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assumed by functions

and
yr(w) —4ssrfw

ys(w) —Sssr&w,

(6a)

(7a)

w —Ps(w) (7b)

are not disjoint, where f& and ebs are regular and

where pr and Ps are regular and bounded in S. Ilecause
the correspondence m&-+2' maps S onto itself, we may
without loss of generality replace the 8 in (7a) by a 4,
and (dividing by 4igsr and writing go ——po/4igsr) we
have only to prove that the value-sets of the functions

w —lPr (w), (6b)

bounded in S. But this is immediate: for, if (ltst &M,
k=1, 2 then by Rouche's theorem both functions (6b)
and (7b) assume the value MV2i inside the circle of
center M&2i and radius M.

Remark. —If E; denotes the maximum of
~
U(s)

~
on

y; (i= 1, 2), and r=max (E~,E's), the above reasoning
gives the more precise result that F(U') has a branch
point in the circle ( Uj (r, whence r is an upper bound
for the radius of convergence R of the virial series. It
has not been deemed worth while to make a numerical
estimate (which would be a straightforward task)
because in any case the method is too crude to answer
the interesting question of whether (1) converges at
at=i'(3/2)=2. 612. , the value of the dimensionless
density for which condensation is known to occur.
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The results of Chandrasekhar's recent theory of turbulence are
transformed in this paper from ordinary space (used exclusively
in his paper) to wave-number space. Consideration is limited to
the case of stationary, homogeneous, and isotropic turbulence.
A "time-dependent spectrum" is de6ned in terms of the scalar
product of eddy velocities at two diferent times; this spectrum is
related to Chandrasekhar's time-dependent correlation function
by a Pourier transform, as in the conventional, time-independent
case. For in6nite Reynolds number the spectrum is obtained
directly by transforming the correlation function into wave-
number space; the spectrum is given by a much simpler expression
than is the corresponding correlation function.

Consequently, an approximate (linearised) form of the diger
espial equation for the correlation has been transformed to wave-
number space, and this equation is readily solvable, even for a
finite Reynolds number. For h)1/v the spectrum vanishes, and
this cuto6 at large wave-numbers is interpreted as the dis-
integration of turbulence into laminar Qow at dimensions suffi-
ciently small for viscosity to dominate over the inertial transfer
of energy.

Finally the general, nonlinear correlation equation has been
transformed into an integral equation for the spectrum, but a
general solution has not yet been obtained for either the spectrum
or correlation.

I. INTRODUCTION
' 'N a recent paper Chandrasekhar' has presented a
~ ~ new theory of isotropic, homogeneous turbulence
in a steady state. The basic innovations in the new
theory are (1) the consideration of velocity correlations
not only at two different points but also at two Chgerent

times and (2) the hypothesis of a statistical relationship
between the second-order and fourth-order correlation
tensors.

Starting with the hydrodynamic equation of motion
and the equation of continuity, Chandrasekhar derived
his fundamental equation for f(r, t), the longitudinal
correlation function':
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*The research reported in this paper was supported in part by
the Geophysics Research Directorate of the Air Force Cambridge
Research Center, Air Research and Development Command,
under contracts with the University of Chicago.' S. Chandrasekhar, Proc. Roy. Soc. (London) A229, 1 (1955).
Hereafter this article will be referred to as "Paper I."

s Paper I, Eq. (46).

Here D5, the Laplacian operator in five-dimensional
space, may be written

8' 48
Ds= —+-—

Of t' Bf
(2)

In these equations r (=
~
r

~ ) is the separation of the two
points measured in units of some arbitrary length /;
t is the time interval between the measurements of
velocity at the two points in the unit of t/((sc&))A, ',
where u1 is the velocity component in the direction of r
(say, along the x-axis); o is the viscosity in units of
l((gt ) )A„'. The longitudinal correlation function is
defined in terms of velocity components by

(sc1(ro,to)set(ro+r, to+t))s
(r, t) =—

(NP)A

We define P by

(4)

then for small values of t and r (such that f does not
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f(r,1)=1—
I
-141- 1, (««p;««p)

I rp) &r&

in which4

(6)

y(x) =
2(n+2)

+1x+11N+'(n+2 —x)}. (7)

Here x= t/r, and in Kq. (6) rp is a constant of the order
of the dimensions of the system in units of l.' In these
equations e is a positive constant but is not otherwise
determined. If, however, one chooses the KolmogoroG
spectrum as an initial condition, then n= 3.

In view of the interest often attached to turbulence
spectra, an attempt is made in this paper to transform
the correlation function of Eqs. (6) and (7) to wave-
number space. In the next section the time-dependent
spectrum is de6ned and then derived from Chan-
drasekhar's correlation function by means of a Fourier
transform. In Sec. III, the differential equation (5) is
transformed to Fourier space and is solved for the
dependence of the spectrum on time when finite vis-
cosity is considered. In Sec. IV, we transform the
general, nonlinear equation (1) to wave-number space.

II. SPECTRUM FOR ZERO VISCOSITY

By analogy with the conventional de6nition of the
turbulence spectrum, F(k), we define for the time-
dependent case,

F(k,t) =cik'{Vs(tp) Vs(tp+t)}A„, (8)

where Vz(t) represents the velocity at time t for an
eddy of wave-number k. Throughout this paper c;
represents proportionality constants and averages are
taken over all space. Note that with the definition (8),
F(k,1) is not necessarily always positive, since in general
it is a time correlation of eddy velocities and becomes
an energy spectrum only for t=0. The spectrum is
related to the correlation function, again analogously to
the conventional case, by

p" F(k, t)
f(r, t) =3 (sinkr —kr coskr)dk

~ F(k,0)dk. (9)

P Paper I, Eq. (63).' Paper I, Eq. (81).
5 In Paper I, r0 is taken as unity and it is speci6ed instead that

the unit of length is equal to the diameter of the largest eddy
present; r0 is retained here to emphasize the uncertainty in the

. exact value of this constant.
P W. Heisenberg, Z. Phvsik 124, 628 (1948), Eq. (50).

depart greatly from unity) Kq. (1) may be written

ps'/gas (&QD s+D )y (5)

For the case of infinite Reynolds number (zero vis-
cosity), Chandrasekhar has solved Eq. (5) and obtained'

There should be no confusion between the time-
dependent spectrum for steady-state turbulence con-
sidered in this paper and the ordinary spectrum in
decaying turbulence. The latter changes with absoLNte

time, whereas only relative time is implied in the present
theory. In general, for small values of t these spectra
should be of comparable accuracy to the well-known
Kolmogoroff spectrum (adopted herein for t=0) and
should be applicable in such time-dependent problems
as ionospheric scattering of electromagnetic radiation. ~

In order to relate the spectrum and correlation func-
tion, we wish to express Eq. (9) in terms of a simple
sine or cosine transform. Hence by successive diGer-
entiations we Gnd

1 d -1 d ( dfl-
k(r, t) =

r dr r dr ( dr)

=C2
"0

kF (k,I) sinkrdk. (10)

C3'g~

F(k, t) = j (y) sini)ydy.
$5/ag

(13)

By means of Eqs. (12), (10), and (6), j is related to
it (x=1/y), which is given by (7). A straightforward
evaluation gives two limiting series:

110 (2——',) (3—-', )
jo(y) = — y 1+

81 3

(2—s) (3—s) (4—s) (5—s),+ y'+, 0&y&1, (14)
5t

and
(1—s) (2—s)

j-(y)=+ y ' 1+
27 . 2 I

(1—s) (2—s) (3—s) (4—s)
y '+

4f

1&y& ~. (15)

It will be noticed that neither of the above series
converges as y —+ 1, so that jp~ —pp and j„—++a&.
This discontinuity arises in the highest derivative con-
sidered in Eq. (10), and its presence may be traced

' E.g., see R. A. Silverman and M. Balser, Phys. Rev. 96, 560
(1954).

It is convenient to work in the variables

ri=kt, y=1/x=r/1.

Then, if we define

j(y)=—1' k( ~)

where it is assumed that the correlation may be written
in the form (6), the sine transform of Eq. (10) is, for
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F(k, t) = c4k si' coskt. (16)

This equation may be checked relatively easily by
taking the inverse transform as given by Eq. (9). Thus
we 6nd

3
k ' is coskf(sinkr —kr coskr)dk

r'~k,

back to the fact that for infinite Reynolds number Kq.
(5) is a wave equation (in a five-dimensional space)
for unit velocity. Thus physically the discontinuity in

j(y) at y= 1 (or r= t) reflects a singularity in the corre-
lation function at r= 3=0. This singularity apparently
arises because we have incorrectly assumed the Kolmo-
goroff correlation [1—(r/rs)'$ to hold strictly for t=0.
And, indeed, for n)1 in Eq. (6) there is no dis-
continuity. However, the integral (13) is finite in any
event and we might expect that the Kolmogoroff
approximation near the origin should not have any
profound effect on the spectrum, except perhaps at
large wave numbers.

Substituting Eqs. (15) and (14) into (13), we obtain
an expression for F(k, f) involving several infinite series
in powers of g=kt. If sufficient terms are carried, how-

ever, it may be shown that most of the coeScients
cancel identically, with the remaining coefficients re-
ducing to the simple expression,

In stationary turbulence there is, by definition, no
"decay" in the usual sense; the time t in these equa-
tions represents the interval of time between two events.
Hence the spectrum as we have defined it in Eq. (18)
cannot depend on whether t is positive or negative.
Therefore, in (19) and (20) we must set B=D=O.
Moreover, we must have C=O, since the spectrum must
stay bounded as t —+ 00. Hence we are left with'

F(k,f) —=F„(k,0) cos[(1—v'k')'kti, k(1/u,
t (21)k) 1/. . I=0

This cutoff in the spectrum for k)1/i apparently
indicates that the turbulence has been completely over-
come by viscosity and that for suKciently small ele-
ments of the Quid only laminar Qow exists. Heisenberg6
has pointed out that there may be a turbulence cutoB
at high wave numbers and that consequently his k 7

law might not hold for indefinitely small eddies. This
idea has been elaborated upon by Batchelor and
Townsend. '

It is not possible at present to specify the nature of
F„(k,O), which appears as an integration constant in
Eq. (21). Probably Heisenberg' s' spectrum represents
the closest approach to the energy distribution presently
available; however, it can only be an approximation,
for this initial energy spectrum must also have a cutoG
at k=1/i. That is, from (21) we have

4kp
k '~'dk F(1/~, f) =F„(1/.,0) =0. (22)

fty= lim 1——r(l)l »n- lks' «Vl —
I ', (17)

55 K 6)

where f is given by Eq. (7). Comparing (17) with (6),
we see that the factor in square brackets in (17) may
be identified with rs &, where rs (and ks) refer to the
largest dimensions (and eddies) in the system.

III. APPROXIMATE SPECTRUM FOR FINITE
VISCOSITY

The remarkable simplification achieved in the above
equations for the time-dependent spectrum suggests
that the basic di8erential equation might also be
greatly simplified if transformed to wave-number space.
Therefore, writing Eq. (5) [which is the linearized form
of the general equation (1)j in terms of F(k, f) by means
of Eq. (9) (where f=1—p), we readily obtain

r)'F/8 f'= (v'k' —1)k'F. (18)

The solution to (18) may be written:

F(k, f) =A cos[(1—i'k')'*ktj

+8 sin[(1 —v'k') 'kfj, k(1/i (19)
and

F(k, f) =C cosh[(v'ks —1) 'kt]
+D sinh[(i'k' —1)'ktf, k) 1/i. (20)

The cosine factor in (21) seems to indicate an
oscillation of the eddy velocities between the limits
&lVs(t=0) l. However, since we are restricted to
stationary turbulence, the absolgte relies of the ve-
locities cannot be a function of time. That is, the
fluctuation of F(k,f) with time merely reflects a constant
rotation of the eddy lr in space, with a period of

2'= 2m/[(1 —v'k') lk$ (23)

s One's first inclination is to write 7(k,t) = C exp L
—(v'k' —1)ikt g

for k) 1/v; however, this solution is unacceptable for the reasons
stated above. We are indebted to Professor Chandrasekhar for
drawing our attention to this point and for demonstrating that
the spectrum must vanish instead for k) 1/v.

~ Q. K. Batchelor and A. A. Townsend, Proc. Roy. Soc.
(London) A199, 238 (1949).

For k=O the rotation period is infinite and decreases
to a minimum of T; =4n.v for eddies with k=1/~2p.
For smaller eddies the viscosity hinders the rotation
more and more until finally at k= 1/v there is no turbu-
lent motion whatever. Thus the cosine term is in-
terpreted as nothing more than a consequence of
isotropy in three-dimensional turbulence.

With this picture the eddies are perfectly stable and
retain their identity indefinitely. Apparently, quanti-
tative information on the finite lifetimes of eddies [as
well as further information on the initial spectrum,
F„(k,0)) must await a solution to the more exact
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differential equation (1) or its equivalent in wave of (29), we6nd, with the aid of Eq. (25),
number space, which is derived in the next section.

IV. GENERAL EQUATION FOR THE SPECTRUM

In this section, we wish to express the general dif-
ferential equation (1) in terms of the turbulence spec-
trum, F(k,t) Eq. uation (9) may be written in terms of
Bessel functions, J„as follows'.

i
—.k iF(k, t)

l Bts )
00 F00 8

~ E(k k' k")F{k't) Lk"'F(k",t)3dk'dk"
Bk"

where

cs——3 (2r/2) '* " F(ko)dk

/" F(k', t)
f(r,t) =cs J»{k'r)dk',

(k'r)»
where

E(k,k', k")=

F(k,0)dk
Jp

3(sr/2)»k» t'" J»Qr) J»(k'r)

(k'k")» ~ s

(30)

Combining (24) with a recurrence relation for Bessel
functions,

XJ»(k"r)dr. (31)

—Ls 'J.(s)j=—s 'J.+t(s),
de

we obtain for the left-hand side of Eq. (1),

The kernel E has been evaluated" as follows:
(26)

'0, (k' —k")2& k',
E(k,k', k")= 1, (k'+k")2&ks,

.s (cos8—1)2 (cosB+2),
(32)

B (B ) cs f F(B—
I

—~Ds' lf=
Br (Bts ) rs~ s k' EBts )

XJ;(k'r) (k'r)»dk'. (27)

otherwise where

cose= (k"+k'"—k')/2k'k". (33)

One additional integration by parts of Eq. (30) gives

(B2
The right-hand side of Eq. (1) similarly transforms to

~

—pk4 ~F(k, t)
l Bts

(B $ f J»(kr)
P —D,f i

= —c,s F(k', t) dk'
I Br ) "o (k'r)»

4p

~" k'"F'(k", t) d J»(k"r)
dk". (28)

dk" (k"r)»
4p

F (k,0)dk

F00 (s00 BE(k,k', k")
k"'F (k't) F(k"t) dk'dk"

k~p 4p Bk"
(34)

c5 f p 8
F (k't) Lk'"F (k",t)J

r'4p ~o a&"

Integrating the second integral in (28) by parts and
setting Eq. (27) equal to (28), we have, for a spectrum Although BE/Bk" is a discontinuous function, Eq.
that vanishes suQiciently rapidly as k —+ 00, (34) may be more amenable to numerical computations

than Eq. (30).
/ 1(BF Equation (30) or (34), with E as given by (32), isask"F

i
J»(k'r—)(k'r)»dk' the equivalent in wave-number space of Chandrasekhar's

general equation (1). The relatively simple form of
Eq. (32) for the kernel, E, suggests that (34) may prove
useful for investigating the spectrum of turbulence in
Chandrasekhar's new theory.

J» k'r J»(k"r
dk'dk". (29)

(k/kl/)»

Next we multiply both sides of Eq. (29) by (kr)»J;(kr)
and integrate over r from zero to infinity. Then apply-
ing Hankel's inversion theorem" to the left-hand side

's I. N. Sneddon, I/onreer Transforms (McGraw-Hill Book Com-
pany, Inc. , New York, 1951),p. 48.
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