
PHVSICAI REVIE W VOLUM E 99, NUM BER 6 SEPTEMBER 15, 1955

Virial Series of the Ideal Bose-Einstein Gas
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B. Widom has conjectured that the radius of convergence of the virial series of the ideal Bose-Einstein
gas is infinite. The present note shows this to be false.
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IDOM' considers the virial series of the ideal
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Bose-Einstein gas, that is, the power series

as= Z ~s&t"&
n=l

x,=g n t'+'&y"
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ut(s) =u(s) —4i (s. logs) &. (4)

from which one easily deduces: All singularities of the
complete analytic function U(s) (gotten by continuing

u(s) onto its entire Riemann surface) lie above s=0
and z= 1.z= 1 is an algebraic branch point of order one
on every sheet, and z=0 is a logarithmic branch point
on every sheet but the original. When u(s) is continued
once around z= 1 it passes into the new function
element

and shows that R, the radius of convergence of (1), is
&0.257. He conjectures further that R is infinite, i.e.,
that (1) converges for all xq. We show here that this
conjecture is false. '

Our 6rst step follows Newman. Let

xs ——f(xr), f entire. (2)

Then dx&/dy= f'(xt) (dx&/dy) whence, since y(des/dy)
=x», we have

dy f'(xr) 1
dst= —+g(sr) dxt~

X» X»

u(s)=P —, (s] &1
+=1 g~

(3)

i s nof inverse fo cln enfire function.
To show this we must obtain the analytic con-

tinuation of u(s) outside the unit circle. This is best
done using the integral representation

where g is entire. Integrating, we get y=x»eg(», where
G is entire. Thus (2) implies that y is an entire function
of xr, and it suffices to show (writing s for y): The
function element dined -by the power series

From this information we can complete the proof.
I et y» be a path going from z=0 once around z= 1 and
back to a point s of 0& ~s~ &1, and let ys be a path
going from. z=0 once around z= 1, then once around
z=0, then again around z= 1 and back to a point z of
0& ~s~ &1. The result of continuing u(s) along yt is
given by (4), from which we deduce that the result of
continuing u(s) along ys is the element

uq(s) =u(s) —4i(s logs)'* 4ir —(logs+2 i)j& (5).

Suppose now that y» terminates in the point z~, and

ys in ss, and u&(s&)=us(ss)=o. . From (4) and (5) we see
that z»/z2. Then, if I'» and F~ are the images of y» and

y2 in the U-plane, the result of continuing the function
F(U) Linverse to U(s)g from U=O to U=n along the
paths I.'» and 1 2 is to obtain two distinct determinations
at U=n, namely z» and z&. Thus the inverse function
F(U) could not even be single-valued, and a fortiori
not entire.

To complete the proof, we prove the existence of y»
and y~ with the desired properties. By letting y» run
around the origin in all possible ways after its return
to 0& ~s~ &1, w= (logs)*' takes on all values in the
sector S: rsz &argw&ssz and therefore ut(s) takes on
all values

u(exp (w') )—4''*w. (6)
4 |" dh

u(s) = s
3/s &, exp(f:) —s

Similarly, by letting 72 run around the origin in all
possible ways after its final return to 0& ~s) &1, us(s)
takes on all values' B. Widom, Phys. Rev. 96, 16 (1954).

~This was proved recently by Dr. D. J. Newman of the
Republic Aviation Corporation, who showed 8&64. Newman's u(exp(w ))—4is-fw —4is l(w'+2si)'. (7)
proof (not published) uses a generalization of Picard's theorem
on entire functions, which we are able to avoid. It remains only to show that the sets of values assumed

of ~~()~ world of Dr W H J p~chs of Cornell if~)~erstt who by the functions (6) and (7), resPectively, as w ranges
has obtained the more precise result 12.56 &2&27.75 . over 5, are not disjoint. Since ~u(exp(w ))~ &f(3/2),
The methods of Fuchs and the Present author are essentially the nd ince (we+2 i)f differs
same, our presentation (of the more limited result) being, how-
ever, more compact and transparent. function in S, it suKces to prove the same for the values
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assumed by functions

and
yr(w) —4ssrfw

ys(w) —Sssr&w,

(6a)

(7a)

w —Ps(w) (7b)

are not disjoint, where f& and ebs are regular and

where pr and Ps are regular and bounded in S. Ilecause
the correspondence m&-+2' maps S onto itself, we may
without loss of generality replace the 8 in (7a) by a 4,
and (dividing by 4igsr and writing go ——po/4igsr) we
have only to prove that the value-sets of the functions

w —lPr (w), (6b)

bounded in S. But this is immediate: for, if (ltst &M,
k=1, 2 then by Rouche's theorem both functions (6b)
and (7b) assume the value MV2i inside the circle of
center M&2i and radius M.

Remark. —If E; denotes the maximum of
~
U(s)

~
on

y; (i= 1, 2), and r=max (E~,E's), the above reasoning
gives the more precise result that F(U') has a branch
point in the circle ( Uj (r, whence r is an upper bound
for the radius of convergence R of the virial series. It
has not been deemed worth while to make a numerical
estimate (which would be a straightforward task)
because in any case the method is too crude to answer
the interesting question of whether (1) converges at
at=i'(3/2)=2. 612. , the value of the dimensionless
density for which condensation is known to occur.
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The results of Chandrasekhar's recent theory of turbulence are
transformed in this paper from ordinary space (used exclusively
in his paper) to wave-number space. Consideration is limited to
the case of stationary, homogeneous, and isotropic turbulence.
A "time-dependent spectrum" is de6ned in terms of the scalar
product of eddy velocities at two diferent times; this spectrum is
related to Chandrasekhar's time-dependent correlation function
by a Pourier transform, as in the conventional, time-independent
case. For in6nite Reynolds number the spectrum is obtained
directly by transforming the correlation function into wave-
number space; the spectrum is given by a much simpler expression
than is the corresponding correlation function.

Consequently, an approximate (linearised) form of the diger
espial equation for the correlation has been transformed to wave-
number space, and this equation is readily solvable, even for a
finite Reynolds number. For h)1/v the spectrum vanishes, and
this cuto6 at large wave-numbers is interpreted as the dis-
integration of turbulence into laminar Qow at dimensions suffi-
ciently small for viscosity to dominate over the inertial transfer
of energy.

Finally the general, nonlinear correlation equation has been
transformed into an integral equation for the spectrum, but a
general solution has not yet been obtained for either the spectrum
or correlation.

I. INTRODUCTION
' 'N a recent paper Chandrasekhar' has presented a
~ ~ new theory of isotropic, homogeneous turbulence
in a steady state. The basic innovations in the new
theory are (1) the consideration of velocity correlations
not only at two different points but also at two Chgerent

times and (2) the hypothesis of a statistical relationship
between the second-order and fourth-order correlation
tensors.

Starting with the hydrodynamic equation of motion
and the equation of continuity, Chandrasekhar derived
his fundamental equation for f(r, t), the longitudinal
correlation function':

8 t'8' i 8—
I

—~Ds' If=f Dsf. —
Br Kilts ) f)r

*The research reported in this paper was supported in part by
the Geophysics Research Directorate of the Air Force Cambridge
Research Center, Air Research and Development Command,
under contracts with the University of Chicago.' S. Chandrasekhar, Proc. Roy. Soc. (London) A229, 1 (1955).
Hereafter this article will be referred to as "Paper I."

s Paper I, Eq. (46).

Here D5, the Laplacian operator in five-dimensional
space, may be written

8' 48
Ds= —+-—

Of t' Bf
(2)

In these equations r (=
~
r

~ ) is the separation of the two
points measured in units of some arbitrary length /;
t is the time interval between the measurements of
velocity at the two points in the unit of t/((sc&))A, ',
where u1 is the velocity component in the direction of r
(say, along the x-axis); o is the viscosity in units of
l((gt ) )A„'. The longitudinal correlation function is
defined in terms of velocity components by

(sc1(ro,to)set(ro+r, to+t))s
(r, t) =—

(NP)A

We define P by

(4)

then for small values of t and r (such that f does not


