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Table VIII gives the measured values for the compounds
studied. The last column is de6ned by the equation
Q=M, /%3e, where e is the electronic charge. Thus Q
represents the eRective charge in electrons equivalent
to the measured intensities. (Since the vibrations are
triply degenerate, M, represents the vector sum of the
transition moments for the individual components and
the factor 1/&3 must be incorporated to yield the

correct value for a single axis. The eRect of refractive
index was neglected. )

It may be shown by a semiclassical calculation that
the polarization per unit volume and hence the inten-
sities of a set of weakly coupled harmonic oscillators are
equal to those of an isolated, uncoupled set of equal
density. The computed values are in the range of 2e as
expected for oxide ion vibrations.
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A result of the collective treatment of Bohm and Pines is that the dependence of electron energy e on the
wave vector k differs from that for noninteracting free electrons. It follows that the expressions for those prop-
erties, such as conductivity and thermoelectric power, which depend on the relationship between e and k must
be suitably modi6ed. Electrical and thermal conductivity are altered in the same manner, suffering slight
changes because of changes of the density of states at the Fermi energy and of the relaxation time. The
Wiedemann-Franz ratio remains unaltered. For the alkali metals the calculated thermoelectric power is
reduced slightly below the free-electron value. The changes in both conductivity and thermoelectricity are
too small to permit quantitative. comparison with experiment.

I. INTRODUCTION

~N a series of papers' Bohm and Pines have developed
~ ~ a new method for treating exchange and correlation
eRects in an electron gas. It was found that the inAuence
of exchange and long-range correlation on the one-
electron energies results in an energy eersls wave
vector relationship which is somewhat diGerent from
that given by the Hartree approximation. The collective
description of electron interaction appears to be much
superior to the Hartree-Fock approximation which
neglects correlation of electrons with antiparallel
spins and leads to incorrect results. In particular, near
the Fermi energy the following relation holds'

3.68k' p rtt ~.,(u) =
,s

(2)

The purpose of this note is to consider what changes
appear in the expressions for the transport properties
of an electron gas when Eq. (1) is used in place of the
more common Eq. (2).

Fermi energy. p is a parameter in the theory of Bohm
and Pines which is a measure of the screening of the
Coulomb interaction. Its value is given by P =0.353+r,.'
Equation (1) is to be compared with the free-electron
expression

II. CONDUCTIVITY3.68k' 0.611
(trt/m*)—

2 Fs
e(k) = The electrical and thermal conductivities of a metal

are proportional to the density of states at the Fermi

p2+3p 1 1 $2 (1+/) - energy, E(etr), and to the relaxation time, r
1—2p+ + ln~ ~, (1) The dependence of the relaxation time on the relation-

2k u & p). '
ship between e and k is a function of the type of scatter-
ing (lattice or impurity) and of the temperature. For

where e is in rydbergs, r, is the average interelectronic jattice scattering in the high-temperature limit, an
distance in units of the Bohr radius, and k is the wave examination of the standard calculation of relaxation
vector in units of kp, kp being the wave vector at the t,.me4 sho~s

*Supported by Once of Naval Research.' D. Bohm and D. Pines, Phys. Rev. S2, 625 (1951); SS, 836
(1952); 92, 609 (1953);D. Pines, Phys. Rev. 92, 626 (1953).

s The term invojving Pe/6 which appears in D. Pines, Report
to the Solvay Congress, Eq. (28), has been omitted in Eq. (1)
because it is a higher-order term which is canceled by other
higher-order corrections. The author would like to thank Dr.
Pines for informing him of this result before publication.
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3 D. Pines, private communication.
4 A. H. Wilson, Theory of Metals (Cambridge University Press,

London, 1953), second edition, p. 263.
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TABLE I. Conductivity and thermoelectric power
of the alkali metals.

(oi*/m, )~

P5"(~ ) /iver p (er)
r/rp
o/(rp
s/sp

Li

3.22
1.45
0.634
0.837
1.28
1.07
0.83

Na

3.96
0.98
0.703
0.90
1.08
0.97
0.90

4.87
0.93
0.78
0.935
0.96
0.90
0.93

Rb

5.18
0.89
0.80
0.945
0.93
0.88
0.94

Cs

5.57
0.83
0.834
0.965
0.89
0.86
0.95

a Calculated by H. Brooks, quoted by D. Pines, Phys. Rev. 95, 1090
(&9S4}.

where D is a constant which depends on the atomic
mass of the metal, the Debye temperature, the lattice
parameter, and the strength of the electron-lattice
interaction. Sardeen and Pines' have investigated the
electron-lattice interaction in the Bohm-Pines collective
description and have found that the eGective matrix
element for the electron-phonon interaction is identical,
for wavelength of interest in conduction phenomena,
with that found previously by Bardeen' using a self-
consistent field method which neglects exchange and
correlation effects. The constant D in Eq. (3) is,
therefore, not altered when exchange and correlation
are included.

Substitution of Eq. (2) into Eq. (3) leads to the
well-known dependence of the relaxation time on e&.

From Eq. (1), one finds

(de/dk). r =—Xi——2A+BfsrP' —2+2 ln(2/P) j (4)

(d'e/dk'). r =—Xs= 2A+8$3 P' 21n(2/P—)j, —

where A = (3.68/r s) (m/re*) and 8=0 611/r, .
The fractional change in the density of states at the

Fermi energy, $(er)/1Vp(e&), is given by

$(ep)/Sp(ep) =2A/Xi. (6)

s J. Bardeen and D. Pines (to be published).' J. Bardeen, Phys. Rev. 52, 688 (1937).

This ratio also gives the relative change in the electronic
specific heat, C/Cp, and its values for the alkali metals
are listed in the fourth row of Table I.

The ratio of the calculated relaxation time to the
free-electron value, r/rp, was obtained for each alkali
metal by substitution of the parameters in the erst
three rows of Table I into Eqs. (4), (5), and (3). These
ratios are listed in the fifth row of Table I, and in the
sixth appear o/op, the ratios of the calculated electrical
conductivities to the free-electron conductivities in the
high-temperature limit. Although the changes are

significant, in the sense that they could easily be
detected, there are, unfortunately, other uncertainties
in the theory of electronic conduction in metals which
prevent quantitative comparison with experiment.

The fractional change of the thermal conductivity
due to exchange and correlation is identical to that
of the electrical conductivity, since again only the
change due to the relaxation time and the density of
states is involved. It follows, therefore, that the Wiede-
mann-Franz ratio is not affected by these considerations.
(A statement to the contrary by Kohlerr is in error. )

w'kp'T (d(lnlVrk') )
38 4 de ) ep

(7)

where e is the charge of the electron and ko is Soltz-
mann's constant. From Eqs. (2), (3), and (7) one
readily obtains the well-known result

—s.sk 2T'/ocr

since in the free-electron approximation the logarithmic
derivative is just 3/e&.

It can be shown by a bit of manipulation that when

Eq. (1) is used

(d(lnlVrk') q

de ),r
= (5/Xi)+ (Xs/Xis)+8f(P)/XiXs, (9)

where f(P) =3P'—8+6 h1(2/P).
The last row of Table I lists 5/5p for the alkali

metals. The ratio 5/5p is of the same order of magnitude
as o./o p, and the comment regarding quantitative
comparison with experiment applies here all the more.
The present theory of the thermoelectric sects in
metals is unable to account for many of the phenomena
even qualitatively. Thus, for example, the absolute
thermoelectric power of Li and Cu are positive although
the free-electron model predicts the opposite sign.
From the rather small inhuence of exchange and
correlation on thermoelectricity it follows that this
re6nement in the theory does not provide a mechanism
for explaining these anomalies.

r M. Kohler, Abhandl. braunschweig. wiss. Ges. 5, 48 (1953).' See reference 4,'~p. 204.

III. THERMOELECTRIC POWER

The absolute thermoelectric power of a metal is
given by'


