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The continuity equations for positive ions and for electrons coupled to each other by the Coulomb force
and the effect of ionizing collisions have a solution representing traveling density waves whose frequencies
are widely different from the usual plasma oscillations.

HE aim of this paper is to show that there can
exist, in the positive column, traveling waves of
ion density and electron density whose physical nature
is different from the so-called plasma or plasma-ion
oscillations.! It is premature to identify these waves
with the moving striations, but a further elaboration of
the theory accompanied by an adequate consideration
of modes of excitation of the waves may perhaps provide
a theoretical basis for explaining moving striations. The
present paper differs from the previous papers by
various authors which tried to explain positive striations
with the help of diffusion equations, for they considered
only the electron density or assumed equality of the
electron and ion densities.?

The starting equations are diffusion equations for
positive and negative ions. Since the observed wave-
lengths of striations are larger than the mean free paths
and since the observed frequencies are smaller than the
reciprocal of the time necessary to establish local equi-
librium, the use of the diffusion equations is justifiable.
These two diffusion equations are coupled to each other
through two physical phenomena. First, the electro-
static field generated by positive space charges reacts
on negative charges, and vice versa. Second, both
positive and negative ions are created by collisions of
electrons with neutral molecules, the density of which
is much larger than the ion and electron densities. The
coupling between the two ion densities under an external
electrostatic field gives rise to the possibility of traveling
density waves.

In the following, more emphasis should be placed on
the possibility of the existence of such waves than on
the numerical results. However, a rough approximation
gives as the wavelength something of the order of
magnitude of the radius of the tube, which is com-
parable with the observed data. The propagation

1 This can be seen in Eq. (19) which gives the frequency de-
pending on the external electric field.

2 M. T. Druyvesteyn, Physica 1, 273 and 1003 (1934); M. F.
Shirokov, Doklady Akad. Nauk S.S.S.R. 89, 837 (1953). See also
Armstrong, Emeleus, and Neill, Proc. Roy. Irish Acad. 54-A, 291
(1951). Our thanks are due to Professor Emeleus who informed
us of Dr. V. D. Farris’ yet unpublished theory on moving
striations. [Proc. Phys. Soc. (London) (to be published).] His
work, however, also assumes approximate equality of positive and
negative densities. Yoshimoto ef al., treat the same problem with-
out this assumption, but their results are essentially different from
ours since they do not take creation of ions into consideration.
Our results, as can be seen from our Eq. (26), depends crucially

on the rate of production of ions. See Yoshimoto, Sato, and Nakao,
Repts. Phys. Dept., Okayama Univ. 10, 15 (1954).

velocity of waves in the first approximation is of the
order of magnitude of the positive ion mobility times
the impressed electric field. This is apparently smaller
than the observed velocity of moving striations.? How-
ever, a qualitative discussion at the end of the paper
will show that a further refinement of the theory may
probably bring the propagation velocity to the neigh-
borhood of the sound velocity of the neutral gas in
the tube.
The basic equations are:

(0n=/0t)+div(n—v-)—zn—=0,

(Ont/at)+div(ntvt)—zn—=0, W

with
v-=—K-E— (D /»n") gradn—,

vt=+K+E— (Dt/n") gradst,

where the symbols have the following meanings:

@)

nt, w~: positive and negative ion densities, respec-
tively,
: positive and negative drift velocities,
K*, K—: positive and negative mobilities,
D+, D—: positive and negative diffusion coefficients,
z: number of ion pairs created per unit time
per one electron. '

The assumption that z is constant may be justified if
the temperature variations can be considered very
small. The electric field E consists of two parts: Eo and
E’, where E, is the impressed electric field and E’ the
electric field generated by space charges.

E=E+F,
divE=divE' =4re(nt—n"),

where ¢ is the electronic charge. We consider only singly
charged ions and assume that the tube has a circular
cross section and ignore the effect of the both ends of
the positive column.

We propose now to solve these equations by assuming
that the actual solution is a superposition of a steady,

@)

31In a tube approximately one centimeter in diameter and con-
taining argon at 12 mm Hg pressure, we have observed positive
striations in the glow discharge moving with velocities of 25
meters per second or higher. Using the data of J. A. Hornbeck,
Phys. Rev. 84, 615 (1951), on drift velocities of A* in argon, one
finds that an average field intensity of 2600 volts per meter would
be required to account for the observed velocity. The velocity of
soundd in argon under the above conditions is 320 meters per
second.
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uniform solution #¢* plus a small nonsteady, nonuniform
disturbance »*. The assumption that »* is small com-
pared with #¢* may not be realistic if the theory is to
be applied to the actual striations. This assumption
thus is a mathematical expediency to linearize the
equations and to help discover certain aspects of the
complicated physical situation.

wt=net+vt, |vt|<Lnet,
nm=ngtv, |v|<Lng.

We shall write & for the electric field generated by
the steady, uniform charge densities #¢t. The word
“uniform” here means that the quantities do not depend
on the x-coordinate taken along the axis of the tube.

6n0+/6t= ano—/6t= 66/6t= 0,
ot/ 0x=0ng/dx=98/dx=0, (5)
&,=0.

These #n¢*, ng~ and =E’ must satisfy Egs. (1), (2)
and (3).

The well-known ambipolar diffusion solution! may
be considered as an approximate solution satisfying
these conditions, i.e., Egs. (1), (2), (3), and (5). This
ambipolar diffusion solution is not self-consistent in the
sense that the assumption #— =0t leads to E'=8=0
according to Eq. (3), while the other assumption which
is also used that v,*=v,~ (» meaning radial component)
leads, on account of Eq. (2), to the electric field given by

Dt—D- 1 d’ﬂo

b= —, ©
K++4+-K~ nqy dr

)

where 7 is the radial distance from the tube axis.

However, we can expect that a rigorous solution of
Egs. (1), (2), (3), and (5) under adequate boundary
conditions is not very different from the ambipolar
diffusion solution, in particular in the region not too
close to the wall of the tube. We assume specifically
that the rigorous solution has, in common with this
approximation, the following features. First, in the
region which is not very far from the tube axis the
densities 7t and %~ are almost constant and approxi-
mately equal to each other. Second, the rate z of pro-
duction of ion pairs is roughly given by

2= (2.405/R)*D,, @)

where the ambipolar diffusion coefficient D, is de-
fined by

D,= (D*K—+DK*)/(Kt+K~)=K*%T./e, (8)

where « is the Boltzmann constant and 7, is the electron

temperature.* R in Eq. (7) is the radius of the tube.
Now we substitute Eq. (4) in Egs. (1) and (2), and

simplify the equations with the help of the fact that

4 See for instance J. D. Cobine, Gaseous Conductors (McGraw-
Hill Book Company, Inc., New York, 1941), p. 236 fi.
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no* is the solution of Egs. (1), (2), and (3), satisfying
Eq. (5). The second order term in the disturbance is to
be neglected. For instance, in the term div(ntv*) of
Eq. (1), there will appear a term like
div (»:K*e), 9)
where e is the electric field generated by the disturbance
v le.,
dive=4mre(vt—v). (10)

The term (9) is neglected. Then Eq. (1) becomes a set
of linear equations for »*+ and »—, which are
(8v=/8t)+div[ — K~ (nie+v—Eo+r=8)

— D gradv—]—2zr=0.
(avt/d8)+div[+ K+ (ngte+ v+ Eo+v+8)

— Dt gradvt|—zr—=0.
where & and e are the fields generated respectively by
not and »E,

As we are interested in the region not too close to
the wall, we assume

dv=/dr=0y+/dr=0,

e,=0.

(11)

(12)

Remembering that &,=0, Eq. (5), and that n¢t is
almost constant in the central region, we can simplify
Eq. (11) to the form

(8v=/3t)— K—Ey(3v—/0x)— D—(9%~/ dx?)
Fy1—yart=0,

1
(35+/31)+ K+Eo(9v+/3x) — D+ 0 (13)
: Fyspt—yw—=0,
with
Y11= 4reK— (2%0—— 7’LU+) —3Z.
=4dreK-ni,
Y2 Te. o (14)

v3=4weK*+(2not—ny),
vi=4weK* not 3,

where n¢t and #¢~ are approximately equal to each
other. ‘

(15)

The coefficients v, and vy4 represent the coupling be-
tween the two densities.

We now proceed to show that Eq. (13) has a solution
which represents traveling waves of »* and »~ both
having the same space-time dependence. Let us insert
in Eq. (13) the expression:

net= 7L0~(E ﬂo).

Yy = a—eikx—iwt,
yt= a+e‘ika:—iwt’ (16)
where ¢~ and ¢t are complex amplitudes. We then
obtain '

(—iw—iK—Eok+ D k*~+v1)a——v2at=0.

—v40+ (—iw+iKtEck+ Dtk H-v5)at=0. (n
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Compatibility of these two homogeneous linear equa-
tions leads to two real equations:
(D E+v1) (DR +v3) —v2vs

+REE(Kt+ K- (DE+s) (DK +v1)/

[(D+k2+‘)’3)+ (D_k2+71)]2=0, (18)
and
w=kE[ (K+D~—K-D*)k— (K~vs— K*v1)]/
LD+D)E+ (vitve)] (19)

The fact that these Eqs. (18) and (19) have real
solutions for £ and w shows the possibility of traveling
waves. We can use Eq. (18) to determine %, and then
use Eq. (19) to determine the propagation velocity

V=w/k. (20)

In order to obtain an approximate solution of Eq.
(18), we introduce two variables

E=DF+y1, =Dtk 21
and observe the intersection of two straight lines:
1=+ (D*/D") (£—0), (22)
n="vs—{(1+)*/[g(1+8)*+gh/v:1} (§—gvs),
with
g=v2v4/vs, h=(K+t+K-)2Eg/Dt. (23)

The first equation in Eq. (22) is a direct consequence of
Eq. (21). The second equation in Eq. (22) is the
tangent at n=+y; to the curve representing Eq. (18) in
the £—= plane. The substitution of this tangent for
the curve is justified by the fact that D—>>D*, which
means that the straight line: n=+;+ (D/D~)(§—~v1)
cuts the said curve at a point very close to £=v2v4/7ys,
n=+s. This approximation yields

F= (vsg—v0)/{D~+D*g+gh/vs(1+g)"1}. (24)

Making use of Egs. (14) and (15) and noticing that
z<4mweK*n, (25)

we obtain from Eq. (24):
k= (Kt+K")z/(KtD~+ K-D*+ K+*K—E¢/4wne), (26)
or by the help of Egs. (7) and (8),

A=2m/k= (2rR/2.405)[1+3a*/ (eEs/xTe)*], (27)
where a is the Debye-Hiickel radius of the electron:

a= (kTe/4mne)l.

To determine the sign of the propagation velocity V,
Eq. (20), let us take the case Ey>0. Then, Eq. (19)
shows that V is positive (i.e., traveling from anode to
cathode) for sufficiently large values of k# and negative
(i.e., traveling from cathode to anode) for sufficiently
small values of k. When % is very large, we obtain from
Eq. (19), with the help of the usually satisfied condi-
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tions: (K+/D*)>>(K—/D~) and D—>>D,
Vk-)oo= K+E0- (28)

V vanishes, when
?=z/D<1 cm™2. (29)

The amplitude ratio and phase relation between the
ion density wave ot and the electron density wave o~
can be easily calculated from Eq. (17). Putting

at/a=Ae**, (A,p real), (30)
we obtain
tang= (K++ K )REo/[ (Dt+D )R+ (vi+vs)], (31)
and
A= (1/7v2) (DF+~1) (1+tan’p)t. (32)

The order of magnitude of the factor (D=k*4-v1)/y: in
Eq. (32) is unity, meaning that the positive amplitude
and the negative amplitude are of the same order of
magnitude unless tang becomes very large compared
with unity.

If we assume A>0, k>0, E>0, then we see from
Eq. (17) that

0<p<m/2. (33)

This means that for a wave propagating from anode to
cathode, the phase of the positive density wave is
leading that of the negative density wave by an angle
between 0 and /2. For very large values of & and for
very small values of %, this phase difference vanishes,
as can be seen from Eq. (31). Between these two limits
tang takes one maximum which is given by

(tang)ma’= (K*+K7)*Eo/[4(D*+D7) (v1+vs) 1. (34)

Under the usual discharge conditions, the order of
magnitude of Eq. (34) cannot be said to be either
extremely large or extremely small.

It should be noted that the actual drift current of
ions (as well as of electrons) is composed of three parts:
(1) the part due to the external field #gtK+Eq in the
axial direction, (2) the part constituting the ambipolar
diffusion in the radial direction, n¢"K*+&— D+ gradngt,
and (3) the part due to the disturbance. Except for the
negligible term given in formula (9), this last part is
given by the expression in the brackets following div in
Eq. (11). As the radial field & is negligible in the central
region, this part of drift current is in the axial direction,
ie., in the direction of propagation of the wave repre-
sented by Eq. (16). Furthermore, the time average of
this drift current vanishes since each term in this
quantity is oscillating in time. In other words, the
traveling wave in question is accompanied by a longi-
tudinal drift current whose time average is zero. In this
respect, this wave is a kind of “sound wave,” only its
mechanism is electrical instead of being dynamical.

The ions, as far as their dynamic properties are con-
cerned, are almost identical with the neutral molecules.
Therefore, once the ion density wave described in the
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foregoing occurs, a genuine sound wave of neutral
molecules will be excited on account of the collisions
between ions and molecules. If such a genuine sound
wave is excited, the ions will “ride on” this wave, i.e.,
they will participate on this wave.

The drift velocity determined in Eq. (2) is essentially
the terminal velocity in the presence of friction between
the neutral molecules and ions due to the relative drift
velocity. The calculation given in this paper is based on
the assumption that the drift velocity of the neutral
molecules is zero. If the neutral molecules perform
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sound motion, then the friction will be proportional to
the difference between the ion drift velocity and the
molecule drift velocity accompanying the sound. When
these two drift velocities coincide, the friction will
disappear and a “resonance” will set in. This situation,
which is outside the scope of Egs. (1) and (2), may
explain the fact that the actual propagation velocity of
positive striations is found to lie between the value as
given by Eq. (28) and the velocity of sound in the gas.
We are now undertaking an investigation in this
direction.

PHYSICAL REVIEW

VOLUME 99, NUMBER 6

SEPTEMBER 15, 1955

Helium Film Transfer Rate from 0.14 to 2.19°K*
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The transfer rate of the mobile helium film, over Pyrex glass, was measured as a function of temperature
in the range from 0.14°K to the lambda point. The bulk of the observations was concerned with film
transport due to a thermal gradient but a measurement, using the same apparatus, was made at 1.1°K
under a gravitational potential as a comparison. At this temperature it was found that the transport rates,
in the two cases, differ by a factor of nearly two, and below 1°K the rate was found to increase with decreas-

ing temperature by about 10%.

INTRODUCTION

MBLER and Kiirti' have recently measured the
rate of transfer by the helium film, under a
gravitational potential difference, at temperatures below
1°K. They observed a 309, increase in the rate as the
temperature was reduced from 0.85°K to 0.15°K. The
only other data, that of Lesinsky and Boorse,2 whose
lowest temperature point was 0.75°K, lend some support
to this result. Since all but about one percent of the
liquid is already superfluid at 1°K, these observations
seem to negate the hypothesis that the temperature
dependence of the transfer rate is given by

R=(ps/p)ved,

where the product ».d is a constant approximately
equal to 72/2m. Here R is the flow rate in cm® cm™ sec™,
v, is the critical velocity of the superfluid, & is the film
thickness, and p./p is the fraction of the liquid which
is superfluid.

Liquid helium may also be transferred, by the mobile
film, from a position at low temperature to a position
at a higher temperature providing that no portion of
the surface over which the helium must flow is above
the lambda point. Thus thermal film transfer rates
may be measured by allowing the film to flow into a

* Assisted by the Office of Ordnance Research, U. S. Army.
1 This work formed part of a Ph.D. dissertation.

1 E. Ambler and N. Kiirti, Phil. Mag. 43, 260 (1952).

2 L. Lesinsky and H. A. Boorse, Phys. Rev. 87, 1135 (1952).

region where it evaporates, the rate of vapor eflux
then being determined. In view of the results of Ambler
and Kiirti it appeared desirable to investigate the
thermal transfer rates at temperatures below 1°K, and
this method offered a convenient means for observing
these as well as rates above 1°K.

THE APPARATUS

The portion of the apparatus contained in the helium
cryostat is schematically represented in Fig. 1. The
bulk liquid helium 11, which supported the film flow,
was contained in a small Pyrex reservoir (a), the flow
being constricted by a 211-micron i.d. Pyrex capillary
(5). Except for a baking process to be described, this
capillary was untreated. The surface of the liquid in
reservoir (a) was always farther from the lower end of
the Pyrex capillary than the surface tension rise
appropriate to a 211 micron tube (~5 mm). This
prevented the Pyrex capillary from filling with bulk
liquid via the film.?

Above this constriction was a glass to Kovar seal
(¢) leading to a 0.014-inch i.d. stainless steel tube (d)
with a 0.003-inch wall. A tube this fine was used in
order to inhibit recondensation, into the reservoir, of
helium evaporated from the film. It was necessary,
since excessive recondensation would have caused the
salt to warm up too rapidly after a demagnetization,

3 Dyba, Lane, and Blakewood, Phys. Rev. 95, 1365 (1954).



