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It is shown that the treatment of the collision of two charged
particles by means of a first-order Born approximation and
Mgller’s matrix element involves an inconsistency connected with
the infinite cross section for small angle scattering. It is then
shown that an energy formula derived for the two-body inter-
action by means of an early form of the Heisenberg-Pauli quantum
electrodynamics makes it possible to construct a relativistic two-
body extension of the nonrelativistic one-body Mott-Gordon
solution. This extension is good only to order ¢? but arguments are
given for believing that the angle-dependent and e?-containing
factors are partially correct for the more important terms. The
Gordon sphere construction naturally leads to such factors and
the consideration of small angle collisions in the laboratory
system leads to a similar result. The latter suggests the possible
existence of correction terms. The explicit superposition of partial

waves is avoided by noting a formal similarity of the relativistic
and nonrelativistic problems for principal non-spin-dependent
terms. Contributions of the spin-dependent terms are worked out,
also avoiding explicit summation by employing a momentum
space representation and noting that once the main terms are
taken care of by the Gordon sphere construction, the spin-
dependent terms can be treated as a perturbation on account of
their more rapid fall-off with distance.

The possibility of dealing with first-order phase shifts by means
of a phase shift matrix is discussed in connection with Egs. (17)-
(17.2') and the coupling of states with different L but the same J
in relation with Eq. (9.8) and Egs. (17.1)-(17.6). The definition
of phase shifts in the relativistic problem, neglecting meson pro-
duction, is discussed in connection with Eq. (8).

1. INTRODUCTION AND NOTATION

HE collision of two electrons has been treated

relativistically by Mgller,! taking into account
first-order effects in ¢? only. He showed that high logical
consistency results through the employment of his
matrix element,

M= (e*h?/7)(a:%2, [1— ererr]aaas)/
L(pi—p0)?— (Ei—E10)¥/¢%], (1)

in momentum space. The quantities for the initial state
are designated by zero superscripts, a; and @. stand
respectively for Dirac spinor amplitudes of the two
electrons with unit density normalization, the p denote
momentum, E the energy and the remaining quantities
have standard meaning. By means of this formula a
treatment of Coulomb scattering has been given re-
cently by Garren? who included the effect of the anoma-
lous magnetic moment of the proton as well. Garren’s
considerations regarding the phase factors analogous
to those present in the nonrelativistic problem do not
appear to have been justified, however, except on the
grounds of there being no large effect caused by such
phase factors and related Coulomb phase shifts so that
the distinction between relativistic and nonrelativistic
values could be argued to be unimportant.

The data analysis problem is complex, and high
accuracy in phase shift determinations will perhaps be
unobtainable for some time. It is possible therefore that
a more accurate knowledge of the relativistic correc-
tions will not be needed in the immediate future. It has
been felt, nevertheless, that it is not possible to predict
which features will be important eventually and that
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the relativistic effects should be more firmly established
and examined. An attempt to do so is being made in
the present paper.

Indefiniteness in the employment of Coulomb phases
frequently called oy, is absent in the treatment below
and the employment of the same value of the parameter
frequently called 7 in different parts of the scattering
matrix is justified by this work within an approxima-
tion which may be claimed to be better than to within
the first power of €? for some of the terms. Singlet scat-
tering is treated with relatively little uncertainty.

Use is made of the formal similarity between the
phase shift treatment of the nonrelativistic and the
relativistic problems provided the latter is considered
in the center-of-mass system of the two colliding par-
ticles. It is shown in this connection that the phase
shift is an exact concept in the relativistic treatment
provided corrections for the emission of photons and of
mesons are neglected. A direct extension of Gordon’s
nonrelativistic treatment gives then a definite answer
for scattering in the singlet case. One of the terms in the
scattering matrix for the triplet case is identical with
that representing singlet scattering. This term involves
the progressive phase shifts which depend on the inter-
particle distance 7 and contain the expression 5 In2%r.
This circumstance is connected with the infinity in the
total cross section and the large small-angle scattering
characteristic of the Coulomb field. This term contains
the standard nonrelativistic answer.

For triplet states the additional terms of the scatter-
ing matrix can be treated by the same method. Some
of these are finite everywhere but some are infinite at
zero scattering angle. The latter arise from spin-orbit
interactions.

It is shown in Sec. 3 that the nonrelativistic problem
can be treated by the phase-shift method in the first
approximation in the parameter 7, i.e., to within the
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first power of €2 This is the discussion connected with
Eqgs. (6) to (6.6). In the same section, in relation to
Egs. (9) through (13.7), there is a proof of the equiva-
lence of the use of the relativistic value of 5 to the
Gordon sphere method as applied to the relativistic case.

On the other hand, it has been found difficult to ob-
tain a clear treatment of the scattering problem by
means of Mgller’s matrix element employing the ordi-
nary iteration method. The difficulties are discussed in
Sec. 2. It is shown there that the employment of (1)
in the first-order Born approximation is self-contradic-
tory and leads to the occurrence of the incident wave
in the scattered wave with a formally infinite coefficient.
It is not surprising that such a paradoxical result is
obtained because there exists no solution of the non-
relativistic Coulomb scattering problem with the wave
at infinity asymptotic to a plane incident plus a scat-
tered outgoing wave. This situation is discussed below
in relation to the infinity in the total scattering cross
section and it is shown that its origin lies in the fact
that even for a screened Coulomb field a non-negligible
number of particles is removed from the screening
sphere by the scattering. In Mgller’s introduction of 91,
a limiting process with a screening sphere was used as
an intermediate step but has not been followed out
once 9T was obtained.

The first-order Born-type perturbation calculation
is incorrect in view of the large effect which the Cou-
lomb field has on the incident plane wave. According
to Mott and Gordon,? the nonrelativistic Coulomb wave
is asymptotic to

exp{il kz+n Ink(r—2) ]} —[n/k(r—2)]
Xexp{iLkr—n Ink(r—z)+200]}, (1.1)

involving the quantity 7 in the exponents in combination
with quantities which become infinite as the direction
of incidence is approached. While a power series ex-
pansion in ¢? can be made, it becomes inapplicable at
sufficiently small scattering angles. The technique of
solving the problem by considerations confined to
momentum space appears not to have been worked out
and the problem has been attacked therefore by a direct
extension of the procedure used by Gordon in his
treatment of the nonrelativistic case.

In Sec. 4 the reduction to an equivalent wave equa-
tion operator is carried out leading to the operator of
Egs. (16) through (16.4). The relativistic form of the
interaction operator shows the presence of the spin-
orbit terms in I, of Eq. (16.2) and of the tensor type
as well as additional scalar type terms in 75. This ex-
pansion has its origin in the possibility of expressing
the energy of two fermions interacting through the
electromagnetic field to the first order in ¢ and in all
other orders regarding retardation effects. This expres-
sion has been derived from the Heisenberg-Pauli early

3N. F. Mott, Proc. Roy. Soc. (London) A118, 542 (1928);
W. Gordon, Z. Physik 48, 180 (1928).
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form of quantum electrodynamics. The old results are
stated in Egs. (10) and (10.1) of the text. Their appli-
cation to the present problem is conveniently carried
out in the center-of-mass system because of the follow-
ing circumstances: (a) The unperturbed states referred
to by subscripts s, £ may be considered to be plane
waves of the same energy or else linear combinations
of such plane waves. The wavelength corresponding to
exchange integrals which enters Eq. (10.1) is therefore
infinite and the exchange terms enter with the same
factors as the direct interaction terms. This simplifica-
tion is characteristic of the center-of-mass frame of
reference. (b) The Coulomb phase shifts which enter
this calculation are formally similar to the phase shifts
of the nonrelativistic problem so that the Mott-
Gordon solution can be adopted directly for the singlet
scattering.

The detailed calculation of phase shifts arising from
I; and I3 is avoided by the employment of the momen-
tum space form of the interaction operator, dealt with
in Egs. (12) to (12.8). This procedure suffices for the
calculation of effects not covered by the singlet scatter-
ing considerations to within the first order of the param-
eter 7. The results are collected in Egs. (18) to (20.5).
The distinction between the treatment of the singlet
scattering type effects and the remaining ones is re-
considered in Egs. (22) to (22’). It is shown in this con-
nection that the momentum space treatment, used as a
calculational short cut, is equivalent to a phase shift
treatment to within the uncertainty in the knowledge
of the phase shifts caused by the terms contained in
I—1I; combined with the fact that the operator of Eq.
(10) is not supposed to be more accurate than within
the first power of €2 It is not claimed that the part of
the scattering matrix obtained through the use of I,
which applies directly to the singlet scattering and
partly to the triplet is exact, but it is shown that
through its inclusion one takes care of all progressively
varying phase shifts. These phase shifts are caused by
the long-range character of the Coulomb field and are
therefore related to the infinite small-angle scattering.
On the other hand, the discussion of Eq. (21) shows
that the phase-shift approach is not interfered with by
the infinity in the total scattering cross section. It
may be used, therefore, for the calculation of the other
infinite part of the cross section which arises in the spin-
orbit interaction 7. The latter introduces a milder
infinity than that of I; and involves no progressively
varying phase shifts.

Garren’s considerations regarding the effect of the
anomalous part of the proton magnetic moment have
been checked by other procedures and, since the results
do not differ essentially from Garren’s, the inclusion of
considerations regarding these effects appears un-
justifiable. It may be remarked that in the case of small-
angle scattering which is of main importance in the
interpretation of data, the problem is approximately a
one-body problem because the momentum required by
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the particle which is at rest in the laboratory system
is small for small-angle scattering. Thus, in the labora-
tory system, one of the particles may be considered as
having a nonrelativistic velocity while the scattered
particle is subjected to an essentially static external
field. By this procedure the anomalous magnetic mo-
ment effects can be understood very simply, and the
simplicity of the form of the relativistic n with the en-
trance of the velocity of the incident proton referred
to as ?’ as in Eq. (13.7) is also immediately obvious.
This fact gives one additional confidence in the treat-
ment of the singlet part of the scattering cross section
which may be surmised to be more accurate than the
present derivation would indicate.

It would appear that the extensive use of Mdller’s
matrix element in modern quantum electrodynamics
may require caution, as follows from Sec. 2 below. The
present paper brings to a somewhat sharper focus the
question of the practicability of expansions arranged
strictly in powers of ¢ rather than in terms of combina-
tions such as are encountered in the Mott-Gordon
formulas for the nonrelativistic Coulomb wave. The
connection of the screened-field considerations with the
internal consistency of handling the problem by itera-
tion procedures in momentum space is brought out in
the text below in connection with Egs. (4.1) and (4.3).

The results presented here are subject to many limita-
tions, some of which have already been discussed.
Among the additional ones, one may mention the infra-
red-catastrophe and the wave function distortion effect.
The latter may be expected principally in comparisons
of n-p and p-p interactions. It can enter in the follow-
ing ways.

The whole Coulomb effect may be treated in first
order only. In this case the phase shifts should be calcu-
lated employing wave functions distorted by the nu-
clear potential as a starting point for Coulomb phase
shift calculation. For high enough L the distortion effect
will be slight but for the smaller L it is not negligible.
For all of the singlet scattering this effect is fully taken
into account by calculating the effect of the nuclear
potential as a phase shift to be superposed on the
Coulombian phase as is usually done in the treatment of
anomalies in Coulomb scattering. The same applies to
to the part of the triplet scattering matrix arising in 7.

Alternatively, the Coulomb effect may be treated as
though it were known exactly. This is the procedure
generally used in nonrelativistic problems. In the rela-
tivistic case there would be little justification for calcu-
lating wave functions corresponding to all the terms in
the effective potential since complications arise in
calculations with tensor-force-like terms. Thus it is not
likely that more than the singlet-type interaction will
be treated exactly, especially since the progressive
phase shifts are taken care of in these terms so that
there is no practical advantage in incorporating spin-
orbit and tensor-type terms in the “exact” part of the
calculation. In either case, therefore, one is concerned
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with wave function distortion effects on the spin-orbit
and tensor-type terms. A correction should be made for
the difference between the phase shifts caused in these
terms with and without distortion. This correction
consists in adding to the scattering matrix the difference
in the contributions of a singlet (L,J) state with and
without wave-function distortion.

The paper is concluded with a comparison of the
results of the approximate two-body treatment with the
exact relativistic calculations of Mott for the one-body
case. The separation of angles displayed in Egs. (23),
(23.1) leads to two sets of phase shifts as in Egs. (24.2),
(24.3). It is then shown by means of Egs. (27) and
(27") that for small-angle collisions the one- and two-
body solutions are in agreement regarding the occur-
rence of angle-dependent phase factors.

Notation

v=nonrelativistic velocity of incident particle in the
laboratory system.

vr=velocity of either particle in the center-of-mass
system.

o’ = velocity of incident particle in the laboratory system.

Er=total energy of either particle in the center-of-mass
system.

M =rest of mass of particle.

p=reduced mass of the interacting particles.
p="Fkh=momentum of either particle.
E=p/(Er+M)
7= (0p), where ¢ is the Pauli spin matrix for the
relevant particle.
n=e*/hv.
ne=e*/hv’.
p=kr.
{1/r} =function differing from 1/7 only in the neighborhood
of the origin, where it is defined to be finite.
L=orbital angular momentum quantum number; rela-
tivistic states are indexed by the value of L for the
large component.

F1,=regular solution of the differential equation for » times
the radial wave function. The superscript ¢ refers
to this function in the Coulomb field.

G =irregular solution corresponding to Fr.

Hp=Gr+iFy.

o= Coulomb phase shift =argl'(L+1+419).

Kr=nonrelativistic phase shift for particle without spin.

8z, y=phase shift for state of given L, J.
8%, 8f=independent phase shifts arising in coupled L states
of same J.
¥ (r) =wave function in coordinate space.
Cp=wave function in momentum space.
1, s=radial part of the wave function in presence of the
interaction.
Y1, u-m; Y®7/ ,=angular and spin-angular parts of the wave func-
tion, normalized as in Eq. (8.3) and (9.3) of the
text.

(‘,f ;,J; m) = vector addition coefficient for spin .

s=sin(8/2), where 0 is the scattering angle in the center-
of-mass system.
c=cos(8/2).

2. MOMENTUM SPACE

Ashas been brought out in the Introduction, standard
discussions give only a partial answer to the problem of
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the Coulomb wave. In the present section the reasons
for this deficiency will be discussed. It will be seen that
the incompleteness of existing discussions is caused in
part by the inconvenience of mathematical manipula-
tions in momentum space. This inconvenience is con-
nected with the infinite forward scattering which is
characteristic of the Rutherford formula. A calculation
by the usual first-order Born method becomes inap-
plicable therefore. The relativistic and nonrelativistic
problems do not differ in essential respects regarding the
difficulty of handling the divergence at small scattering
angles in the first Born approximation and the problem
will therefore be discussed for the nonrelativistic case
in this section.

The wave equation describing the motion of one
particle in a Coulomb field and described in coordinate
space is

n? ¢
[——A-l--—J'//:ElP- 2
2u r

The wave function in momentum space, C,, intro-
duced by

V=it [Cooedp, p=l, ()
satisfies
p?
(G-2)et [vomcsar-o, @2
i
where o
et/ (mh
Vipp)= (2.3)
(p—p')?
is the matrix element
V(r)=e/r (2.4)
in momentum space. An incoming plane wave
Y@ =exp (tkor) )

corresponds according to Eq. (3) to
¢, =i [ explitho—Rrydr=0-p9, ()
so that the first-order correction to Cp@ is

(Ey— E—i€)Cy®=— f V (p,p")8(p"—po)dp’
= V(p7p0)7
E,=p*/2u, (3.1

corresponding to a first-order correction to the wave
function,

v=— [ V00 (= E=igietdp.  (3.2)

3.1
where

The positive small constant e secures the absence of
incoming waves in ¢® in the usual manner, and one
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obtains the asymptotic behavior
Y O~—dauhV (pr/r,p%)e* /7, 3.3)

which is often all that is needed. The manipulations
with e are, on the other hand, equivalent to a direct
solution of Eq. (2) subject to the boundary condition
of y~exp(ikor)+outgoing waves. In order that this
method be applicable it is necessary that C, obtained
by means of it be square-integrable, which is the case in
many problems. The direct solution of Eq. (2) for the
case of a central V gives

YO =3 QL) Pt/ F D (k) [br, (3.4)
L
with

FLO (k)= — (2u/kH2) I Hi(kr)

% f R O I NA
0

% f " L VOO H |, (3.5)

where F1, G, are regular and irregular functions neg-
lecting the Coulomb interaction, normalized so that
F'G—G'F=1 and with a difference in asymptotic
phase of 7/2 leading to Gr+iF,=H. being an out-
going wave. By means of the definition (2.1), one ob-
tains C;@ in terms of ¥ as

CoW=4rh—k2 Y (2L+1)PL(k%k/#?)
L

X f i Fr(kr)FL® (kr)dr. (3.6)

From Eq. (3.5), it follows that

Fr.O~— (2u/h*k)H 1,(kr) f F2(krYV (rdr', (3.7)
0
and

YO~ —[2u/BE] (e*"/7) % QL1 PL(k'r/kr)

Xj:o F2(kr YV (rdr', (3.8)

while for |p|=|p°|, the Legendre function expansion
of the exponential in the integral which gives (2.3) in-
terms of (2.4) yields

V (0.0) = (b /8) & (2L+1) P (kI/ )
><j‘00 F2(kr\V(r)dr'. (3.9)

Comparison of Eq. (3.8) with Eq. (3.9) gives
YO ~— 2muh/r)e*V (p,p") 4)
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provided the direction of the momentum p is taken to
be the same as that of r. Comparison of Eq. (4) with
Eq. (3.3) shows the equivalence of the two considera-
tions. While this equivalence is well known and has
been dealt with by Mott and Massey, it nevertheless
appeared desirable to present the main steps as a basis
for the following discussion. It is also necessary to call
attention to another well known fact, viz., the occur-
rence of phase shifts in their Taylor form (first Born
approximation) through the integrals in Egs. (3.8)
and (3.9).

The treatment of the problem in coordinate space by
means of Eqgs. (3.4) through (3.9) does not apply for a
Coulomb field. This fact has been discovered inde-
pendently by Gordon® and Mott.> The assumption of
the existence of a definite phase shift is implicit in
Eq. (3.4) and the result as represented in Eq. (3.8)
illustrates, through the presence of first-order phase
shifts, the dependence of the Rayleigh-Faxén-Holts-
mark method on this assumption. The coordinate
space treatments of the Coulomb field by Mott and
Gordon show that solutions of this form do not exist.
Accordingly one may expect that the momentum space
treatment will not apply either. In fact, according to
(3.2) and (2.3), Cp® contains the factor 1/(p—po)? and
the probability of scattering having taken place depends
on the divergent ./ (p—po)~*dp. This divergence is the
result of infinite small-angle scattering. It makes the
method inapplicable to the Coulomb potential. For
other V(p—po), such a divergence need not occur and
there are many cases in which the method works.
The question arises as to whether the divergence inter-
feres with the momentum calculation only formally
and whether correct results may not nevertheless be
obtainable by means of the C,® of Eq. (3.2). This
question is a natural one in view of the success of
Mgller’s treatment! of the scattering problem in
momentum space. In this treatment the transition
probabilities are calculated by means of [C,® |2 One
could argue that the consideration can be carried out
for a screened Coulomb field as may be done by chang-
ing 1/r to e~*"/r with a small a. Instead of (k—ko)2,
there occurs then [[(k—ko)?+02]! and the result
converges. For very small a=1/¢, however, such a
procedure is nevertheless incorrect because if the chance
of finding the system in a scattered state becomes com-
parable with that of finding it in po the calculation
becomes inapplicable. For a sufficiently large screening
radius @, the chance of small-angle scattering becomes
large and the value of ¢* becomes severely restricted.
According to Rutherford’s scattering formula the
number of small-angle scattering processes taking place
for a scattering angle 6> 6, is approximately

47 (2/ur?)?/0.2. 4.1)

If the center of force is enclosed by a screening sphere of
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radius ¢, then the minimum deflection 6y corresponds to
8:22e*/Ea, (4.2)

and according to (4.1) and (4.2) the number of particles
scattered per second from the wave represented by
Eq. (3) is approximately

4 (&/u*)?(Ea/ &) =ma?. (4.3)

Some details of geometry of the action of the screening
sphere are neglected in the simultaneous application of
Egs. (4.1) and (4.2), but it is seen from (4.3) that the
incident wave consisting of one particle/(cm? sec) has
removed from it by action of the Coulomb field inside
the screening sphere approximately the number of
particles incident on the sphere. It would be wrong
therefore to neglect the distortions of the incident
wave by the Coulomb wave, and the employment of
[(k—ko)*+a]" is unjustifiable. As @ increases, 8, de-
creases and the principal contributions to the scattered
intensity arise from very-small-angle scattering. It is
clear that in the limit §;—0 the representation of the
incident wave by means of Eq. (3) becomes impossible.
The inconsistency of the first order iteration procedure
in momentum space becomes even more apparent from
the following considerations.

If the momentum-space first order method is used in
the calculation of ¢ by means of (3.2), the first order
correction to the wave function is found to be propor-
tional to an integral containing integration over angles,
as in

f (k— )2 *rdg,
— /Ry S 2LA1) Py (Kot )
XQr((k*+ke?)/ (2kko))F 1(kr)/ (kr), (5)

where the @y, are Legendre functions of the second kind.
Since these contain terms in log[ (B-+ko)/ (k—ko)],
the integration in Eq. (3.2) brings in loge so that ¢®
diverges. Since

o(2)on (2
o /T 22

o (e

where the terms left out contain the Py, only, and since
for k=ko the Py in this formula becomes unity, the
terms in log(k— ko) are seen to reproduce the incident
wave but with an infinite coefficient. The application of
the iteration procedures is seen to be inconsistent. It
will be shown in the next section that the difficulties
of the direct iteration procedure can be avoided by a
change of method.

The relation of Eq. (3.6) to the exact Mott-Gordon
solution is seen from the expression for the wave func-
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tion in momentum space corresponding to the latter,
2.,

Cpc= drh} Z (2L+ 1)PL (kko/kk()) (kko)—l
L
exp(ios) f Fo(bn)Fre(ka)dr, (3.6)
0

where the o, are the usual constant Coulomb phase
shifts and Fr° is the regular Coulomb function for
angular momentum L. If in this formula one sets c,=0
and F.°=F1, and employs

f C EL Dok dr= (n) 25—,

there results

(Cy)°="h*(p—po), (3.6")
but for any finite  the § function is smeared out by the
phases in F1° as well as the o, outside F1°. For small
the smearing out is small, however, and in the calcula-
tion of perturbing effects one may then replace (3.6")
by (3.6”).

It is seen that the exact C;° can be constructed as in
(3.6") and the approximation of Eq. (3.6) and that it is
essential to employ in the exact solution the factors
exp(ior). The procedure which leads to (3.3) by the
momentum-space method fails in the Coulomb case
but the phase shifts nevertheless give the coordinate-
space and momentum-space wave functions.

3. COULOMB PHASE SHIFT METHOD

It will first be shown that the nonrelativistic Cou-
lomb phase shifts can be calculated by means of a first-
order procedure forming an immediate extension of the
Taylor formula.* By this means, one can then form an
immediate extension of Gordon’s construction of the
Coulomb wave. It will then be shown that a similar
procedure may be used relativistically if results to
order ¢ only are required. The relativistic treatment is
carried out by making use of a simplification in energy
expressions arising in the center-of-mass system. A
general connection between energy and phase shift
will be made use of.

For the nonrelativistic problem for a particle without
spin, the phase shift caused by the field inside a sphere
of radius 7 can be calculated by means of?

Ki=— f (V/E)F dp, (©)

where E is the energy of the particle. In the case of two
particles, E should be replaced by the energy of relative

4 H. M. Taylor, Proc. Roy. Soc. (London) A136, 605 (1932).
5 Breit, Condon, and Present, Phys. Rev. 50, 825 (1936).
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motion. Making use of
&/rE=2/p 6.1)

and employing the value of Fy unperturbed by the
Coulomb field, there results

» 1—cos(2p) .
8Ko=—n f ————dp=—n[C+In(2p)—Ci(2p)],
0 P

where C is the Euler constant 0.5772.. ., and Ci(2p) is
the cosine integral. For large p,

3K o~—n[C+In2p— (1/2p) sin2p]. (6.2)

In the usual notation, the phase of the Coulomb wave at
large 7 is

p—Lw/2—nIn2p+o1, or=argl'(L+1+in). (6.3)

For 7«1, one has to first order in 5 the value of the
Coulomb phase shift

Gog—Cﬂ.

(6.4)

For sufficiently large p, comparison of (6.2), (6.3), and
(6.4) shows agreement of the phase for L=0. For
n=0, employment of recurrence relations yields

(L+1) f (Frp?—Fr?)dp/p=— (Fri+F12)/2. (6.5)

Applying this formula to Eq. (6) and making use of
the validity of the expression for the phase as in (6.3),
it is seen from (6.5) that the addition to the value for
n=0 caused by 7 in first order is

2 f (Fraii—F2)dp/o=n/(L+1)

arg(L+1+4im)=n/(L+1). (6.6)
This completes the verification of the agreement of
phase shifts calculated as a first-order perturbation with
those obtained from exact hypergeometric function
solutions. Logically the verification could perhaps be
dispensed with if it were not for the fact that the phase
will be used below, including the  In(2p) part. For large
p this part of the phase becomes large, while the assump-
tion has been made in the derivation of Eq. (6) that
[6K1|<1. A verification of the consistency of the
method is desirable therefore.

Gordon’s paper® and a few additional considerations
show that the Coulomb wave as generally used may
be considered to be formed by means of the following
limiting process. The radius R of the screening sphere
is made large in comparison with the thickness of the
transition region; the latter thickness is kept large in
comparison with the wavelength so as to minimize
reflections at the transition region. The incident ¢© of
Eq. (3) is modified by the sphere and its interior. For
any R the wave function inside the sphere is a constant
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of absolute value 1 times a series the terms of which
are as in

¢°=§ iE2(2L+1)Pr(cos®)e’LF 1./ p O
0

except for the fact that beyond a certain L the terms are
modified by the action of the screening sphere and are
much smaller in absolute value. The values of L at
which this takes place correspond approximately to
classical angular momenta at which the screening
sphere would be just missed by the incoming particle.
The asymptotic form of Fr°is

Fré~sin(p— Lw/2—n In2p+01), (7.1)

and the sum on the right side of Eq. (7) is thus seen to
be obtainable by regarding o, —7 In(2%2R) in accordance
with (7.1) as the phase shift caused by the screening
sphere with its interior and then discarding the factor
¢—i1 In2kE in the formula for y°. Equation (7) is equiva-
lent to the standard hypergeometric formula for ¢°
and the asymptotic form which gives Rutherford’s
formula. It may be noted that y¢ is the wave function
inside the Gordon sphere, i.e., in the region of a pure
Coulomb field. The applicability of y¥°¢ to immediate
calculation of scattering is contingent on the possibility
of escape from the screening sphere without refraction
and reflection. It may thus be shown that for R—e
the standard use of ¢ for the calculation of scattering

becomes justifiable under most circumstances even

though ¢¢ does not represent the wave outside the
screening sphere.

Employing the first-order phase shifts caused by
¢%/r in integrals such as that on the right of Eq. (6),
one obtains the phase shifts to first order in 9. The
possibility of carrying out a calculation to this order
does not depend therefore on the availability of exact
solutions such as the usual hypergeometric functions.
The fact just mentioned might be considered to be
trivial were it not for the care which must be exercised
in the employment of first-order solutions, which has
been discussed in Sec. 2 of the present paper. The result
of employing Eq. (7) with first order phase shifts is
free of the inconsistencies discussed in connection with
the iteration procedure for the wave as a whole. The
difficulty of large scattering at small angles is absent
in the partial wave analysis method because the wave
is constructed for any angle.

In order to extend the method to the relativistic case,
it is necessary to be able to calculate the relativistic
phase shifts. Since the definition of phase shifts in the
relativistic problem does not seem to have been clearly
stated in the literature, these will now be introduced.
The two-body wave function ¢ will be considered in the
system of the center of mass. For sufficiently large
values of the distance » between the two particles, the
wave function satisfies the equation for free particles.
In order to secure this condition the particles must lie
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outside the Gordon sphere, which in the present case
is taken in the space of ri;—r; of the interparticle dis-
placement vector in the system of the center of mass.
These equations are

(E—2M)¥+rmixa+mxu=0,
T+ Exi+rne=0,

¥+ Exu+mie=0,
mxi+rixn+ (E42M) =0,

where the velocity of light ¢ has been set =1 and where
the representation of the Dirac matrices has been taken
to be that of Dirac’s first papers, since it has the ad-
vantage of easy passage to the nonrelativistic limit.
The function ¥ is “large” in both particles, x1 small in
I and large in II, 1 large in I and small in II, ¢ small
in both. The = are defined in the list of notation. The
function ¥ is just like the nonrelativistic function for
two particles with spin and is suitable for the classifica-
tion of states in the usual spectroscopic terminology of
1S, 381, 1Py, 3Py, *Py, P, . .. states. Disregarding for
the moment the phenomenon of coupling between states
of different L and the same J, every state *L;(s=1,3)
is characterized by an asymptotic form of ¥ which
consists of a linear combination of spin functions ®xm,
angular space functions Yy, , ., and a radial space
function so that

(e=1)
®)

V=Yy=7, §r,,, (8.1)
where
F1, s~const sin(kr— Lw/2+81, 5)/7, (8.2)
and
LJ
(yL’Jﬂ=Z ( )YL, pu—mXm (8-3)
m \u—m, m

is the linear combination of products of space angular
functions and spin functions corresponding to total
angular momentum J. The asymptotic form of Fy, s
determines the phase shift 6z, ; outside the Gordon
sphere. The asymptotic form of ¥ determines through
(8) the asymptotic forms of x1, x11, ¢ as well. The
yL.7, entering these functions are not the same as those
of the ¥ and the ®*L; classification is seen to give an
incomplete view of ¢ in much the same way as the
specification 2p; of a Dirac electron in a central field
does not mean that the orbital angular momentum
quantum number is 1, the specification of the state in
terms of good quantum numbers being possible only in
terms of Dirac’s & and the total angular momentum. In
order to identify the state it is not necessary however
to use good quantum numbers exclusively, the specifica-
tion # 2p; having a unique meaning for example. On
account of interactions involving spin and space coordi-
nates simultaneously, it is not possible to have in
general only states of the form (8.1), states of different
L and the same J becoming in general coupled to each
other. If one neglects the formation of mesons or any
other essentially inelastic processes, it is possible to
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describe the system by means of real phase shifts,®
the same phase shift affecting the phase of the functions
for both L by the same amount.

The change in the energy of a system can be con-
nected with the value of a phase shift.” In the reference
just quoted, this connection has been studied non-
relativistically. Without change of principle some
modifications result in a relativistic consideration. A
large sphere of radius Ry is used to quantize the wave
function. The four components of ¥ are made to vanish
on the surface of the quantizing sphere. The Gordon
sphere of radius R&Rq encloses a region in the space of
r=rr— ryr inside of which electromagnetic and specifi-
cally nuclear interactions are located, the region within
which the latter take place being supposed to be much
smaller than the Gordon sphere.

At a distance R; between R and Ry, -

R<Ri&KRy, )

the phase of the function determined by interactions
inside R and boundary conditions at =0 has a value
@(R1). The existence of the phase, such as that occurring
on the right side of Eq. (8.2) does not depend of course
on the possibility of describing the interaction by means
of a potential.®

Since R;>R it is always possible to find a region
inside the sphere of radius R; in which the application
of a small static perturbing potential is physically
possible. Such a perturbing potential, adiabatically
applied, produces a change in energy of the state, the
latter being defined by the boundary conditions at =0
and 7=Ryg, the number of nodes of ¥ between these
values of 7 remaining constant. For values of »>R,
the phase is a definite concept for all but the higher L
for which asymptotic forms such as (8.2) cease to hold.
For these the phase can be defined by increasing ». A
limitation is reached at uvRg~10%L, but since #/uv is of
nuclear dimensions the values of Z which must be ex-
ceeded in order that the concept of phase should break
down are seen to be so large as to make this logical
difficulty have no practical consequence, the omission
of very large L introducing very narrow diffraction
patterns. For any J of practical interest one thus has
at Ry a well-defined phase, ¢(R;), the sine of which
gives the asymptotic form of §. The perturbing poten-
tial 8V produces a change 8¢ (Ry) in ¢(R;) which may
be identified with the change in phase shift §(5z, 5).
Since for an adiabatic change in the wave function the
phase at Rq must be left unchanged and since from
R; to R the change in phase occurs only through a
change in &, one has, considering that Rg>> Ry,

d¢(Rq)=Rq(dk/dE)SE+5(dz,1); (CAY)
6 G. Breit, University of Pennsylvania Bicentennial Conference
(University of Pennsylvania Press, Philadelphia, 1941).
7 G. Breit, Revs. Modern Phys. 23, 238 (1951).
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while, by first-order perturbation theory for energy,

R Rq
SE= f W6 [ f W)udr, (92)
0

0

where the subscript sa on the scalar product sign means
that the scalar product is taken over spin and angles
only. Since the normalization integral occurring in the
denominator of Eq. (9.2) is contributed to mainly by
the region R; <7 <Rg and since the spin-angular func-
tion of Eq. (8.1) may be subjected to the normalization

(Y5 Y27 0)sa=1, (9.3)
there follows from (9.1) ’

8(0z, 1) = —Zﬁ f ) WY, @V N)sadr,  (94)
a dE A ) )

provided the normalized function ¥¥ has a ‘large-
large” part ¥ such that

(O, %)50)r~ 1/ 270 (0, 0)s0)o/ GV ¥V )sa)r,  (9.5)

where { ), means an average over 7 taken through a
length of many wavelengths. The right side of this
equation is arranged to be homogeneous in ¥ and ¥
taken together and the equation is therefore suitable
for normalizing ¥. This normalization is such that
(@ W) sa)e~1/(20%), so that the S in the denominator
of (9.2) is Rg/2 and (9.4) follows from the requirement
80(Rg)=0 and (9.1). From (8), it follows on the
other hand that

@)= [4EC/ (Er+-M)*](1,0),,  (9.6)

where subscript s indicates that the scalar product
applies to the spin indices only. From (9.5) it follows
that apart from an irrelevant constant factor of abso-
lute value 1,

Y~ (ErtM1)/2E (Y57 u/7)
X sin (kr—Lﬂ'/2+5L, J). (97)

In the case of coupled states this requirement has the
obvious generalization

Yo Ey+M ar
)it ()
Wiie s* 2Ewr QLo

Xsin(kr— Lw/2461, %),

(9.8)
with
las|?+|arse|2=1. 9.9)

For each pair of coupled L there are two independent
solutions corresponding to two real phase shifts 8¢, 6%.
The existence of two real phase shifts in the sense of
(9.8) is immediately obvious from the fact that there
exist in the quantizing sphere two linearly independent
energy states arising from J=L-1 with coupling of
L and L+2 to each other. In R, <7 <Rg the change in
energy affects % as it occurs in both components ¥, ;
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and ¥, s; the phase at R; is consequently affected
equally for both, and since at Rq the difference in ¢
caused by a change from L to L+2 is equivalent to a
change in sign of the wave function, the phase at R;
for the two components must be the same. In this
case, Y, (8V)Y¥);q consists of

Zam*an(¢m, JN, (6 V)‘//n, JN) (9'4’)

where the four large-large components of ¢z, ;¥ form
V1, yand whereyr o ;¥ and ¥, s are similarly related.
Expression (9.4") is to be substituted in place of the
integrand in (9.4), the indices m, » taking on the values
L, L+2 independently.

The effects of the Coulomb field will now be calcu-
lated. The calculation will be made first as though the
Coulomb field is present alone. Nuclear interactions
are supposed to be superposed on the electromagnetic
field and to cause additional phase shifts. The starting
point is thus the field-free case, and the phase shift to
calculate is that caused by electromagnetic interactions
inside the Gordon sphere. According to Eq. (9.1) the
quantity 6E is of primary interest, the occurrence of
8V in Eq. (9.4) being only a consequence of the rela-
tionship of 8V to 6E. The calculation of 6E can be
carried out rather simply by making use of an old
result® according to which the operator

(¢/r)(1— arar) (10)

gives energy changes correctly to first order in € pro-
vided the exchange integrals 4, arising in the treat-
ment of identical particles are modified through the
inclusion of factors

COS(ZWPP'/)\N); )‘St=6/]Es—Et| s (10.1)

where s, ¢ designate single-particle states with energies
E,, E;, and points P, P’ are variable points in the co-
ordinate space of the particle over which the double
integral representing A4, is carried out. An appreci-
able simplification occurs in the center-of-mass system,
which makes it possible to use the operator of Eq. (10)
directly.
The center-of-mass system is defined by

(pr+py=0. (11)

The unperturbed wave function is therefore of the form

y=ir f C, explik(ri—rm)dp.  (11.1)

It consists of a superposition of plane waves with
correlated momenta for particles I and II. The mo-
mentum for particle I is 7k and the momentum wave
function C, depends on the 16 combinations of spin
indices for the two particles. Since the wave function ¥
is supposed to be that for two noninteracting particles
in field-free space, the expansion (11.1) obviously

8 G. Breit, Phys. Rev. 34, 375, 553 (1929).
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exists, as may be verified by constructing the eigen-
functions explicitly in the above form. The analysis is
furthermore restricted to one value of |k| because
each elementary solution corresponds to the same
total energy,

E=2E;=2[ M+ p:* ]}, (11.2)

there being no interaction between the particles. This
simplification would be absent if the zero-order eigen-
functions were taken for an interacting field which
would require the presence of different E; and conse-
quently of different |k| in the momentum space repre-
sentation. The first order change in energy caused by
the electromagnetic interaction may thus be calculated
in the center-of-mass system as though there were no
retardation effects, which enter only through the factors
(10.1) which are unity since the E,— E;=0.

In principle the problem is seen to be solved. The
phase shifts may be computed by means of (9.4) and
(9.4). They will contain progressively varying parts
such as appear in the nonrelativistic problem of Egs. (6)
through (6.6). The phase shifts with such parts give
modifications of the wave like that in Eq. (7). There
will appear some additional phase shifts which can
be treated by copying the usual treatment of anomalies
caused in nonrelativistic Coulomb scattering by the
presence of non-Coulombian potentials.

In view of the fact that according to (3.6”’) the re-
placement of 5 by zero leads to a é function in momen-
tum space, the effect of these additional terms can be
calculated in first order in 5 by replacing the Coulomb
wave by a 6 function in momentum space. This pro-
cedure will be used in the present paper. On the other
hand, the effect of phase shift containing terms varying
with Inr will be taken into account by the Gordon
sphere construction. This construction yields a Coulomb
wave, the § function approximation to which is used for
the calculation of effects of remaining phase shifts.

4. REDUCTION TO EQUIVALENT WAVE EQUATIONS

By means of Eq. (8), one obtains the spin scalar
product for the norm as in Eq. (9.6). There is needed
also the expectation value of the effective interaction
energy. The calculation can be shortened through the
partial use of momentum space. The employment of
this space does not imply, however, a change of plan.
It is only a short cut in the evaluation of the effects
of the phase shifts.

For two plane waves ¢, ¥/, one obtains for the spin
scalar product:

W,[1— (eram) W)e=N (¥,J¥'),, (12)
where
N=[2E/(E+M)F (12.1)
and
J=I+Tot+Ts+T s+ T, (12.2)
with
NT1=1+8£243(8+£7), (12.3)
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NT:=2[((F—¥5S)>—1(¥—¥)287], (12.4) as may be seen either by noting that in the non-
o1l ——— Q2 relativistic approximation the factor multiplying
NT=2GLEXEPS*— ([eXE1-8)%, (12.5) S (Fr*/r)dr is 29 as in Egs. (6), (6.1) or by comparing
NT=—=28[(1+&)(1+£)—1+ 242 the factor (13.3) with its nonrelativistic value. The
— (- E)2—4(5-E)], (12.6) quantity 7, can be conveniently expressed in terms of v/,
] , , the velocity of the incident proton as measured in the
NTs=i[6+2(&-£)J([(EXE]-S), (12.7)  laboratory system, in which the second proton is
f=p/(Er+M), ¥=p/(Ert+M). (12.8) initially at rest. The relation of v’ to the velocity v of

Here p, p’ are respectively the momenta of ¥, y’. Since
the results are needed only for states of equal energy,
p=2p'. The spin quantum number .S, the eigenvalue of
$2, is taken to be the same for the two plane waves and
the expressions apply both for singlet and triplet waves.
By conservation of parity the consideration of these
possibilities suffices.

For the singlets, J; is the only nonvanishing part of J.
A simple calculation yields

Ji=14(p/Er)* (13)

It may be noted incidentally that J;—1 is the square of
the classical velocity of either particle. Since J; is
independent of the direction of p and since N multiplies
(I,¥), in Eq. (9.6) just as it multiplies (¥,J¥’), in
Eq. (12.1), the quantity J; enters as a factor in the
calculation of the phase shifts, since it enters the
integral in Eq. (9.4). The effect of J; is seen to arise
in the expression for the energy. The factor dk/dE in
front of the integral also contains a relativistic effect,
as is seen from

E=2E;=2[ M*+#F ]}, (13.1)
which gives
2dk/dE= Ex1/ (12k). (13.2)
Nonrelativistically, the latter formula becomes
2dk/dE=M/(hMv/2)=2/(hv), (NR). (13.2")

The factor (Ex+M)/(2Ex) in (9.7) enters to the second

_power in the integral in Eq. (9.4) through ¥ but is
canceled by &V in Eq. (12). The remaining part of (9.7)
is just like that of the nonrelativistic problem, but with
the relativistic & entering Fr. The two factors contain-
ing relativistic effects combine to give

(E+p%)/W2Erk, (13.3)

the nonrelativistic value of which is M /Ap=2/%v. The
singlet phase shift accumulating in the Gordon sphere

is thus
E12+ p2 82
K L=— fF 1,2—(11’.
h/pEI r

In other respects the construction of the modified plane
wave takes place as sketched in connection with Egs.
(6.1) to (7.1) and (8) to (9.8). The only differences are
in the relativistic £ which enters F, and in the replace-

ment
E12+ P?
277_)( ) =2,
hpEx

(13.4)

(13.5)

either proton measured in the center-of-mass system
before the collision is

o'=20/(A1+ve), w=p/Er. (13.6)
Comparison with (13.5) shows that
ny=e*/hv'. (13.7)

The singlet scattering is thus described in the center-
of-mass system by the Mott-Gordon y° with the re-
placement of # by %, and with the relativistic k= p/%,
replacing the classical .. While it was expedient to
relate the relativistic and nonrelativistic cases by noting
their formal similarity, an explicit construction in
terms of partial waves could be gone through. If it is
desired to do so, Eq. (21), which is needed below for
another purpose, will be found useful.

Triplet scattering differs from the singlet through
the presence of terms involving S, i.e., of Js, J3, J4, J5
in Eq. (12.2). These quantities are associated with
additional phase shifts which play the part of phase
shifts caused by deviations from the Coulomb potential
in the nonrelativistic theory of anomalous Coulomb
scattering. Analyzing the 16-component function in
plane waves as in Eq. (2.1), one can make use of
Eq. (12) in a calculation of the expectation value of the
quantity (10). The quantities Js, -- -, J5 appear now
in a double integral over k and k’ which has to be inte-
grated over r to obtain the phase shifts. Since there are
also present the factors exp(ik’r) and exp(—ikr), the
components of p and p’ contained in & & can be re-
placed by means of %9/i9x, - - -, %9/19z" provided the
order of the factors is arranged as follows:

[exp(—ikn) ] -+ & exp(k’s),  (14)

the unprimed and primed variables appearing on the
left and right respectively. The replacements

E—(h/i0x)/ (Ext-M);  En'— (/i0xn")/ (Ex+M) (14')

can now be made, provided the operators are kept in the
order mentioned, next to the respective exponentials.
The factor ¢2/r can be inserted in the middle of the ex-
pression and the expectation value of expression (10)
can be calculated so as to obtain the phase shifts. The
step from (14) to (14’) involves partial integrations
with respect to the x;. The parts outside the integral
disappear in the usual manner provided ¥ vanishes at
o and provided the singularities of the integrand in the
finite region of space do not make the part outside the
integral arising in the partial integration go through



HIGH-ENERGY p»-p SCATTERING

infinity. In the latter case wrong answers may result.
Since 1/r is infinite at =0, it will be modified into a

finite function
{1/r}~1/r. (15)

This function differs from 1/7 at very small distances
only. Here it is taken to be finite and mildly rounded.
Since it is probable that the employment of 1/7 at
very small distances is unjustifiable on account of the
proton’s interaction with various fields® the employ-
ment of {1/r} is preferable to that of 1/7. The partial
integrations give vanishing parts outside the integrals,
there being no need to exclude r=0 from the region
covered by the integral. The replacement of the £ is
thus justifiable. Integration over p and p’ gives the wave
function. Differential operators which have originated
in & and £ appear respectively to the right and left of
{1/r}. It then becomes convenient to move some of the
operators through {1/r} to the right, so as to exhibit
interactions with familiar physical connotations. It is
thus found that

W1 —aren (/W)= N f (W,1%).dr,  (16)

where the scalar product on the left side of the equation
is taken over all variables while that under the integral
sign on the right is taken over spin variables only.
The quantity I is

I=1+1>+1s,

where, denoting d/dr by a prime,

NILi={1/r}+p*1/r}p*/ (Er+-M)*
+30pM1/r}+{1/r}p*/ (Ext-M)?,

(16.1)

(16.2)

’

{1/r}
N12=2h(E1+M)*2{3 + (Ex+ M)

r

{/ry'  wa({1/r}'/r)
L

7 ar

R T

{1/ry

4

NIs=—2" (EI—l—M)—?[( —A{1/r} ) S

(e Sy

7 dr

a{1/ry'/r 1/}’
% l_{_/ﬁ_/_A_Fﬂi[:p?SL‘ (p- S)z:]}: (16.3)

rdr 7

]+2h2 (Er+ M)

with
A=L-(L-S)SH+h[ (x-S)(p-S)— (r-p)S*]. (16.4)

9W. Heisenberg, Festschrift zur Feier des 200 jihrigen
Bestehens der Akad. Wiss. in Gottingen (1951); Comm. Pure
Appl. Math. 4, No. 1 (1951); Z. Naturforsch. 5a, 251, 367 (1950);
6a, 281 (1951).
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Here I, I, correspond, respectively, to J1, Js. The effect
of I; is included in the construction of y°¢ which is
identical with that discussed for the singlet state. If T
consisted entirely of I; the only difference between
the singlets and triplets would be in the spin function
which can be present as a factor in ¥. Since S is con-
tained in I, and I3 the spin dependence becomes more
complicated on account of these terms. It may be taken
into account by calculating additions to phase shifts
caused by 7/, and I;. These additions will not require
another change in the effective value of 5 such as took
place for the singlet state. The reason for this qualita-
tive difference between /; and /—1I, is that the latter
does not give rise to the progressively varying phase
shift terms such as —# In2p, which require the presence
of terms in 1/7 in integrals of the type occurring in (9.4).
It is not necessary therefore to modify the Gordon
sphere construction in taking these phase shifts into
account except for their inclusion in the values of the
final phase shifts as in the theory of anomalous
Coulomb scattering, modified however by the presence
of coupling between states with different L and the
same J.

The spin-orbit effects are trustworthy to within the
first order in ¢? only. It is therefore not possible to make
an exact calculation by means of J of Eq. (12) or I of
Eq. (16). The calculation of the effects of (16.2'),
(16.3), (16.4) on the phase shifts and hence on the
scattering matrix could in principle be carried out by
combining the effects of specifically nuclear potentials
with those of additions to the Hamiltonian that would
reproduce the effects of (16.3), (16.4) exactly and then
keeping only first order terms in ¢ Such a procedure
would be cumbersome and perturbation methods sug-
gest themselves. This part of the calculation could
conceivably be performed in two arrangements: (a)
obtaining the effects of the specifically nuclear potential
first, including the calculation of the wave function.
Having the wave function it is possible to calculate the
phase shift changes caused by terms in ¢? and to obtain
the anomalies in the scattering arising from terms in
(16.2"), (16.3), (16.4). (b) Obtaining by means of
(16.2), (16.3), (16.4) changes in the Coulomb wave to
first order in €%, outside the region of specifically nuclear
interactions, calculating the combined effect within the
region of nuclear forces, and joining the two branches of
the wave function in the usual manner. Procedure (b)
is obviously the more elaborate. Procedure (a) can be
carried out as soon as there is available a wave function
with neglect of the generalized spin-orbit terms. The
consideration of this procedure shows that the first-
order Coulomb effect as a whole as well as the spin-
orbit terms cannot be calculated without the knowledge
of the wave function corresponding to specifically
nuclear interactions alone. The application of Eq. (6),
with ¥V representing the Coulombian and related effects,
obviously gives different results depending on whether
or not F;? includes the changes owing to the presence
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of nuclear potentials. If the calculations were made in
the order (b), these effects would be present also because
the first-order change in the wave function caused by
the spin-orbit forces affects the additional phase shift
caused by the nuclear potential.

In applications to high-energy scattering, the Cou-
lomb effects are relatively small and an approximation
in the evaluation of the first-order effects is permissible.
It is obviously much simpler to calculate the generalized
spin-orbit ¢ terms in the absence of the nuclear poten-
tial and to add their effect directly to the scattering
matrix. This simplification will be used from now on
in the present paper as a temporary expedient in secur-
ing results of a not too elaborate form. It is possible,
however, to take into account the effects of nuclear
wave function distortion by subtracting from the
scattered wave the first order effect of a particular set
of partial waves and adding the change caused by calcu-
lating the phase shifts by means of wave functions dis-
torted by the nuclear potential. It may be remarked
that the presence of related effects of interaction of
meson and Coulomb fields would have to be considered
also.

In the calculation of the approximation just intro-
duced, there are present Coulombian effects only. The
derivation of I treats all Coulombian effects on the
same footing, equal trust being put in all terms. On
the other hand, at low energies the {1/} part of I;
is known to be nearly exact. There is some sense there-
fore in attaching more significance to J; than to I, I3
and similarly to Ji than to the other J. These non-
relativistically exactly valid terms have been seen to
follow from the Gordon sphere construction also in the
relativistic case. The approximation under discussion
will be used therefore for the remaining terms only.
These include tensor-like interactions coupling states
of different L and the same J to each other. The appli-
cation of the phase-shift method to these cases will now
be discussed.

The effective energy operator for phase shift calcula- .

tion multiplied by suitable constants such as are found
in Egs. (6) and (9.4) will be called %’. The fact that for
each of the two coupled states @ and 3 there is a definite
phase shift ¢ is expressed by

(‘l’#a:h"'p#ﬂ) = 5a56ar (1 7)

where the y,* are the eigenstates corresponding to
definite phase shifts. They are expressible as

\//#“=ZL a'LaFL(yLJm (171)
so that
> AL ¥hpa' a4P=04p0%, (17.2)
with
ha'= (FLY2 W FAYr ). (17.2")

Since according to (17.2) the kra’ is Hermitean, Eq.
(17.2) defines an eigenvalue problem for a Hermitean
operator, and the a2 can be made to satisfy the unitary
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conditions
S ar®*arf=0ap 2 ear**ar*=0rr, (17.3)

the first of which is necessary for normalization and
orthogonality of the ¢,* in (17.1) such as are required
by the connection with the energy value treatment in a
large sphere discussed in connection with Eq. (9).
The phase shifts 6% obtainable from (17.2) give a change
in the eigenstate

IP,LQ—*ZL ar*(Fr+o°Hy) YL, (17.4)

only first order effects in 6% being taken into account.
Multiplying this relation by @,** and summing over a,
one has

FAoYN —FA YA 431 (0 an®*6%ar®)H LYy ,. (17.5)

Changing L to L’ and A to A’ in.Eq. (17.2) and then
multiplying by ¢;%a4#* and summing over «, 3 by means
of (17.3), one finds

hoa'=2a ar®6%a, ¥,

(17.5")
and hence

FA(yAJ“'-%FA(yAJ”—]-ZL hLA’HLryLJ“. (17.6)

The kra' are thus seen to enter in place of the T,r,
of Eq. (3.2) of Breit, Ehrman, and Hull.?® In order that
(7) be symmetric (4’) must be real, which is the case
for real Fr, and the usual choice of the YZ7,.

Equation (17.6) could have been derived by making
a first order Born approximation calculation for the two
coupled states, and its form is directly clear from this
fact. However, the connection with the Gordon sphere
construction would not have been apparent without
tracing the transformations as has been done above.
The close similarity of (%") to an energy matrix is thus
brought into evidence.

5. APPROXIMATE EVALUATION

The evaluation made below is approximate in the
sense of neglecting the effect of wave function distor-
tion caused by specific internucleon interactions on the
value of the first order effects.

The term J; of J of Eqgs. (12), (12.3) gave I of I
and has been seen to give the Gordon sphere treatment
of the Mott-Gordon nonrelativistic formula, provided
the quantity 7 is suitably modified as in Eq. (13.7).
The Mott-Gordon wave constructed in this manner
will be taken here as the unperturbed wave. The remain-
ing effects will be evaluated by noting that the contri-
butions of J,, - - -, J5 are formally like those of a per-
turbing part of a Hamiltonian in momentum space.
One can evaluate the contribution to the scattering
matrix S therefore by employing the known form of the
part of S caused by J, and ascertaining the other con-
tributions by comparison.

Since the effects of Js, - - -, Js are not certain except
in order ¢, the part of .S caused by J; will be used

10 Breit, Ehrman, and Hull, Phys. Rev. 97, 1051 (1955).
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neglecting all but first order effects in 5 in this part of S.
One has

Js/ Tv=i[ (Ex+M) QEr+M)/ (2E°— M) ]
X{1— (Br—M)(1—2)/[2(2E+M) 1}

X (LC®/pX®/p)1-S), (18)
with
x=cosf. (18"
Making use of
Se= (—n,/2ks?) exp{i[®—n Ins*]}, (18.1)

&= kr—n, In(2kr)+ 200,

as in the paper of Berit and Hull,"! one finds by means

a2,
S—Se=(ei?/k) (2“50113""’ sind,

aze?t® sin%,

rows and columns being labeled with spin magnetic quantum numbers in the order 1, 0,

2~ a,e% sinb),
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of Eq. (18) that there is a contribution Aa; to the quan-
tity a; of Breit and Ehrman'?:

Aay=ANay=— (k/AE;)
X{2QE+M)/[(Ex+M)(1—=x)]
— (Ex—M)/(Ex+M)} exp(—in, Ins?), (18.2)

where the inclusion of exp(—i7,Ins?®) has not been
justified by the calculation as presented so far but can
be inferred by a consideration of small angle scattering
in the laboratory system. The whole term is principally
of interest for 8<1. For purposes of reference, the scat-
tering matrix will be written out here in the notation of
these references:

ae—24¢ sin%

as, — 2~ %q1¢7%% sinf

(19)

- 2—%a46i‘p sinﬁ, (¢ 7]

—1 from left to right as

well as from top to bottom. In the form of Eq. (12.7), identification with Garren’s form2 of the spin-orbit interac-

tion caused by the Coulomb field is readily made.

For the evaluation of effects of J, and J3 it is convenient to have available

3s?2—1,  —3V2sceie, 3¢k 2”’]
((p'—p)S):—%(p'—p)2S2=%p?s?| —3V2sceis, 2(1—3s?), 3VZsce i/, (19.1)
3c2e?ie, 3V2scet?, 3s2—1 J
=2p2s23712
and
i '—17 O; —3¢2ie
IS L/p)X ®'/p) - (19.2)

Employing these matrices and the expressions for Js, J3
again in comparison with J;, one obtains as contribu-
tions to .S the following combination:
(Ax+A3)S= (¢¢/4Er)e™®
X{—Mo—[(Ex— M)/ (Ex+M)Je*ms}.  (20)

The effect of J4 is to add a constant to all diagonal
matrix elements of .S, vz.,
ASm= (¢*/4Ex)

X{(8/3)+ (4/3)[(Ex— M)/ (Ex+M) Je*}e®. (20.1)
Collecting all contributions except for that in Eq. (18.2)

and comparing with the form of S in terms of as, a3, - - -
as, one finds for the effect of J—J5:

b

Aay=Aay= (¢?k/4E1), (20.2)
Aaz/Aoy=3— 8+ (Ex1— M)/ (Ex+M)]c?, (20.3)
Aas/Aay= —E1/[2(E1+M)s*], (20.4)
Aas/Aar=2+428*+2[ (Ex— M)/ (Ex+M)Je%.  (20.5)

11 G, Breit and M. H. Hull, Phys. Rev. 97, 1047 (1955).

([(p/p)X(p'/p’)]-s>2=—%Sin?e[ 0o 2, 0

=3¢, 0,
=1(sin%0)IM3

-1

It will be noted that Aaj, - - -, Aas are finite at =0
and that according to (19) the contributions to S
caused by them are finite also. According to Egs. (18.2)
and (19) the contributions to .S caused by A’a; and
A’ay become infinite as 1/6 at 6=0. The question arises
as to whether this circumstance vitiates the treatment.
Were the treatment based on an equation in momen-
tum space such as Eq. (2.2), there would indeed be
doubt regarding the legitimacy of using the terms. The
considerations used here are equivalent, however, to a
construction of the wave function by means of the
Gordon sphere making use of phase shifts, and the
question does not arise as is seen by recalling that:
(a) The standard nonrelativistic Coulomb wave has a
scattered wave part which can be calculated as the
result of phase shift effects in the Gordon sphere. (b)
The calculation by means of Eq. (12) as in Egs. (18) to
(20.5) gives the effects on .S which would exist if the
remainder of the wave were a plane wave and is for this
reason equivalent to a calculation by means of phase

12 G, Breit and J. B. Ehrman, Phys. Rev. 96, 805 (1954); see
also reference 10.
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shifts employing the additions of the phase caused by
J2, - -+, Js to the first order in these additional phase
shifts, i.e., to the same accuracy to which the starting
point of the calculation justifies their use. These two
points will now be presented more fully.

Regarding (a), one verifies by standard procedures
that excepting 6=0 [see (3.6"), (3.6")],

7 exp{—in In(1—%)}

=1 ; (L+3)Pr(x)
Xexp{'iEZ(aL—o'o)—nIHZ},. (21)

and a consideration with the Gordon sphere brings in
the quantity on the right side in such a manner as to
give the quantity on the left as the well-known factor
in the expression for the Coulomb scattered wave. The
left side is infinite at small angles but the phase shift
construction holds nevertheless. The objection to an
infinite amplitude arises only if the scattered wave is
calculated by means of the assumption that the incident
wave is the only one that need be considered in solving
for the scattered wave by first order iteration in mo-
mentum space.

The calculation of S took place employing phase
shifts. Since the triplet states of odd L for two particles
with equal masses are antisymmetric, the phase shifts
are applicable to p-p scattering. The matrix .S is ap-
plicable to nonidentical particles.!''? For identical
particles in triplet states the convenient matrix is":2

S @ =[SO)—S(x—86)]/V2.
Regarding (b), the essential features can be described

by considering the asymptotic form of the scattered
part of Coulomb wave for a spinless particle:

Ys'~—[n/k(r—2)] exp{ilkr—n Ink(r—2)+200]}
+>.[(2L+1)/p]P sinK,
Xexp{i(p—n In2o+K1+201)}. (22)
For non-Coulombian scattering, an incident e®* gives
a scattered wave

Yo~ [ (2L41)/p]PL sinK 1, exp{i (o+K 1)}, (22.1)

which will be considered for the same values of the small
phase shifts K, as for the Coulomb wave in Eq. (22).
These small phase shifts represent the effects of
Jo, -+, Ts, 4.6, of I»4-13 in (16.3). The calculation by
means of Jy+---+J5 employing an incident plane
wave and including first order effects only, gives (22.1)
which is equivalent to the employment of

2. [(Q2L41)/p]PLK re. (22.1)

Should these phase shifts be used to the same order in
(22), their contribution would be

> L [(2L+1)/pPLK peit—n n20) g2ior, (22"

The method used gives the phase shifts to the first
order in terms of free wave functions as a starting point
—as in Egs. (6) to (6.6). Being calculated by means of
free waves they correspond to the Jo+ - - -+J;5 calcula-
tion in momentum space. Since these phase 'shifts are

1—x

G. BREIT

not available more accurately, the strict employment of
(22) is not justifiable, for it would imply the knowledge
of phase shifts caused by Jo+ - - -4 J5 in higher orders.
In (22’) the inclusion of the effect of the o1 produces
formally an effect of second order in ¢? or 9. Its inclusion
would not be justified by the present calculation be-
cause corrections to the Kz, in the next order of 7 could
offset the refinement caused by the inclusion of the o;.

The argument given against the inclusion of higher
order effects in the spin-orbit terms has the appearance
of disqualifying the solution for singlet scattering, i.e.,
the part of the solution corresponding to J; alone. It is
indeed true that more accurate calculations can be
expected to give corrections of order %* in .S and the
usual Coulomb wave formula already contains terms of
order #%. On the other hand, the summation of the right
side of (21) with the relativistic # is the only solution
of the problem including J; free of contradiction. If
one were to disregard the terms in £ and £ entering J,
there would be left over progressive phase shifts in-
volving In7 which cannot be managed by a procedure
like that in Egs. (22) to (22). In this respect J; requires
a different treatment from the remainder of J.

The inclusion of exp(—i7 Ins?) in S°¢ and the validity
of S¢ to higher than the first order in ¢ for small-angle
scattering may be justified by noting that in the labora-
tory system these collisions appear to a good approxi-
mation as though they took place from a fixed center
of force. The recoil energy is approximately ©? times
the incident energy so that for ®=% and E=300 Mev
the recoil proton has an energy under 10 Mev. Scatter-
ing from a fixed center has been treated relativistically
by Mott.”® His results as they appear in the papers just
quoted are hard to follow for the application made below
and have been worked out for an attractive rather than
repulsive field of force. They may be presented as
follows. The wave function of a Dirac particle in a
Coulomb field may be represented in terms of spherical
harmonics and radial functions as shown by Darwin."
For the special case of total angular momentum having a
z component %, the solutions have the form
(iLL/2L—1) FY ./ (r)

@1/ @L-1DY i)
Y\ Ly LAY ) !

(—LIZA+1)/QL+1) ]}V L'g(r)
(]=L'_%J S=L),

(iL(L+1)/ 2LA3) Y 4:°f (r)
—i[(+2)/ QL+3) Y 142 £()
L@/ QLAY 2% ()
([L/ (2L+1) Y 1'g(r)
(J=L+%, s=—L—-1),
138N, F. Mott, Proc. Roy. Soc. (London) Al124, 425 (1929);

A135, 429 (1932).
14 C, G. Darwin, Proc. Roy. Soc. (London) A118, 654 (1928).

(23)

(23.1)
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with
=[(QL+1)/47 P 1 (cos®),

t'=—[QL+1)/4xP[L(LA1)T
Xe® sin® Pr/(cos®).

The Dirac quantum number % is here denoted by s.
Here ©, ® are polar angles in the laboratory system.
The azimuthal angle ® is here denoted by the same
symbol as ® of Eq. (18.1), no confusion being likely to
arise due to this double use of ®. The original Dirac
choice of & matrices is used here but the choice of radial
functions is slightly different. If one employs %/ Mc¢, Mc?
as units of length and energy, f and g satisfy

(1)t (S+") =0,

(e+17) 5= (540

The energy of the single particle is denoted by e. The
radial equations have the solutions:

=il (e=1)/(e+1) 1%

(23.1)

(23.2)

=crﬂ—lei~rM(/3+1+“—7, 26+1, ~2¢Kr), (23.3)
K
fHil(e—1)/(e+1)]ig

1€y
=CrfleirtO M (B—!—*, 2841, — 24,'xr) , (234)
K

where

B= (=)}, «=(e—1)},

() /()

These expressions give different asymptotic forms for
cases (a) and (b) of Egs. (23), (23.1), viz.,

pge~sin[ p— (Lx/2)—n In2p+01.%],

(23.5)
and

(23.6)

pgimsinlp— (In/) = In2ptort], P
where
n=ey/x, (24.1)
oLl= (1!'/2) (L——,(S'L)—{—argl‘ B+ 1+'i€’Y/K)
+3 tan'(y/kL)—3% tan~'(ey/xBz), (24.2)
o= (n/2)[L+1— BL+1]+argI‘ (Bryrtiey/x)
41 tan~1(ey/kBr1)— 3 tan " [v/x(L+1)], (24.3)
where
= (=)l
The Mott solution corresponds to taking
Y= (4m)?t 2L "L 1* exp(ior?)
+ (L+ 1)%\01}’ exp(irrL"):]. (25)
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For small-angle collisions the main contributions arise
from large values of L, so that a first approximation is
obtained by setting

BL=L, (26)

resulting in
o1 " >2argl (L+1-+14). (26.1)

These values inserted in Egs. (24), (25) give for the
third component of ¥,

oY~ 1 tE(2L4-1)Pretor
Xsin(o—Lw/2—n1n20+01), (26.2)

use having been made of (23), (23.1), and (23.2).
The terms in the summation are understood to be modi-
fied at large L because for any p one can find a suffi-
ciently large L to invalidate the asymptotic forms.
For such L the considerations made by means of Egs.
(24.2), (24.3) do not apply. On the other hand, for
large L and given p the radial equation for g becomes

v/7

Y Y
(n )
r r et+1—v/r
(d 1—I—s) @ 2d s(s+1)
X } } f——
dr r ar?

r dr 72
The last three terms in this equation are just like corre-
sponding terms in the nonrelativistic equation including
these terms as well, and the combinations with terms
in €—1 and — 2ey/7 resulting from the first term in the
equation may be written as

[ 277[ a2 R 2d s(s—l—l)] ~0, (26.4)
o A @) e

with # as in (24.1). This equation is just like the non-
relativistic one except for the occurrence of the rela-
tivistic 7 and x. The asymptotic forms obtained from
Eqgs. (24), (24.2), (24.3) in the approximation of
Eq. (26) are seen to be consistent with it. This circum-
stance may be expected from the fact that for large
L=2s the region with » < than #2¢|s| is not important.
For large |s| =, however, the terms which have been
omitted in (26.3) in order to obtain (26.4) are of rela-
tive order v/s?, some of them involving ¢ besides. The
approach of the relativistic phases to the classical ones
is thus readily understandable.

As L increases in Eq. (26.2), it reaches a value ~»
after which the terms as written have to be modified
because of the inapplicability of asymptotic forms.
The discussion for large L which has just been gone
through in connection with Egs. (26.3), (26.4) shows
that the difference in the left sides of these equations
is of the order v/L? for values of 7 close to the classical
turning point of the centrifugal barrier. The decrease
in the absolute value of the omitted terms takes place
therefore in nearly the same manner in the nonrela-

]g==0. (26.3)
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tivistic and relativistic cases, and the agreement is
improved as ®—0 because contributions from the small
L become increasingly less important. The right side of
Eq. (26.2) may be replaced therefore by the non-
relativistic formula for the Coulomb wave. In the small-
angle approximation the Coulomb wave contains the
factor exp{—in In(1—cos®)}. This factor is related to
the phases obtained in the c.m. system by

28%= (y+1) sin?®/[14+3(y—1) sin?0]

=(y+D[1-3(y—1)O*]sin’0, (27)
o= (1—22/)~L
For small scattering angles, one has therefore
exp{—in In sin?@}=[1—1(y—1)inO*]
Xexp{—inIn[2¢*/ (v+1)1}, (27)

G. BREIT

and to a good approximation the factor exp(—in Ins?)
is reproduced. On the other hand there is seen to be a
term in 7®? coming in as a correction so that exact
agreement is not proved. The calculation just presented
is very similar to that which gave Eq. (5.27) of Mott’s
second paper. The role played by large L for small ©
would not have been clear however with a direct use of
Mott’s paper.

The consideration of the small-angle scattering in the
laboratory system is seen to support conclusions drawn
from the two-body phase shift approach.
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Scattering phase shifts for the relativistic corrections to the ordinary Coulomb interaction between two
protons are calculated in the first Born approximation. The scattering matrix resulting from these phase
shifts is obtained and shown to agree with the results of the preceding paper.

N the preceding paper,' the relativistic corrections
to the Coulomb scattering of two identical particles
were discussed in terms of the equation derived by
Breit for first order changes in the energy.? It was shown
there that the matrix element of the interaction energy
of the two particles, H’, may be written as

1 — QIUII ,
r

1
=y )=o)
23+ (5 8) ([EXET-S)) — 2 (E— )8
+2[(E’—£)~S]2-2([E><E’]-S)2}\I"-) 1)

The notation is the same as that in the preceding paper;
in particular £ is related to the momentum of one of the
particles in the center-of-mass system by

£=p/(EI+M)1

* This research was supported by the Office of Ordnance Re-
search, U. S. Army.
1 G. Breit, preceding paper. Henceforth, this paper is referred to

as B.
2 G. Breit, Phys. Rev. 34, 553 (1929).

the primed and unprimed symbols referring to values
appropriate to the incident and final wave function,
respectively. Furthermore, the spinor ¥ is that compo-
nent of the wave function of the relative motion ¢ which
is large if both particles are of positive energy. In the
treatment of the preceding paper,! the singlet and main
nonspin dependent triplet terms were treated by means
of phase shifts and in coordinate space, while the
remaining terms were evaluated in first Born approxi-
mation in momentum space after this procedure was
shown to be equivalent, to first order in €% to a phase
shift treatment. It is of some interest to consider these
spin dependent terms also in terms of phase shifts. By
doing so a verification of the argument regarding the
equivalence of the direct phase shift treatment and the
momentum space calculations is provided and the
values of the phase shifts which are modified by specifi-
cally nuclear forces are made available. If the initial and
final scattering states are represented by configuration-
space wave functions, a corresponding expression may be
written for H’, with £ and & replaced by their operator
equivalents. Regrouping terms in Eqgs. (16)-(16.4) of B
one obtains for the matrix element

H'=H,/+H,/+H/+H/, (2)



