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For small scattering angles, one has therefore
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tivistic and relativistic cases, and the agreement is
improved as 0—+0 because contributions from the small
I.become increasingly less important. The right side of
Eq. (26.2) may be replaced therefore by the non-
relativistic formula for the Coulomb wave. In the small-
angle approximation the Coulomb wave contains the
factor exp{—ig ln(1 —cosO~)). This factor is related to
the phases obtained in the c.m. system by

and to a good approximation the factor exp( —ir) lns')
is reproduced. On the other hand there is seen to be a
term in gO' coming in as a correction so that exact
agreement is not proved. The calculation just presented
is very similar to that which gave Eq. (5.27) of Mott's
second paper. The role played by large I. for small 0'

would not have been clear however with a direct use of
Mott's paper.

The consideration of the small-angle scattering in the
laboratory system is seen to support conclusions drawn
from the two-body phase shift approach.
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Scattering phase shifts for the relativistic corrections to the ordinary Coulomb interaction between two
protons are calculated in the first Born approximation. The scattering matrix resulting from these phase
shifts is obtained and shown to agree with the results of the preceding paper.

' 'N the preceding paper, ' the relativistic corrections
~ ~ to the Coulomb scattering of two identical particles
were discussed in terms of the equation derived by
Breit for first order changes in the energy. ' It was shown
there that the matrix element of the interaction energy
of the two particles, B', may be written as

f 1—+tan ) (
O'

I
=e'I +*-{1+VV+3(8+8)

+»{3+((C)(L6&&C3 s))—2((—6)'s'

+2I (C—6) s7—2(I:P4'3.s)')+'
I (1)

The notation is the same as that in the preceding paper;
in particular P is related to the momentum of one of the
particles in the center-of-mass system by

(=1/(Z, +&V),

*This research was supported by the OKce of Ordnance Re-
search, U. S. Army.' G. Breit, preceding paper. Henceforth, this paper is referred to
as B.' G. Breit, Phys. Rev. 34, 553 (1929). H'= H, '+Hs'+H. '+Hg', (2)

the primed and unprimed symbols referring to values

appropriate to the incident and final wave function,
respectively. Furthermore, the spinor 0' is that compo-
nent of the wave function of the relative motion f which
is large if both particles are of positive energy. In the
treatment of the preceding paper, ' the singlet and main
nonspin dependent triplet terms were treated by means
of phase shifts and in coordinate space, while the
remaining terms were evaluated in first Born approxi-
mation in momentum space after this procedure was
shown to be equivalent, to first order in e', to a phase
shift treatment. It is of some interest to consider these
spin dependent terms also in terms of phase shifts. By
doing so a verification of the argument regarding the
equivalence of the direct phase shift treatment and the
momentum space calculations is provided and the
values of the phase shifts which are modified by specifi-
cally nuclear forces are made available. If the initial and
final scattering states are represented by configuration-
space wave functions, a corresponding expression may be
written for H', with ( and (' replaced by their operator
equivalents. Regrouping terms in Eqs. (16)—(16.4) of 8
one obtains for the matrix element
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Pz, sin(rr —Lrr//2).

These functions have the properties

S%=S(S+1)%', L'4= L (L+1)4, p'@=k'Ir'e (6)

with PP~'=Ez' —M'. Henceforth, states of the two-
particle system will be labelled by values of the orbital
angular momentum I. and total angular momentum J
appropriate for the component %.

The scattering phase shifts bl„J are related to the
diagonal matrix elements for the states J, L by Lsee
Eqs. (9.2), (9.4), (13.2), (17.2'), and (17.5') of B]

e' (1+tzs/c')

5'0 28I

7)L, g= —L(Ez+M)/2Ezj (Ez/a K)HL, J'. (7)
(3)

An additional contribution to the scattering matrix will
be supplied by the off-diagonal matrix elements, which
are most conveniently handled in terms of the V matrix
of Breit, Ehrman, and Hull. ' As is shown in Eqs. (17) to
(17.6) of B, the same relation exists between the
elements of H' and of V" as that between H' and 8, given
in (7).

Suitable treatment of the integral in (3), as has been
discussed in 3, shows that this term gives rise to the
usual Coulomb phase shift, o z, =argi'(L+ 1+ir),), where

and ez, v are the velocities of the incident particle in the
center-of-momentum and laboratory systems, respec-
tively. This in turn contributes a diagonal term to the
scattering matrix of the form

—(g„/2As') exp{ ir q„ ln—ss—p+r)„ ln2p —
2o pl} (9)

where s = sin (t)/2). The identity of the particles is meant
to be treated as in Breit and Hull. 4

A straightforward evaluation of the integrals involved
for I.& 2 leads to the phase shifts listed in Table I. For
convenience, the following notation is introduced:

X=ire'/4Ez, 8—= (—Ez M)/(Ez+M). —

TAnLE I. Phase shifts er„q, in units of (ress/4Zz),
from Hq', H, ', IId' for L&2.

From He'L, J From Hd'From Hfr

1
L, L 1 ——(3+s)—

L

1

L(2L—1) L (2L—1)

(3+ s)
L(L+1) L(L+1)

L, L
L(L+1)

L, L+1 (3+8)
L+1 (L+1)(2L+3) (L+1)(2L+3)

The matrix elements H, ', H si and H, '+He' correspond,
respectively, to the operators EI~, ÃI2 and EI3 of the
preceding paper. ' The operator p in these expressions
stands for (A/i) V, the factors involving derivatives with
respect to r coming from the commutators of p with r.
The quantity {1/r} is a function of r analytic at the
origin and arbitrarily close to 1/r elsewhere. The nota-
tion {1/r}'means (8/r)r) {1/r}.The limit {1/r} +1/r is-
taken after the integrations have been performed. A
justi6cation of this procedure is given in Sec. IV of B.
The first term in (2) is spin-independent and the only
one surviving in the singlet states. The second term is
the matrix element of a vector operator in the space of
S, and the third involves a tensor operator in S space.
These terms are of order (Ez—M)/(Ez+M) relative to
the first, and the fourth term is of this same order
relative to the second and third.

In the first Born approximation, the wave functions zP

and tP' represent free-particle waves, which, for the
purpose of evaluating phase shifts, are chosen to be
spherical. The functions 8' then have the form

+= (1/r)Fz, (r) y~ '„, (4)

in which FJ. is the regular solution to the differential
equation for r times the radial wave function. The
normalization is such that

'ill'z}dQ= 1, (5) 3 Breit, Ehrman, and Hull, Phys. Rev. 97, 1051 (1955).
4 G. Breit and M. H. Hull, Jr. , Phys. Rev. 97, 1047 (1955).
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TAuxz II. Phase shifts BL, J' in units of (~es/4&&),

from IIf,', II.', H~', for I.=O, 1.

L, J
0, 1
1, 0
1, 1
12

From Hh'

0—(3+-', s)—-'(3+-:s)
—:(3+-:s)

From He'

8/3—1
1
2—1/10

From Ha'

2 g
1 g
I g6

(7/30) s

It is not proper to put L=O or 1 in the general ex-
pressions for the phase shifts given in Table I. These
general formulas have been obtained by letting {1/r}~
1/r in the integrand of the integrals in question, a
procedure justified by the fact that the integrals are
uniformly convergent for L&2. This convergence does
not obtain for L= 0, 1 so that it is not unexpected that
following the prescribed procedure of letting {1/r}—+1/r
after the integrations have been performed leads to
results diferent from those obtained by letting L~O, 1

in the general expressions of Table I. The phase shifts
for L=O and L= 1 are given in Table II.

Only H, ' and IId' give contributions to the V matrix,
which are handled in a similar manner. The results are
shown below, the general expression this time being
valid for all L~&0.

rL, L+2 rL+2, L X(1+h)/

{(2L+3)[(L+1)(L+2)ji}. (11)

It is to be noted that these phase shifts represent only
the lowest term in an expansion of the exact phase
shifts in powers of q.

The scattering of a partial wave of specified L will be
composed of contributions, described by 81. J, from each
of the three values of J allowed for a given L, in addition
to further scattering, described by O'I., z+2, from the
states L&2. In the presence of an additional interaction
of the tensor type, it may prove desirable to treat the
diagonal contributions to the scattering matrix differ-
ently from the nondiagonal contributions. Therefore
this separation is made here in dealing with the Coulomb
corrections. The various partial waves may be combined
to give the total scattered wave and hence the 5-matrix;
convenient formulas for this are to be found in Breit and
Hull4 and in Breit, Ehrman, and Hull. ' In this connec-
tion it may be remarked that to the lowest order in q, the
scattering phase shifts 6 are of course identical with the
functions QL &=exp(i8LJ) sin8L ~, used there. These
formulas describe the scattering of a nonrelativistic
Coulomb wave, the purely Coulomb part of the scat-
tering being included in the factors eL, s ——exp(2io. L, s), in
which 01. 0 is the Coulomb phase shift of the Lth partial
wave relative to that of the L=0 wave. According
to Eq. (13) of 3, however, the matrix element H, ',
which is the part analogous to the nonrelativistic
Coulomb interaction, gave just the usual formula for the
Coulomb phase shift, save for a modification in the
definition of g. It might be assumed, therefore, that using
such a modified e~, o in the expression for the scattering

PL(x)
F(a,x)—= P

L=o L+u

where a is an integer or rational fraction. The generating
function for Legendre polynomials may be used to show
that

F(u,x) =
(1—2hx+ h') i

(12)

and on performing the indicated integration, one is led
to elliptic functions for the values of a in question.

Alternatively it may be noted that the combination

L o5 2I +3 =2L 1)—
occurs in most of the sums. The I.egendre function of the
first kind of order one-half, P~„may, in turn, be ex-
pressed in terms of elliptic functions.

If the scattering matrix is parametrized in terms of
the o.'s introduced previously, 4 the contributions from
the various parts of the interaction matrix are as
follows.

From Hb .

ni's'= —n4'" ———X(1—x) '(3+hx),

where x=—cosa.
From the diagonal parts of H, ':

ni&'=n4&'=X(1 —x') '

X[—(1+x)+(1 x)E+2xFj, —
ns&' =X(3+-'E—E)
ns&'= —X(1—x') '[—(x+1)'

——', (x—3)(x+1)E+(x'+3)Ej,
ns" = —X(—2+X'—2E),

of the partial waves would correspond to taking into
account exactly the scattering given by H, '. Extreme
care must be taken in this regard, however. The phase
shifts are known only to first order in g, as mentioned
before. Thus a consistent treatment based upon an
expansion in powers of q would demand that e~ 0 be
replaced by its value for q= 0, that is, unity. This in fact
introduces considerable simplification into the summing
of the infinite series involved. The series may then be
reduced to sums over functions of L times I'I, or its
derivatives, together with a few extra terms to take
account of special behavior for L=0, 1.The functions of
L take the form of ratios of polynomials which, however,
are factorable into products of terms linear in L. The
theory of partial fractions may then be used to convert
the summations into linear combinations of the function
F(a,x) and of its derivative and integral with respect to
x. The function F(a,x) is defined by
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n, &@=n4&"&=Xh(1—x') '

X[(*+1)(x—2)+ (1—x)K+2xEg,
ns&"& = XS(1+-',K—E),

&"& = —Xh(1—*') '[—(x+1)'
—-', (x—3) (x—1)K+(x'+3)Ej,

ns&
"& = X8(—2x+—K 2E).—

From the nondiagonal parts of H, '.
hni&'&=An4&'&= —X(1—x') '

X[(x+1)(x—2)+ (1—*)K+2xE],
Ans&' ———-', hn, &'& = —X[-', (1—x)+-',K—Ej,
hn, &'& = —X(1—x') '[—-', (x—3) (x+1)'

+-,'(x—3) (x+1)K—(x'+3)E].
From the nondiagonal parts of H~'.

Ant&
"&= An4&"& = —X8(1—x') '

X[(x+1)(x—2)+ (1—g)K+2xE),
Sn,&' = —-', an, « = —Xh[-', (1—x)+ -', K—Eg,
Ans& ~& = Xh (1—gs) —s[-'(g+ 1)s(g —3)

——', (g—3) (x—1)K+(x'+3)Ej.

(16)

Combining the diagonal and nondiagonal parts from H, '

and H ~' one obtains the following simpler expressions.
From H, ':

~&(') ——~4(') ——X,
ns&'& = X[3--'(1—x)j
ns&'&= —X[-', (1—x) ']
ns&'& = X(3—x)

(19)

where E, E are complete elliptic integrals of the first and
second kinds, respectively, with arguments k' = -', (1+x).

From the diagonal parts of H~'.

&r., 0=—
1

(2)'v rs l dye "y's &I~1(y), (21)
r(i~)

where I„(y) is the modified Bessel function of the first
kind of imaginary argument. This representation is
obtainable from the Mellin transform of the quotient of
two gamma functions. The terms not containing
exp( —irl lns') come from the I.=O and I,=1 phase
shifts. There results:

Q'y= —X exp( ir& l—ns')—
1—x2 1+x

2 1+it& 1
exp( ir& ln—s') — — . (22).1—x' 1—

z&1 1+x

Since terms of order q2 and higher have been neglected
in the calculation of the phase shifts, the appearance of
terms not having exp( ir& ln—s') may not be significant.
Such terms may be modified in a treatment including
higher order eGects in g consistently.

The scattering matrix obtained here agrees in the
lowest order in p with that obtained by Breit directly
from Eq. (1) the contributions from II,' and II&,

' agree
with the result of Garren' to the same order in g.

ACKNOWLEDGMENTS

For comparison, the results of summing the partial
waves for the scattering by H~', using the exact ex-
pression for el., o together with the first Born approxima-
tion phase shifts, are given below. The summation in
this case has been performed by using the following
integral representation for el„o'.

From H~'.
ny( ) =o!4(+=0

ns&
"& = X8-,'(1+x),

ns&
"&———XB[-',(1—x) '7,

ns&"& = Xh(1+x)

(20)

The authors would like to express their appreciation
to Professor G. Breit for suggesting this calculation and
many helpful discussions during the course of the work.

s A. Garren, Phys. Rev. 96, 1709 (1954); U. S. Atomic Energy
Commission Report NYO-7102, Carnegie Institute of Technology,
March 1, 1955 (unpubhshed).


