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Statistical Mechanics of Liquid He'
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The partition function which Feynman has proposed for liquid He is extended to the case of liquid Hes,
taking into account the Fermi-Dirac statistics and the nuclear spin of ~. The nuclear magnetic susceptibility
is calculated and compared with the observation of Fairbank, Ard, and Walters. Theoretical and experi-
mental curves 6t when the eRective mass of the He3 atom is taken about four times its true mass. The
entropy of the system has not been calculated.

l. INTRODUCTION
' 'EYNMAN recently developed' a new method of

treating quantum statistical mechanics of cooper-
ative systems, and applied it to liquid He'. Though it
did not seem completely successful at first because in
his paper he obtained a transition of a third order, it
has been shown later' that when one takes into account
more rigorously the geometrical correlation among
atoms, Feynman's formulation does give a second-order
transition.

This success of Feynman's approach encourages us
to go one step further and examine the case of liquid
He', which obeys Fermi-Dirac statistics, in order to
make the discussion about liquid helium complete.
The present paper is an attempt in this direction and
discusses the problem based on the partition function
and the lattice model Feynman introduced in F I.

2. ALL PARALLEL SPINS

The difference between He4 and He' is not only the
statistics but that the latter has a nuclear spin of

magnitude —,', whereas the former has not. In order to
show the difference between the Bose-Einstein and the
Fermi-Dirac statistics clearly, in this section we shall
treat a case in which the eGect of the spin can be
neglected, namely the state of liquid He' in which all
the nuclear spins are aligned in the same direction.

The expression of the partition function for Sose-
Einstein particles Feynman derived is shown in Eq. (5)
of F I and can be written iri the following form:

Q =X!-P ~"(Px„Px„"Px

)& le e~lzi ' ' ' z~)dz, dxrr, (2.1)

in which the function in the integrand is defined by
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*Present address: Armour Research Foundation of Illinois
Institute of Technology, Chicago, Illinois.' R. P. Feynman, Phys. Rev. 91, 1291 (1953),hereaftercalled F I.

'"R. Kikuchi, Phys. Rev. 96, 563 (1954).
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The integrand of Eq. (2.4) is the same function as the
integrand of Eq. (2.1) and is given by Eq. (2.2),
independent of the kind of statistics. Therefore we can
use the same argument as F P ' in reducing Eq. (2.2)
to arrive at

(Pzi,Pzs ' ' 'Pxrr
I
e ~

I xi zs, ' ' ' zN)

t' est' q
s"t'

(2srPh')
exp — P (x;—Px;)'

2PItt' '

Xp(zi, zsr). (2.5)

This is further simplified if p(zi, ,zrr) is assumed to

' See Eq. (7) of F I.
4 Professor Peynman in private communication has emphasized

the point he raised in footnote 9 of P I and said that, although
the eRect of a moving atom in permuting other atoms is not
important for the Bose-Einstein case where permutations make
no difference, this eRect must be considered in more detail if we
are to apply these ideas to the Fermi-Dirac case. Although it
may simply mean a larger eRective mass m', it may also be that
expression (2.5) is not suKciently accurate at low temperatures
with any m . In addition, one must be especially careful in Fermi
statistics because the plus and minus contributions of even and
odd permutations nearly balance out, so that great precision may
be needed to keep the balance representative of the truth. Al-
though (2.5) may be correct, he feels that the arguments of F I
justify its use only in the K.B. case.

This comment of Professor Feynman warns that one must
accept the calculations in the following sections with critical eyes.
The author has decided to publish this work, nevertheless, as he
believes the expression (2.5) has as much meaning to the problem
of He' as the Ising model does to that of ferromagnetism.

where for each trajectory the following conditions are
to be satisfied:

x;(0)=x; and x;(P)=s,'. (2.3)

P in Eq. (2.1) is a permutation of the coordinates of 1V

particles among themselves. For the derivation of these
expressions and the detail of the notations, readers are
referred to the original paper, F I.

It can easily be shown that for the partition function
QsD for Fermi-Dirac particles one has to bring in a
factor (—1)~ into Eq. (2.1), so that
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vanish except for x's located on a simple cubic lattice, 5

yielding

(I zit I zs ' ' ' PE+
l
e e

l zt, Ks, ' ' ',ziv)dzt dziv

=1V!Qp exp[—aP;(x;—Px;)'j, (2.6)
B(k,k') =5(k,k')Q, A(0,x)e '~'~'* (2.16)

with a period of Ld, each of these integers takes one of
the values between —I./2 and L/2.

Combining Eqs. (2.11) and (2.12) and taking account
of the periodicity of the lattice, one has

where the summation over x is to be carried over all
where x; indicates a lattice Point of a simPle cubic the lattice points. Putting Fq. (2.]].) into Eq. (2.]6)
lattice, a is a constant': and replacing x and k by Eq. (2.15), one obtains

a= m'/(2PA')

and Qs is a factor introduced in Eq. (2.5):
(2.7) I/2

S(k,k) = Q P P exp[—ad'(k'+Is+no')

q= Q pD/Qp ——detA,

where an element of the matrix A is defined as

(2.10)

A(x,x') =exp) —a(x—x')'j, (2.11)

x and x' taking values of lattice points on a simple
cubic lattice. When Ã is the number of lattice points
in the volume or the system, A is an XXS matrix.
Following Newell and Montroll, ' one transforms the
matrix A with a unitary matrix U defined by

U(x k)=1V—le' '*'"

obtaining another matrix 8 such that

8= UAU-'.
Then

detA= detS.

(2.12)

(2.13)

(2.14)

x and k in Eq. (2.12), written in components, have the
following forms:

x= (k, l,m) &&d, k= (i~,h, p,))& (Ld) ', (2.15)

where d is the lattice constant, and L=Ã&. k, l, m, ~,
X, and li in Eq. (2.15) are integers. Because of the
lattice structure and the periodic boundary condition

Qs= EpLm'/(2~PA') js~is. (2.8)

This is considered a smoothly varying function of
temperature, ~ and is independent of permutations
pertinent to the present problem.

From Eqs. (2.4) and (2.6), one obtains for the
partition function

Qsn=Qs Qp( —1)~ expt —a+;(x;—Px,)'$. (2.9)

The technique used by Kac and Ward' in the treatment
of the two-dimensional Ising model suggests that Eq.
(2.9) can be written in a determinantal form as follows':

—27r i (sk+Xl+ pm)/X$

(X ) (ls
=ebs/ —;e-' leis

l
—;e-' ldisl —;e-'

l (2 17)&z' ] &z' ) &x'

where 83 is one of the theta functions and is defined as"

(2.18)

and
r=ads=no'd'k T/( 52)s (2.19)

F/kT= 3N) dh lnt—ls(x e ') (2.21)""

This is the part of the free energy which is pertinent to
the Fermi-Dirac statistics. As 7 is proportional to
temperature and Bs(x; e ') is a well-behaved function
of its arguments, one can conclude from Eq. (2.21)
that this substance does not show any phase change.

It should be noticed that after Eq. (2.9) no approxi-
mation is made except the reasonable one that L))1.
Particularly, it seems worth while to mention here
clearly that, although in the previous treatment' of He4

only polygons having sides of length d as shown in
Fig. 1(a) was taken into account, in the present paper
all of the sides of length longer than d such as shown in
Fig. 1(b) are also taken account of.

As the form of Eq. (2.12) suggests, what we have

In arriving at the ebs-function in Eq. (2.17),L is assumed
very large, effectively infinite.

One introduces Ii by

(2.20)

uses Eqs. (2.10), (2.14), and (2.17), transforms the
summation into an integral, and obtains

5 For the sake of simplicity, the explanation and calculation
are based on a simple cubic lattice in the erst part of the paper.
The face-centered cubic lattice is treated in the later part.' This a is different from a used in reference 2 by a factor of
d'/T.

'See p. 1296 of F I.' M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952); G. F.
Newell and E. W. Montroll, Revs. Modern Phys. 25, 353 (1953).

9For Bose particles, the partition function q is written as a
permanent of A instead of a determinant as in Eq. (2.10). That
is why the technique shown below cannot be applied to He4.

Io See, for instance, E. T. Whittaker and G. N. Watson, Modere
Amalysz~s (Cambridge University Press, Cambridge and the
McMillan Company, New York, 1946), Chap. 21.

"D. Lieberman of California Institute of Technology has
derived essentially the same formula independently.

is Using relations satisfied by the theta functions, Eil. (2.21)
can be reduced to a simpler form:

F/PkT=ln2 —(r/4) —1nge2(0; s )e3(0; e ")a4(0; e )g,
where 82, 83, and 84 follow the notations of Whittaker and Watson,
reference 10.
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arguments are on a simple cubic lattice, Q is reduced to

Q=Qo2 &2(—1) ."&
distr P~ Pp

&&expL —a P(x;—P.Pex;)2j, (3.2)

(b}

where Qp is the same as Eq. (2.8).
Applying the same technique as in the previous

section, Kq. (3.2) can be transformed into a determi-
nantal form as

Pro. 1. Examples of polygons on a lattice. Each arrow indicates
a side of the polygon.

q=Q/Qp ——P d.etA,
distr

(3.3)

done in this section was to evaluate the partition
function using momentum space representation, al-
though we started from the coordinate representation
introduced by Feynman. This situation becomes clearer,
when one recalls the alternative way of writing the
83 function:

(2r) *

82(x; e ') =
I I 2 exp' 2r2(*+22)2/2. 7 (2 22)
4r

Inserting this into Eq. (2.17), one obtains

h'
B(k,k) =

(

t 2~m'dpur&

)&p exp/ h'(k+n/d)—'/22)2'kT), (2.23)

where n is a vector having integers (plus, minus and
zero) as its components. Comparing Eq. (2.23) with
the momentum space approach of the ideal Fermi
particles, one may tell the similarity and also the
difference between the two.

At any rate, Eq. (2.21) does not have much physical
meaning, because it is for the case of all parallel spins.
Vfe are more interested in the eGect of plus and minus
spins superposed on the Fermi-Dirac statistics and this
will be treated in the following sections.

3. FERMI-DIRAC PARTICLES WITH A SPIN I/2

In order to treat He', one has to take into account
the fact that an atom possesses nuclear spin of —',. Then
the partition function of the previous section has to be
revised so as to include spin functions. Extending Eq.
(2.4), one sees that the partition function Q is written as

Q=X 'Q pp( —1) ~+ e (Pxi,Px2 Px~
Jdistr I'z Pp

X ~
e—e~

~
xi, ,x)2)dxi dx)), (3.1)

where an element of the matrix A is

A(x,x') = f(x,x') expL —(2(x—x')'j,

with f(x,x') defined by

f(x,x')

(3 4)

B(k',k) =1V-' Px gx e"'*' 'A(x', x)e-"'* ". (3.6)

Here x and x' run through all the lattice points. Now
divide the lattice points into groups so that the lattice
points in one group have the same distribution of spins
in its neighborhood (in its nearest neighbor points or
in its nearest and next nearest points, etc., depending
on the approximations one chooses). Then

B(k~ k) +—1 P P Q e2x(x' (k'—k)

0 x'xC x

&(A (0 x—x')e ' "(* *') k

g—i PL P epx(x' (k'—k)j
Xp A (0 x")e—"'*"." (3 7)

where x'eC indicates x' is a member of a group C and
Pz the summation over different groups. A, (0, x—x')
denotes A(0, x—x') when the origin 0 is a member of
the group C. Now we make use of a relation

1, when atoms on x and x' have the same spin,

0, when atoms on x and x' have diferent spins.
(3.5)

As the next step, let us work on one of the terms in
the summation of Eq. (3.3). Although it is not indi-
cated explicitly, it should be remembered that a term,
detA, corresponds to a certain distribution of spins
over the lattice. To evaluate detA, one transforms the
matrix A by the unitary matrix U defined in Eq. (2.12),
obtaining another matrix B of Kq. (2.13), whose
element is

Q e' '* k=XP(C)8(k,0), (3.8)where P (or Pe) is a permutation among atoms having
a (or p) spins and p q;,2, is the summation over different
distributions of n and P spins over the lattice. P stands where p(C) is the probability of finding a lattice point
for P Pe. Using Eq. (2.5) and assuming as before that belonging to the group C. When the points belonging
the function p has nonvanishing values only when its to the group C are scattered at random all over the
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p(x) =2, p(C)f, (o,x) (3.10)

is equal to the probability of finding n atoms both at
the origin and at the point x, plus the probability of
finding P atoms both at the origin and at x.

As is seen in the following sections, a distribution of
plus and minus spins over the lattice is specified by a
set of parameters. Then, Eq. (3.3) can be written as

q= P detB=Q G[DjlI B(k,k), (3.11)
distr D k

where D indicates a set of parameters specifying a
distribution and G[D] is a number of different distri-
butions having the same set of values D. In Eq. (3.11),
B(k,k) is a function of D through p(x). If one applies
an external field B, the energy of the system increases

lattice, this relation (3.8) is justified as is shown in
Appendix. Equations (3.7), (3.8), and (3.4) give

B(k',k) =&(k',k)Pc p(C)
&(gx exp( —exs —23rix k) fc(0,x)

=8(k',k)gx exp( —ax' —23rix k)p(x), (3.9)

where fc(0,x) means f(0,x) when the origin 0 belongs
to a group C, and

TABLE II. De6nition of parameters, y s, for a bond. vi is the
number of con6gurations having the same probability y;.

Configuration Probability

y2
y3

4. SIMPLE CUBIC LATTICE TREATMENT

In order to proceed further, one chooses a set of
parameters to specify distributions. The simplest
approximate treatment is explained in this section.
The procedure follows closely that derived by the
author in the treatment of the Ising model, " and
readers are referred to the original paper if necessary.

In the 6rst approximation, to be called the "pair
approximation, " the parameters one uses are proba-
bilities of finding con6gurations on lattice points and
those on bonds as shown in Tables I and II. From
geometrical consideration, one derives the relations
among the parameters as shown in Table III.

For the weight factor G[Dg of Eq. (3.12), one uses
the last equation of Sec. B of TCP I, or

TABLE I. De6nition of parameters, x s, for a lattice point.
where

6=XNSI'~—3Ã t
—', (4 1)"

Configuration Probability
&N=II(»)! I'~=II(y&) l"'. (4.2)

p„=lim p(x). (3.14)

r in Eq. (3.13) is defined in Eq. (2.19) and is propor-
tional to temperature.

by M[D,H] which is a function of D and the field H.
Vj/hen one is interested only in the nuclear magnetic
susceptibility, the magnetic energy M[D,H7 is due to
the nuclear spin magnetic moment, which is assumed
to commute with the rest of the Hamiltonian which

depends on the coordinates of particles. Therefore the
eBect of the external field H on q of Eq. (3.11) is
multiplication by a factor exp( —M[D,Hj/i3T). One
evaluates q of Eq. (3.11) by its maximum term, or one
maximizes

—F/AT = M[D,H)/13T+—lnG[D j
+gq lnB(k, k), (3.12)

with respect to the set of parameters D. F in Eq. (3.12)
is the part of the free energy we are concerned with.

For the next procedure, it is convenient to rewrite

B(k,k) of Eq. (3.9) using Eq. (2.17) as follows:

B(k,k) =g x exp( uxs—2s.i—x k)[p(x) p j—
„

(a ) (X ) (p,
+p„+3] e /i73/ —;s' ]+3( —;e' f. (3.13)

EZ ) EE i lE
where

Hence, using Stirling's formula,

2 3

lnG=E 5 Q x;in'; —3P 3;y;lny; .
i=1 i=1

(4.3)

Using the definition of p(x) and Table II, one derives

p(origin) = 1,

p(nearest neighbor) =y,+y, ,

p(further neighbor) =: p„=gis+gss.

(44)

The last of these relations is approximate, but seems
consistent with the approximation one makes for G in

SJ,
gs
y1
ys

"R. Kiiruchi, Phys. Rev. 81, 988 (1951), hereafter called
TCP I.

'4This formula is also discussed in Kurata, Kikuchi, and
Watari, J. Chem. Phys. 21, 434 (1953). Equation (4.1) gives
Bethe's approximation when applied to the Ising model.

TABLE III. Relations among parameters for the simple cubic
lattice treatment. The meaning of the table is, for instance,
yr= $+ti—y3. pi and y3 are independent variables.
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the results with observations, r was converted to actual
temperature. Assuming that the density' of He' is
0.08 g/cc and is independent of temperature, Eq. (2.19)
is written as

Eq. (4.1).The magnetic energy of the system is equal to

MC D,Hg= p JI1V(xs—xi) = 21'—IIXci, (4.5)

where p, is the nuclear magnetic moment.
Inserting Kqs. (4.3), (4.4), and (4.5) into Eqs. (3.12)

and (3.13), and transforming the summation into an
integral, one obtains

T= 2.0 (srs/rrs') r, (4 13)

F 2(ifiH lnG
+ +) drink,

SAT PT g
where

fl= (s+25i')tls(x; e ')t'fs(y; e
—')Bs(s e—)+&

—2@+(s—2ys —2/is)2e 'P cos2xx,
with

p cos2srx= cos2srx+cos2&y+cos2srs,
and

where m is the true mass of a He' atom, and m' is its
eGective mass introduced by Feynman in F I. As T is
proportional to v-, if one first plots g against r, it is
easily converted to a function of T, only by changing
the temperature scale, the scale factor depending on
frs'/srs. In Fig. 2, xT/C and ys —0.25 so obtained

15
assuming fthm'/ris=5. 5 are plotted against T with solid
curves. This value of the ratio is taken in order to give
the best fit of the observations by Fairbank, Ard, and
Walters" which are also shown in I'"ig. 2 with black
circles. Fairly good agreement with the experiments is

(4 9) also obtained for the values of m'/frs in the range

Differentiation of Kq. (4.6), with respect to g, , gives

xj y& pH
5 ln—3 ln—+2 + dr4$ifoss(x)Bs(y)Bs(z)

x2 y3 kT

—1—2e ' P cos2xx)/0=0. (4.10)'s

~hen + is zero, $t——0 is a solution of this equation. 's

Another possibility, $i/0, corresponds to a ferromag-
netic state, to which we shall refer later, but erst we

solve the problem of the nonferromagnetic case. As we
are interested in the magnetic susceptibility which is
the property dined for vanishing magnetic field, the
second equation BF/Bye ——0 is to be solved for ys under
the condition pi=0. Then one obtains

5.«(m'/m) ..&5.5. (4.14)

I.O

0.9-

TEMPERATURE 4K
0.2 0.4 0.6 0.8

I I I I I I I
I.O

Comparing the treatment of the Ising model in
TCP I and the present calculation, one knows that the
ferromagnetic Curie temperature, if it exists, is to be
given by the condition: p~~. From the curve in
Fig. 2, it is clear that this condition is not satisfied,
and hence there is no ferromagnetic state, within the
temperature range of the present calculation. "

The value of fran'/fran in Eq. (4.14) seems to be much too
large, when one recalls that the value of the corre-
sponding ratio for He' was estimated by Feynman' as

31n
1—2/2 —2e 'P cos2rrx

2/2
(4.11)

~ 0.8-
&0.7-

where Qs is 0 of Eq. (4./) with $t ——0. The magnetic
susceptibility x is defined from Eq. (4.10) as

0.6-
0,5-

1 H kT —5—~"dr(a, (x)B,(y)B,(s)
x 2)sb is 0.02

CU

O O.OI-
I

0

—1—2e—' g cos2srx)/Qs . (4.12)"
l.00.4 0.6 03

TEMPERATURE, 4K
0.2

FIG. 2. Plots of nuclear magnetic susceptibility x and the
parameter ys defined in Table II against temperature. C in xT/C
is the norma1ization constant such that lim xT/C=1. The black

circles are experiments by Fairbank, Ard, and Walters. 19 The
solid curves are the calculated ones based on the simple cubic
lattice treatment ("pair" and "square" approximations) and
m'/m=5. 5. The broken curves are the calculated ones based on
the face-centered cubic lattice treatment ("tetrahedron" approxi-
mation) and ~~i'/m=3. 5.

's E. C. Kerr, Phys. Rev. 96, 551 (1954).
"Fairbank, Ard, and Walters, Phys. Rev. 95, 566 (1954).
ss L Goldstein and M. Goldstein, J. Chem. Phys. 18, 538 (1950).

As it seems hopeless to solve Eq. (4.11) analytically,
it was solved numerically, '~ to obtain y2 and hence y of
Eq. (4.12) as functions of r. Then in order to compare

'~ &I, introduced in Table III, is a Iong-range order parameter.
x, y, and s without subscripts are cartesian coordinates and are
to be distinguished from the parameters, x s and y. s, defined in
Tables I and II."e,(x; e ') is simply written as d&(x), dropping the second
argument e ~, as it would not cause any confusion.

'~ For the numerical integration, Weddle's rule was used. This
is to approximate &J'f(x)dx by (3/10)jf( 3)+5f( 2)+f( 1)— — —
+6f(0)+f(1)+5f(2)+f(3)g. See, for instance, D. R. Hartree,
Ntsmerkaf Anrifyses (Oxford University Press, Oxford, 1952),
p. iOi.
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about 1.5 and was 1.3 by the author's calculation. ' It
was suspected that this ratio might change when one
improves the approximation and uses a square as the
basic figure, just as was done for the, Ising model in
Sec. D of TCP I. But the actual calculation based on
the "square" approximation gave practically the same
curve" for xT/C as a function of r Th. is shows on one
hand that the result shown in Fig. 2 is practically the
rigorous solution of the model we used in this section,
and on the other that the value of m'/r)s in (4.14) is
inherent in the model itself and does not depend on the
approximation used in this section.

Therefore, as the next step to examine m'/r)s, the
face-centered cubic lattice is taken with a hope that it
might give a lower value of this ratio. It will be ex-
plained in the next section.

S. FACE-CENTERED CUBIC LATTICE TREATMENT

The calculation based on the face-centered cubic
lattice is essentially the same as that for the simple
cubic lattice. But in order to make clear the approxi-
mation used in the process of the calculation, some of
the equations will be listed below.

Equations (2.1) to (2.14) remain valid for this case,
but as the reciprocal of a face-centered cubic lattice is
a body-centered cubic lattice, Eq. (2.15) should be

TABLE IV. Definition of parameters, s s, for a tetrahedron.
y; is the number of configurations having the same probability s;.
This table is the same as Table VII(a) of TCP I with different
notations.

TABLE V. Relations among parameters. The meaning of the
table is the same as Table III.

Zl
Z2

84
Z$

modiiied accordingly. Equation (2.17) is replaced by

(5.1)

where

(x. t)
—g t(n+-', ) semi(2m+i) g (5.3)

Consequently, Eq. (3.13) is changed into

B(k,k) =P exp( —cx'—2wix k)Lp(x) —p„j
(z X p

+P Q~~
~ e—2e

! (5 4)EZZZ

0(x,y,s; t) =—8s(2x; t)8s(2y; t)8s(2s; t)

+8,(2x; t)8s(2y; t)8s(2s; t)
+Is(2x; t)8s(2y; t)8 (2s; t)

+r7 (2x; t)a (2y; t)a (2s; t), (5.2)

and 8s(x; t) is another theta function defined by

Configuration Probability

Z2

As it is known that the "pair" approximation for the
face-centered cubic lattice is poor" because the corre-
lation among the first shell points is neglected, the
tetrahedron approximation" will be taken up in this
section. Then in order to proceed further, one uses
besides Tables I and II probability parameters defined
in Table IV. These parameters, s s, are expressed as
functions of (i and ys of Table III and additional two
variables, $s and ss, as shown in Table V.

For the free energy F, the expression (4.6) is used
with different definitions for G and 0:

lnG 5
=6 g i;y; lny; —2 P y;s; lns; —5 Q x; lnx;, (5.5)g

s' The deviation was only 0.3% even at the lowest temperature
calculated, v =0.5.

and

0= (-,'+2$P) 0'(x,y,s; e ")+-,' —2)P
+ (s —2ys —2$P)2e ' P cos2s. (x+y), (5.6)

where

P cos2)r(x+y) =—cos2w(x+y)+cos2s-(y+s)
+cos2s (s+x). (5.7)

~ See, for instance, I'ig. 9 of YCP I for the two-dimensionaI
triangular net.

~ This corresponds to Sec. H of TCP I.
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Equation (5.5) follows from Eq. (H1.2) of TCP I. The
next procedure is to minimize P with respect to inde-
pendent variables to obtain

S2 fdf
3 ln—2 ln—=4e ' —P cos2vr (x+y),

y, z, ~O, (5.8)

SQS3 823 4

corresponding to Eq. (4.11).In place of Eq. (4.12), one
has

kT 14y2—4
5+ —4 dr(O~(x y,z; e ")

x i
'

— (1—2ys) (1—3ys)

—1—2e ' P cos2s.(x+y))/Qs . (5.9)

The two equations (5.8) are solved for ys and ss
numerically and these values are inserted in (5.9) to
evaluate y. The results of the calculation are shown

in Fig. 2 with dotted curves. In the process of arriving
at these curves, the temperature scale was changed
from r to T by the relation

T= 1.6(m/its') r, (5.10)

and the value m'/m=3. 5 was used. The range of the
value of this ratio which gives fairly good fit with the
experiments is

3.2 & (m'/m)r„&3.8. (5.11)

In order to make sure of these numbers, a calculation
taking into account the second and the third neighbors
was carried out. It was found that this improved
approximation gave essentially the same values as in

(5.11), and one can conclude, for this lattice also, that
the values in (5.11) are very close to the rigorous
results of the model.

6. DISCUSSION

Equations (4.14) and (5.11) show that (m'/tts)r. , is
smaller than (m'/m)„. This can be interpreted as
follows. As one sees from the lower curves of Fig. 2,
ys is greater than s. This means that n —p (and p —n)
pairs appear more often than n nand p——p pairs; in
other words the system shows an "antiferromagnetic"
tendency. Wannier" proved that the Ising model of a
two-dimensional triangular net does not exhibit anti-

~These are the equations obtained by minimizing the free
energy F with respect to y2 and s3 and then putting (I and $2
equal to zero. The other two equations, which correspond to
Eq (4.10) and are. derived by minimizing F with respect to $&

and tm were not listed here, though Eq. (5.9) is derived from these
two equations. As was mentioned in connection to Eq (4.10) we.
know that (I=0 and (AD=0 are possible solutions of these unlisted
two equations for the vanishing value of P, and we are interested
only in these values of ('s. $& and (2 are both long-range order
parameters and their nonvanishing values correspond to ferro-
magnetic state which does not occur in our problem.

s' G. H. Wannier, Phys. Rev. 79, 357 (1950).

ferromagnetic state whereas the square net" does.
This is interpreted as due to the fact that triangular
net is divided into three equivalent sublattices whereas
the square net divides into two. The same argument
holds for the three-dimensional case and one expects
that the antiferromagnetic state is difIicult to be
realized for the face-centered cubic lattice which is
divided into four sublattices whereas it is easier for the
simple cubic lattice which has two sublattices. This is
the reason why one obtains smaller values of y2 and
hence smaller deviation of XT/C from unity for the
face-centered cubic lattice than the simple cubic,
corresponding to the same value of v. The larger the
XT/C is, the lower the rN'/m becomes.

Another factor to lower (m'/m)r„compared to
(m'/m). , is the change of the numerical factors, 2.0
and 1.6, of Eqs. (4.13) and (5.10), respectively, which
are inversely proportional to square of the hypothetical
lattice constant, as is seen in Eq. (2.19). When one
assumes no holes, the lattice constant for the face-
centered cubic lattice is larger than that for the simple
cubic in order to give the same macroscopic density.
The smaller this numerical factor is, the smaller the
m'/m becomes.

Even though one knows the values of (4.14) and
(5.11) for the two regular lattices, for the present there
is no practical way oi calculating the value of m'/ng

for a random distribution of atoms, though probably
it is not too unreasonable to guess that the true value
would lie in between the two.

The final problem which still remains is why the
value of m'/m should be so large (3.2~5.5) in order to
6t the observation. Probably the answer lies in the
passage from Eq. (2.4) to Eq. (2.5) as Feynman pointed
out, but it will not be discussed further in this paper.

It is certainly of much importance to calculate the
entropy of the system in order to discuss the nature of
the approximation and also to check Pomeranchuk's
prediction, ' but the entropy which we can calculate
using the method of this paper is only related to q of
Eq. (3.3) and is not the total entropy of the system,
as the factor Qs of that equation is unknown. Since the
interpretation of the entropy derived from q is not
settled yet, it will not be reported here.

As a conclusion we can say that the partition function
which Feynman proposed can explain at least qualita-
tively the properties of liquid He' and also of liquid
He' without contradiction.
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g (It) p esezkelK

kcC
(A.1)

where It and s are the same as in Eq. (2.15). In the
complex number plane, g(s) is the vector connecting
the origin to the end point of the succession of vectors
of the summand. When one assumes that points
belonging to the group C are scattered at random, the

APPENDIX. DISCUSSION OF EQ. (3.8)

For simplicity let us look at the part of Eq. (3.8)
related to the x-component. Then the problem is to
evaluate the value of the function

problem is looked upon as random walk in the complex
number plane, and the probability W(r)dr of finding
the vector g(te) lying within the interval (r, r+tgr)
from the origin is given by

W(r)dr= (SN) ' exp( —~r('/N)dr. (A.2)"
In this equation e is the total number of arrows con-
sidered, i.e., Is=a&p(C). As p(C) is independent of E,
when 1V becomes larger W(r) approaches to the delta
function, 8(r), closer and closer. Therefore for very
large E, Eq. (3.8) is justified.

~ See, for instance, S. Chandrasekhar, Revs. Modern Phys. 15,
1 (1943).
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Photoelectric Mixing of Incoherent Light*
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Seats have been obtained between incoherent light sources by mixing Zeeman components of a visible
spectral line at a photosurface. Periodicity in emission was observed through the excitation of a 3-cm
cavity. Because of incoherence between the spectral lines and incoherence between the beats from different
photocathode areas, the signal-to-shot-noise ratio at the cavity is only 3X10 ' but the beats were modulated
optically, while maintaining constant total intensity and our receiver was able to yield a signal-to-noise
ratio of two at the indicator. The basic idea is that, in the photoelectric process, the emission probability
for electrons is proportional to the square of the resultant electric Geld amplitude, implying an interference
between light originating in independent sources. This is a point of view which does not appear to be tested
in any other experiment involving quantum eBects. The experiment also demonstrates that any time
delay between photon absorption and electron release must be signiGcantly less than 10 ' second.

I. INTRODUCTION

HE combination of two wave trains of slightly
different frequencies is equivalent to a wave of

the average frequency modulated by the difference
frequency. This is evidenced in the phenomenon of
acoustical beats and is responsible for the operation of
superheterodyne radio receivers. The periodic variation
in intensity which occurs at a 6xed point on the image
of a Michelson interferometer when one of the mirrors
is moving may also be interpreted as beats between
the light reQected from the stationary mirror and light
which has had its frequency changed by reQection
from the moving mirror. ' ' However, the problem of

~ Supported in part by the Ofhce of Naval Research. Repro-
duction in whole or in part is permitted for any purpose of the
United States Government.

t Now on leave at Westinghouse Research Laboratories, East
Pittsburgh, Pennsylvania.

f, Now at Hughes Aircraft Corporation, Culver City, California.
II Now at North American Aviation, Downey, California.

A. Righi, J. Physique 2, 43'7 (1883) describes an ingenious
production of light beats. To demonstrate that light which has
passed through a rotating Nichol prism may be resolved into tw'o
circularly polarized beams, one increased and one decreased in
frequency with respect to the incident light, he performed an
experiment, in its essence a double-slit interference experiment,
in which one slit was illuminated by light of reduced frequency

beating incoherent light waves, i.e., light waves which
originate in different sources, is quite different, and
since the publication of the original suggestion, 4' it has
been argued' that the observation of such beats is
impossible. These arguments, when examined carefully,
really provide reasons why beats between incoherent
light sources are dificult, rather than impossible, to
detect. Were optical lines much sharper than they are,
or possible to produce, without great broadening, in
much greater intensity than present techniques permit,
beats between incoherent light waves would be easy
to observe.

Following the publication of the original suggestion4
for this experiment, Ruark, ' calling attention to an

and the other slit by the increased frequency, both altered to be
plane polarized in the same plane. The moving fringe pattern he
observed, and interpreted as beats, is, in principle, no difterent
from those produced by moving a mirror of a Michelson inter-
ferometer.

E. Riichardt, Optik 6, 238 (1950), raises an objection to this
point of view based on a requirement for coherence over a beat
period. His objection is adequately answered in reference 3.' C. V. Fragstein, Optik 8, 289 (1951).' Forrester, Parkins, and Gerjuoy, Phys. Rev. 72, 728 (1947).

z Gerjuoy, Forrester, and Parkins, Phys. Rev. 73, 922 (1948).
e L. R. GriKth, Phys. Rev. 73, 922 (1948).
I A. Ruark, Phys. Rev. 73, 181 (1948).


