

Since f«1, then also ~e ~&&1. At this point we invoke
Nordheim's virtual-crystal approximation'; i.e., we
replace the alloy potential by that portion of it which
gives rise to cohererif electron scattering, namely,

where
V(r) = L1—fjV.(r)+fVs(r) (5)

Since
S,(k, r) —=e,'(n—'k,er).

'(k r+nR ') e ~ ~R '+s'(k r)

it follows that

S,(k, r+R„')=e'"' "'$,(k, r),

so that 8, has the correct periodicity properties for the
undilated lattice containing only A atoms. Equation
(6) may be rewritten

[—o.
—'|7s+Q„v(n[r —R„j)—E '(n-'k) j

Xe,'(~-'k, ~r) =o,

which, after multiplying by o, , is equivalent to

[—~7s+P„n'V(rr[r —R„j)—o.'E,'(n—'k) j
&& P, (k,r) =0. (10)

Let us define

V.'(r) = [2+r(~/~r) jV.(r),
Vs.(r) = Vs(r) —V.(r)

V'(r) = V,'(r)+x—'Vs, (r). (13)

Expand [osV(nr) —V, (r)j in a power series in e, keeping
only the leading term since

~
e

~

&&1. Thus

rr'V(nr) —V, (r) = e V'(r). (14)

Substituting (14) into (10), we get

[—V'+P„V.(r—R„)+eP„V'(r—R„)jS,(k, r)
=n'E '(n—'k) S,(k,r). (15)

Let %,(k, r) be a solution of the Schrodinger equation

"T.Muto, Sci. Papers Inst. Phys. Chem. Research (Tokyo)
34, 377 (1938).

"For a discussion of the effect on the energy levels of higher
orders of perturbation theory, see reference 5.

As was shown by Muto, " the virtual-crystal approxi-
mation gives energy levels correctly to the order of
conventional first-order perturbation theory. " (It is to
be remembered that we are dealing with a completely
disordered alloy, so that each type of atom is placed on
the atom sites in a random fashion. ) By the above
approximation, we have reduced our problem to one
having the periodicity of the lattice.

We wish to solve the Schrodinger equation

[—v'+p„V(r —nR„)—Z,'(k) je,'(k, r) =O. (6)

Here q denotes the particular energy band under con-
sideration, and k determines the translational properties
of the wave function. We are using atomic units. I.et
R„' denote the lattice positions of the Bravais lattice
for the undilated lattice; thus nR„' will be the corre-
sponding quantities for the dilated lattice. Define
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appropriate to the crystal containing only A atoms, " mathematically, we note that

or

where

~'E '(~ 'k) =Ea(k)+(~—1)~e'(k), (17)

E,'(k) =a-'$E, (a.k)+ (n —1)V,'(nk) $, (18)

~ +,*(k,r)Q„V'(r—R„)+,(k, r)d~

V,'(k) =

4',~(k, r)+, (k, r)dr

(19)

(J~d7 denotes an integration over the entire volume of
the crystal. ) Expanding Eq. (18) in a power series in e,

keeping only the constant and linear terms, we get

E,'(k) =E,(k)+at 2k v, (k) —2E,(k)+V,'(k) jf, (20)

where the velocity v, (k) is given by

v, (k) =-,'vI,E,(k). (21)

In Kq. (13), the definition of V'(r), the term ~ 'V~
arises from the presence of type 8 atoms in the lattice.
The term V ', however, arises solely from the change in
lattice spacing. Similarly, in Eq. (18) the term n E,(nk)
arises solely from the change in lattice spacing. Thus
by specializing to the case where ~ '=0 and f=0
such that e remains finite (i.e., by removing the
term ~ 'Vq, ), we obtain the effect of dilation or com-
pression on the energy levels of a perfect crystal. An
amusing example of the effect (or lack of effect) of
dilation is the case of the empty lattice where all poten-
tials vanish. The solution to the Schrodinger equation
is a plane wave, while

E,(k) =k'.

Clearly the energy levels must be independent of any
hypothetical dilation, on physical grounds. To see this

i.e.,

L
—P+Q„V,(r—R„)]+,(k, r) =E,(k)@,(k, r). (16)

We see that we may solve Eq. (15) by means of first-
order perturbation theory, taking the 4's as our unper-
turbed wave functions. Since the perturbation potential

P„V'(r—R„)

in no way sects the symmetry of the unperturbed
host crystal, then we are justified in using eomdegeeerate
perturbation theory, the perturbation potential being
unable to remove any degeneracies associated with
symmetry. Thus

E,'(k) =n—'E, (nk) =k'= E,(k).

III. MODIFIED PERTURBATION THEORY

In essence, the procedure carried out in the previous
section is equivalent to that of scul&sg the wave function
appropriate to the undilated host crystal, this scaling
to be done in both r- and k-space, and then taking the
expectation value of the Hamiltonian appropriate to
the alloy with respect to this scaled wave function.
There are two objections to this procedure. The 6rst
objection is that we have electively assumed that the
square of the wave function appropriate to the alloy
has the periodicity of the Bravais lattice, an assumption
which is certainly not true. " It would be desirable to
construct some approximate wave function appropriate
to the disordered alloy which correctly expresses the
fact that the electronic charge density in the neighbor-
hood of a 8 atom is diferent from that in the neigh-
borhood of an A atom. The second objection has to do
with the fact that when the lattice constant of a crystal
is changed, the change in the wave function cannot be
represented by scaling alone. In fact, in the immediate
vicinity of a particular ion core of the crystal, the wave
function, rather than being scaled, probably remains
unchanged (aside from a phase factor) since as a first
approximation the crystal potential remains unchanged
(aside from an additive constant). If we had assumed
that the crystal potential is scaled upon changing the
lattice constant, then Eq. (2) would have been replaced
by

P„V.„(u-i[r—nR„)).

It is felt by the writer, however, that Eq. (2) is a better
approximation to the crystal potential for the alloy
than in Eq. (22).

Both of the above objections can be overcome by
modifying the perturbation procedure in the following

fashion. First we consider the undilated host crystal
containing only A atoms. We designate by C, (k, r) an
ion-core Bloch wave function appropriate to this case,
and by %,(k,r) any of the other Bloch wave functions

appropriate to this case. Since the 0"s and C's are
solutions to the same Schrodinger equation, the 4's
must be orthogonal to the C 's. In analogy with Herring's
method of defining an orthogonalized plane wave, ' we
consider a function I'~(k, r) such that

e,(k, r) =r, (k, r) —P, C, (k,r)

~With regard to notation, throughout this paper we will
prime wave functions appropriate to the disordered alloy and
leave unprimed wave functions appropriate to the unperturbed
crystal containing only A atoms. Also we will use Greek and
German symbols to denote exact and approximate wave functions
respectively, appropriate to either the unperturbed or the per-
turbed crystal; e.g., 6 is an approximate solution of Eq. (16)
appropriate to the unperturbed cystal.

C,*(k,r)1,(k,r) d~. (23)

"It is this incorrect assumption which leads to the complete
inability of conventional perturbation theory to correctly predict
the ion-core energy levels of a disordered alloy, a difhculty
discussed in reference S.
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Assuming the orthonormality of the C's,

f
c,*(k,r)c, (k, r)d~ =&„„

advantageous for a perfect crystal, it will be very ad-
vantageous when we consider the disordered alloy.
By means of Eq. (29), we have broken up the wave
function%', (k,r) into two parts, one part

we see that Eq. (23) merely expresses the fact that the
+'s are orthogonal to the C's, i.e.,

(31)

C,*(k,r)+, (k, r)dr =0. (25)

In a case of a monatomic host crystal where there is
more than one atom per unit cell of the crystal, the
index s appearing in the last three equations really
stands for two indices, s and 0-, where s denotes the type
of atomic orbital from which the Bloch function is
composed, while 0. denotes with which atom in the unit
cell the Bloch function is associated; i.e.,

C,„(k,r)=E & g„expfik (R„'+%,)$
X&,(r—R„'—%.). (

being appreciable only in the immediate vicinity of
each ion core of the crystal and representing the rapid
variations of the wave function in these regions, while
the other part I', (k, r) is more smoothly varying and is
of importance throughout all regions of the crystal.

Turning now to the disordered alloy, we define the
function

S~'(k, r)—= S~'(k, r) —g rp8, a„(r—nR„)
S, tb

&& p~,u„*(r—nR„) Q, '(k, r)d7. , (32)

The vector %, denotes the position of the 0th atom of
the unit cell with respect to the center of the unit cell.
As in the previous section, the Bravais lattice vectors
R„' denote the positions of the centers of the unit cells,
while the atomic positions, previously denoted by R„,
can be written as R„'+%,. X denotes the number of
unit cells in the complete crystal. Let us take the ion-
core atomic orbitals on a given atomic site to be
orthonormal and assume that the atomic orbitals on
neighboring atomic sites do not overlap; i.e.,

q,*(r—R ' —%,)q, (r—R„'—%,)dr

(27)

We see that Eq. (24) is consistent with Eqs. (26) and
(27). Using the fact that

I ~(k r+~% I) ~ik aR„'I I(k r) (34)

so that this portion of the wave function 8,'(k, r) has
been scaled from the corresponding portion of the wave
function N, appropriate to the undilated host crystal.
The remaining portion of the wave function S~',
namely

a„(r a,R„)—y8a„*(r n, R„)I—,'(k, r)dr, (35)
S,~

8,'(k, r) =I', (nk, n—'r). (33)

As in the previous section, the index a„appearing in
Eq. (32) designates the type of atom appearing on the
Nth atomic site. In analogy with Eq. (28), we have

I', (k, r+R ') =e'~'""'I', (k, r),

we see that Eq. (23) can be rewritten

@,(k,r) =I', (k, r) —P q, (r—R„)

(28)
has not been obtained by scaling (31), however, but by
replacing (31) by linear combinations of the ion-core
wave functions appropriate to the modified crystal,
their coeKcients being chosen such that the 6,"s so
obtained are orthogonal to these latter ion-core wave
functions, "i.e.,

y,*(r—R„)1',(k, r)di-. (29)
ps, a„*(r—nR„)S,'(k, r)dr =0. (36)

Equation (29) expresses the fact that the 4's are
orthogonal to the q's, i.e.,

q,*(r—R„)+,(k, r)d7 =0. (30)

This is consistent with the fact that the q 's, rather than
the C's, may be considered to be the ion-core solutions
to the Schrodinger equation for the undilated host
crystal. Although such a point of view is not particularly

Equation (36) is the analogy for the modified crystal
to Eq. (30), which holds for the unmodified crystal. We
wish to approximate the wave function appropriate to
the disordered alloy by S~'(k, r). It is apparent that
such a procedure in large measure removes the two
basic defects of the conventional perturbation procedure

'4The writer is indebted to F. Herman for pointing out the
importance of working with approximate alloy wave functions
which are orthogonal to the ion-core states of the alloy.
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P~'+(k, r)HI+q'(k, r) dr

which were discussed at the beginning of this section. term for m=n is omitted). We now find
It should be mentioned that k is no longer a good
quantum number, since unlike Eq. (8)

Sq'(k, r+nR„') =e'"'""'6,'(k, r) (37)

does not hold in general. It does hold, however, in
regions outside of the ion cores of the alloy where (35)
vanishes. The method expounded in this section there-
fore treats k as a certain approximation to a good
quantum number. That such should be the case is, of
course, suggested by the results of conventional per-
turbation theory given in Sec. II.

Ke shall approximate the energy for the disordered
alloy by

I Q„'*(k,r)HO'S~'(k, r)dr

-~Z(1-f)E.. "~...( —~.) N. '*(k, )d.
s, a'

X) p...*(r—g.) g, '(k, r)d

i7 Q—fE„t, y„ t, (r—nsf.)I,'*(k,r)dr
S,O'

E,'(k) =
P,'*(k,r) H' P,'(k, r) d r

(38)

p, t,*(r—n%.) I,'(k, r)d7, (43)

r
8,'*(k,r) 8,'(k, r)dr

the expectation value of H' with respect to the approxi-
mate wave function P,'. As we shall see presently,
E,'(k) is the same for all random configurations of
atoms in the alloy consistent with the speci6ed com-
position. The Hamiltonian B' is given by

where Ho' is de6ned as

H, '= —V+ P„V(r—R„)—V,'.
Similarly

S„'*(k,r) 8,'(k, r)dr

I,'*(k,r) I,'(k, r) d7

(44)

H'= —P+P Va„(r—nR„)—Vo'.

The additive constant

(39)
—& E(1—f) ~...(r—n&.) N. '*(k,r)d~

S,O'

Vo' —=P„' V(nR —nR ) (40) X q ...*(r—ng, ) 8,'(k, r)dr

t
—V'+ V, (r)fq...(r) =E...w...(r), (41)

and similarly for p, ~."Thus, to a good approximation,

H'q ~,a„(r—nR„)= (E8,a„—Vo'

+P~' Va~(nLR~ —R„j)}X @su„(r nR„,) (4—2)

has been incorporated into the Hamiltonian for con-
venience in the calculation. V(r) is the potential defined
by Eq. (5), and the prime over the summation'in Eq.
(40) indicates that the term for R„=R is omitted.
(We shall restrict ourselves to crystals having sufhcient
symmetry for Vo' to be independent of the index m. )
Aside from the constant Vo', the crystal potential in H'
is that given by Eq. (2). Since in the immediate neigh-
borhood of the eth atomic site of the crystal, the crystal
potential may be closely approximate (aside from an
additive constant) by the atomic-like potential centered
on that site, we shall dehne the y's such that

—1V Q f q „g(r—nS,) N~'*(k, r)d~
8,0'

X q, t,*(r—ag.) 8,'( kr) d7 (45).

For the special case where the band indices p and q
are the same, Eqs. (43), (44), and (45) prove the state-
ment made previously that E,'(k) is independent of the
configuration of atoms of the alloy. Let +„( k,nar) and
and @,(ak,n 'r) be two degenerate wave functions
associated with the undilated host crystal, with nk
being a symmetry point in k-space, 0 „and 0'~ having
different point symmetries in real space. If 6„'(k,r)
and 6,'(k, r) are the corresponding wave functions for
the alloy, then by applying symmetry considerations to
Eqs. (43), (44), and (45), we find that

(the prime over the summation indicating that the
f

'5 We shall assume that the atomic-like potentials V, and Vq
may be approximated by the corresponding isolated-atom poten-
tials. Thus the q, 's and the E,'s are those for the isolated atoms.

and

8,'*(k,r)H' P,'(k, r)dr =0,

I S„'~(k,r), '(k, r)dr =0.

(46)

(47)
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It is for this reason that we are justified in using a
modi6ed form of momdegeeerute first-order perturbation
theory.

For the Hamiltonian of the undilated host crystal we
tak.e

where Re means "real part of." In a similar fashion,
we have

««
—' 8,'*(k,r)H'8, '(k, r)dr

where

H= —V'yP. V.(r—R„)—V„

Vp=g„' V.(R„—R„).

(48)

(49) —n—' @,*(nk, r)He, (nk, r)dr

The corresponding energy is

where

t'
I,(k)—= @,*(k,r)+, (k, r)dp-= t Il', (k, r) I'«

and
S,O'

~„.*(r—%.)1,(k, r)d. , (51)

@,*(k,r)He, (k, r)dr

I',*(k,r)HI', (k,r)d 7.

S,O'

q, .*(r—%.)I', (k, r)dr . (52)

We now de6ne

E,(k)=LI, (k)$ ' +,*(k,r)H@,(k,r) dr, (50)
Ii', (k,r) )'tg V'(r —R )—P' V'(R —R )jdr

n

—«X Q 5Z, . q„.*(r—%.)I', (k,x)dr

+g 'E, b q-, b*(r—%.)r, (k,r)dr

'Z„. ~ „.*(r—%.)r, (k, r)d

+28„Re q ...*(r—R,)I', (k, r)d~

X p...'(r —'%,)I',*(k,r) dr
)

. (55)

Substituting Eqs. (50), (51), (54), and (55) into Eq.
(38), we get

(53) 8,'(k) —n 'E, (nk) = «LI, (k)$-'(LAg, (k) jAp, (k)j
+a 'I B&,(k)+Bp, (k)J}, (56)

Making use of Eqs. (33), (45), (51), and (53), anQ

keeping only terms linear in &=0,—1, we get

n ' P,'~(k, r) 8,'(k, r)d7. -P' V.'(R„-R„)jdr, (57)

%,*(nk,r)e, (nk, r) dr
UI

A2, (k)—=Xp $38,(k) —5E, .)
2

= —«X g 3 q, .*(r—%.)1',(k, r)dr
S,O 4

p „.*(r—%.)1',(k, r)dr

+~ ' g,, b*(r—%.)I', (k, r)dr

2

p„,*(r—%,)I', (k, r)d r Xr, (k, r)dr q ...'(r —%.)1',*(k,r)dp. , (58)

+2 Re) y...~(r—%.)r, (k,r)dr

&( t y...'(r—%.)I',*(k,r)dp. , (54)

Bg (k) = I r, (k, r) I t p vb (r—R„)

—g' Vb, (R„—R„)jdr, (59)
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82,(k)—=Xp pE, (k) —E„«) ~ j, «*(r—1L)
S,6 00

can be written as

I', (k,r) = (Xa)—*' P, e, (k;)e"". (69)

XI', (k,r)d r —$E,(k) —E, ,)

f 2

y, *(r—g.)I', (k, r)dr ). (60)

Making use of Eqs. (3) and (21), and defining

A3, (k) =—2(k v, (k) —E,(k))I,(k), (61)

we 6nally obtain

E,'(k) —E,(k) =zLI, (k))—'t Ai, (k)+A2, (k)+A«, (k))f
+p, (k))—')Bi,(k)+82,(k))f. (62)

It is clear that the eGect of a dilation upon a perfect
crystal may be studied with the aid of Eq. (62) simply
by removing the 8 terms.

IV. APPLICATION TO THE DIAMOND STRUCTURE

The procedure developed in the preceding section is
particularly suited to an unmodified crystal for which
wave functions and energy levels have been calculated
by the orthogonalized plane wave (OPW) method. ' In
this method the wave function is expanded in terms of
orthogonalized pane waves X(k;,r), k; being defined as

It is because of the simplicity of Eq. (69) that the
orthogonalized plane wave method is particularly
adapted to the results of Sec. III.

We shall now specialize to the case where the un-
modified crystal has the diamond structure, this being
a case of great practical importance. There are now
two atoms per unit cell such that %.= &91, where %
points in the (111) direction, and 2% is the nearest-
neighbor distance. Thus

X*(k;,r)X(k;, r)dr

2
=cos(K;—K;) 91 5;,——P p, , ,*(k;)p...(k;) . PO)

Q s

Defining

8,; (k) —= Q,*(k;)C, (k,) cos(K;—K;) %, (71)

we have

2
I,(k)=P S;p(k) 5;;——P p,... (k~)p„.(k;) . (72)

We may write

k;=k+K;, (63) P V,'(r —R„)—P' V.'(R„—R„)
K; being a vector of the reciprocal lattice such that =p cosK; % 'U. '(K;)e-'x", (73)

~ixi. Rr«'
) (64)

where
for all i and N. X(k;,r) is defined as

X(k;,r)=—(iVQ)
—&e'""—0 &g e p(iK; St) ~.'(

8,6

Xp...(k;)C„...(k, r), (65)
where

2
,)—=— e'x"V.'(r)dr g;«g' V,'(R„——R ).

0 'I

(74)

p...(k;) =S-l exp( —iK;.1L)

&( t e'~"C ...*(k,r)dr

Ai, (k) =P S,, (k)U. '(K;—K;).

Similarly, if we de6ne

(75)

(66)

2
v«. (K~)=-—

@~„

then

e'x"V«, (r)dr 8;«g' V«(R„——R ),
(76)

and where 0 is the volume of the unit cell of the un-
modified crystal. Ke see now that

a„(k)=P e;p(k)v«. (K;—K,).

82 is given by

(77)

C...*(k,r)X(k, ,r)dr=0. (67)
2

a.,(k) =—P @,p(1 )P(LE,(k) —E., «)~,, «*(k,)~, «(k;)

—LE.(k) —E...)~..*(«)~...(k)), (7g)

Expanding @,(k, r) in terms of the X's, we have

@,(k, r) =P; o',,(k;)X(k;,r). (68)

Hence it follows that I', (k,r), as defined by Eq. (23), where p, , « is defined in a manner analogous to Eq. (66).
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In order to determine A2 we must de6ne

f
p,...'(k~) =— e'""y, '*(k)dr.

(ji is the spherical Bessel function of order l.) Let 0;;
be the angle between k; and k;. Unsold's addition

(79) theorem states that

2
A2, (k) =—Q 8;p(k)p{[3E,(k) —5E, .]

Q ig s

Xti...*(k,)ti...(k~)+ [E,(k) —E...]
X[~...*(k)t ...'(»)+t ...'*(k~)t ., (k )]&. (8o)

The divergence theorem of vector analysis tells us that

Thus we obtain anally

8x
I,(k) =P S;p(k) 8;;——P(21+1)Pi(cosg,;)

so that

V [re'""q, ,*(r)]dr=0,

p, ,'(k,) = —[3+k;.vi;]ti...(k~), (81)

XZ g...(k;)g.i.(k;), (91)
n

8x
A2, (k) = ——P S;p(k)P(21+1)Pi(cosg„.)

and therefore X 2E,(k)+[Ea(k)—E ia]

2
A2q(k) = ——Q S;p(k) Q{2Eq(k)+[E,(k) —E, ,] 8 8

X k, +k, +1 g i,(k,)g $, (k,), (92)
Bk; Bk,

X[k; V~;+k; Va;+1])t, . (k,)t ...(k;). (82)
8x

Consistent with Eq. (27), we may define the real &2&(k)= E telo'(k)Z(21+1)Pi(costi'&)
quantity Q, i(r) such that

where
~-t-(r) =i'~'Q-i(r)'JJi (~,~),

r Q. i(r)Q- ~(r)«=&-
0,

(83)

(84)

'iJi (~ &)*JJi '(tt &)d~=~«& (85)

e'""=4~2 2 i'ji(kr)'tJi" (~ v')'JJi" (tt' v~)* (87)
L=O @a=i

(where 8; and y; give the orientation of k;), we have

where
t -i-(«) =4~g-t(k')'JJi" (~', ~')*, (88)

g„t(k~) —=

"0
rQ„&(r) j&(k,r)dr. (89)

(Here J'der denotes a surface integral over the unit
sphere. ) 'JJi is defined as

(21+1' (l—ines)! -'*

'JJi"(~,~)=
(

Pi~ ~ (cos8)e' ". (86)) (l+)~~)!.
Since

X {[EQ(k)—E-»]g.»(k~) g-»(k )

-LE.(k)-E t.]g i.(k')g i.(k )) (93)

In a specific application, Eqs. (75), (77), (91), (92),
and (93) are what need to be evaluated numerically.
These equations look considerably more formidable than
they really are. Actually they are particularly suitable
for numerical computation. The g„~'s which are needed
in these equations can be obtained through Eq. (89)
from the radial ion-core wave functions r 'Q„i appro-
priate to isolated atoms in question. These Q„i's are
available in the literature for many atoms, as are the
corresponding E„i's. As can be seen from Eq. (41),
these E„&'s are the ion-core energy levels appropriate to
the isolated atoms in question. (E„i and Q„i for the
ion-core levels are approximately independent of the
assumed degree of ionization of the isolated atom. ) For
V, and Vt„needed in calculating 'U, ' and 'Ut, it is
probably satisfactory to use the spherically symmetrical
atomic potentials appropriate to the two isolated atoms.

It is a pleasure for the writer to acknowledge his
indebtedness to Dr. F. Herman and Dr. D. O. North
for many stimulating discussions.


