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Single pseudoscalar meson production is assumed to be described by a transition matrix element taken
between initial and final two-nucleon wave functions defined as solutions to Schrédinger’s equation with a
phenomenological potential included. The effective interaction is a linear combination of the two possible
nonrelativistic invariants. The angular distribution and energy dependence is considered in detail for the
reaction p+p — w-d. Using the Jastrow potential to define the proton wave functions, the large anisotropy
can be explained by including the D state of the deuteron. Results become less satisfactory at increasing
energies. The predicted energy dependence of the total cross section for proton beam energies from 311 Mev
to 515 Mev agrees well with experiment. The strong dependence of the cross section on the incident proton
momentum contributes to the agreement.

An order of magnitude estimate of the alternate reaction, p+4p — =*+n-+p, predicts, at 340 Mev
(laboratory system), a branching ratio slightly greater than one.

Finally, the absorption rate of 7~ mesons by deuterons from a K-shell orbit, i.e., 7~+d — 2#, is calculated.
This gives an estimate of the strength of the S meson wave part of the interaction and is consistent with
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the restrictions imposed by the results obtained for the reaction p-4p — 7*4-d.

1. INTRODUCTION

HIS paper is an attempt to understand single
meson production or absorption due to nucleon-
nucleon collisions near threshold in terms of a simple,
nonrelativistic model. Since, by far, most of the experi-
mental information available is on the process

pHp st (1.1)

we consider this reaction in most detail. We also
estimate the order of magnitude of the alternate reac-

tion,
p+p—attntp, (1.2)

that is predicted by the model. As a final check on the
consistency of our assumptions, we calculate the absorp-
tion rate of negative pions by a deuteron from a K-shell
Bohr orbit,

7+d — ntn. (1.3)

The latter reaction is of particular significance since it
involves the interaction with the meson in a pure S
state.

A summary of all the available data on pion pro-
duction by nucleons is given in a recent paper by
Rosenfeld.! In particular, the important features of
reaction (1.1) are a rapid increase of the total cross
section with energy (roughly, o(xt,d) increases a
little less rapidly than %3, the cube of the meson mo-
mentum) and a strong anisotropy in the angular dis-
tribution of the mesons in the center-of-mass system.
More precisely, we can write

do/dQq=A (14 £ cos%), (1.4)

*Part of a doctoral thesis submitted by D. A. Geffen to the
Physics Department at the Massachusetts Institute of Tech-
nology, 1954.

T Present address is Oak Ridge National Laboratory, Oak
Ridge, Tennessee.

! A. H. Rosenfeld, Phys. Rev. 96, 130, 139 (1954).

with 3K ES6 for energies ranging from 324 Mev to
515 Mev (in the laboratory system). 6 is the angle
between the outgoing meson and the proton beam, in
the center-of-mass frame. Unfortunately, the experi-
mental errors in measuring £ are rather large, usually
varying from 25 to 1009,. The total cross section is
known to better accuracy (see Fig. 1). There is rela-
tively little data available on reaction (1.2). The angular
distribution is probably roughly the same as for reaction
(1.1) while the total cross section, o(xt,n,p), increases
more rapidly than ¢(z*,d). Two measurements of the
branching ratio at 340 Mev give!

o (rtm,p) /o (r+,d)=0.8240.25; 0.5440.18. (1.5)

Since the latter measurement gave absolute cross
sections that are inconsistent with other measurements
in that energy region, we would expect the higher value
to be more probable.

The model, first suggested by Chew, Goldberger ef al.,?
consists of writing the transition matrix element for the
process in the form

M= | T|¢:), (1.6)

where ¢, and ¢; are nonrelativistic wave functions
describing the two-nucleon states before and after the
production (or absorption) of a meson. They are
defined as solutions to Schrédinger’s equation with
phenomenological potentials included, chosen to give
the correct properties of the deuteron and two nucleon
scattering at the energies involved. T is chosen to be
the simplest possible interaction operator that is a
nonrelativistic invariant function of the nucleon
operators, ¢, V; and =, where o(? represents the
three nonrelativistic Pauli spin matrices operating on
the 7th nucleon and = the corresponding isotopic spin
matrices. 7" is assumed to be a linear function in the

( 2 C})lew, Goldberger, Steinberger, and Yang, Phys. Rev. 84, 581
1951).
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meson wave function, ¢, which is chosen to be a pseudo-
scalar. Assuming charge independence,

1=1

T=a[{“ a. Vi[f(i) . (b(@)]]

+ﬁ[Z:ll[v(“ (i) Jo - v] (L.7)

6 (2) shall usually be chosen to be a plane wave evalu-
ated at the coordinate of the 7th nucleon. « and 8 are
parameters to be chosen by experiment and may be
energy-dependent. Whatever factors are necessary to
give a normalization of one meson per unit volume are
assumed to be included in the @ and 3. We do not restrict
ourselves to the usual field-theoretic normalization
factor of 1/4/E,, where E, is the meson total energy.
It is hoped that the nonlocal features of the process
might be absorbed in the energy dependence of « and 8.
It is found that the best fit of the energy dependence of
reaction (1.1) is obtained with « and 8 energy-inde-
pendent.

The requirement that the 7 be Hermitian leads to
the conditions,

a=a+3ib, B=1b; (1.8)

Since the transition probability per unit time is given by

a,b real.

w=(2n/) f S |90 | (B)6(E— E)dE;, (1.9)

where Y |9|? represents the appropriate sum and
average over nucleon spin states, we can define the
dimensionless quantities gq? and gi?;

ga’= (a/he)*(uc/h)*;  gi= (b/hc)*(uc/R)*.  (1.10)

Finally, it should be noted that the term in 7" propor-
tional to « leads to P-wave meson emission, while the
B term leads to predominantly S-wave emission. Since
the experimental results indicate that P-wave emission
is strongly favored, we shall require the condition on
a and 8,

la] >>|B]. (1.11)

2. CALCULATION OF p+p— =t+d

We evaluate Y [917|? in the center-of-mass frame
where the total momentum of the system is zero. Using
the coordinates, r=r;—r;, R=%(r;+r;), our final
nucleon state, a deuteron, is represented by the wave
function,

[ = e R (dmrp) = [ (r)+8 1S 1w () Jxi"Ao.  (2.1)

Ao is the antisymmetric, isotopic spin zero eigenstate
for the two nucleons. We must choose the antisym-
metric state so that ¢, will be totally antisymmetric in
space, spin, and isotopic spin variables. Sy, is the usual
tensor operator, so that Si;xi™ represents the 3D,
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F1c. 1. Comparison of theoretical curves with experimental
values of the total cross section for the reaction p+p — 7w+-4d.
The solid curve assumes only P meson wave emission in the model
used. The dotted curve assumes enough .S meson wave emission
to raise curve at lower energies to improve agreement.

angular momentum state. 7p is given by
rp=h(MB)*=4.31X10"% cm,

where M is the nucleon mass and B is the binding
energy of the deuteron. The normalization of one
deuteron per unit volume leads to the condition

f L)+ () Jdr=rp;

and, since 7p is a rough measure of the size of the
deuteron, # and w are of the order of magnitude of one.

By writing ¢(2) as e~%'% using (2.1) for ¥;, and
denoting the initial proton state, without isotopic spin
included, by ¥,, 9 becomes, after isotopic spin and
center-of-mass coordinate integrations,

M= (darp)Hr'[u(r)+8 1S 12w (r) ™| ia
Xcos(q-1/2) (61— 02) - q+a sin(q-1/2) (014 02)
q—@B cos(q-1/2)(o1+02)- V+iB8 sin(q-1/2)

X (01— 02) -V |¢,) 2m)% (k+q).  (2.2)

Since the final nucleon state is a deuteron with fixed

parity and angular momentum, the selection rules are

particularly simple if we restrict the meson to only S

and P wave emission. In (2.2) this is equivalent to

expanding sin(q-r/2), cos(q-r/2) in spherical har-
monics and neglecting terms in ¢? and higher. It turns
out that, in this model, the effective parameter in the
expansion in powers of ¢ is ¢/ko=~%, ko the incident

proton wave number. Hence, neglecting terms in (g/k,)?

and higher amount to errors of not more than a few

percent. There errors will be of the same order as those
arising from relativistic effects. With this restriction,
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the only transition that can contribute to the triplet
matrix element, 91, (when the initial protons are in
the triplet state) is from the 3P; proton state with
S-wave meson emission. In (2.2), this arises from the
term in 7,

B cos(q-1/2)(e1+03) v,

which, since it leads to a term independent of g/%,
will result in a large isotropic contribution to do/dQ
unless § is chosen small compared to a. If (1.11) is kept
in mind, the major contribution to 9, the singlet
transition, comes from the term proportional to a. Only
the 1S9, 1D, proton states can contribute to 9.

If we expand the proton wave functions in partial
waves, we need only retain the .S and D singlet states
and the triplet P state with total angular momentum
one. These can be written, denoting the singlet and
triplet states of |¢,) by |¥s), |¥:™) respectively,

¥y=[2¢ (kor) 1o (r) — 102 (kor) "

Xug(r)Po(0)+ - - Ixo), (2.3a)
Y o)=[2ie" (ko)1 (r)5 (kor)
XS-r)(S-ko)+--- ™), (2.3b)

=1(o1+02) and u,; has been defined such that

u; — Sil’l(kof—m’/Zl-{-al).

We have used the method of Rarita-Schwinger® to
represent the 3P; angular momentum state in (2.3b).
Substituting (2.3a), (2.3b) in (2.2) and squaring, we
obtain, after performing the angular integrations and
spin sums,

PN S DI LI AL
= (167 /7p)ki2{(¢/ko)* | a|2[ (S0)*+3 (D»)?
’*VQ(S()D;},) COoSs (52—50)‘1"(% (D2)2+V2(SQD2)
X cos (85— 80))3 cos?0]+2|B8]2(P1)%}.

The radial integrals in (2.4) are defined as

(2.4)

So= f o () 1(x) jo( g/ 2e)d, 3= ot
Si= f s (@) () jol g/ 2He) i,
Du= f s (5w () g/ 2he)

Do= [ wowywte) jlgs/ 2k,

2.5)

XL %

P j; i ul(x);-[@]x Jo(qw/2k0)d.

3W. Rarita and J. Schwinger, Phys. Rev. 59, 550 (1941).
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For the sake of conciseness, we have left out of (2.4)
terms arising from |[9,|? containing 8 (and the in-
tegrals Ss, Do), and terms arising from |917;|2 containing
a. With |8| <|a|, these terms are less important but
would greatly complicate (2.4). The effect of these
terms has been investigated and will be discussed later.
As discussed earlier, we have consistently dropped terms
involving higher powers of ¢g. We have made fairly
crude approximations in terms involving 3. Integrals
of the form

du(x)
dx

f 200 () o (g3 2he) il

that appear in the singlet terms have been dropped.
These are about twenty-five percent of integrals like .S.
Terms in the triplet transition involving the deuteron
D state have also been dropped. These approximations
are justified since the condition (1.11) on 8 makes the
over-all error in (2.4) much smaller. A more careful
calculation would not be consistent with the crudeness
of the model and the large uncertainties in the experi-
mental data.

With these approximations, it is clear that (2.4)
results in a cos? dependence only if we include the D
state of the deuteron. Since the percentage of D state
is small, we might expect D, to be no more than twenty
percent of Sy so that the value of £ [see Eq. (1.4)],
predicted by our model, would be too low. This is not
the case. The fact that the proton wave functions
oscillate many times in the region where the deuteron
wave function is large enables Dy to compete with .So.
This is because the D state proton wave function, #,,
which is coupled to the deuteron D state, has a longer
wavelength than #, in the region where w(x) is maxi-
mum. In particular, this is true if we replace %o, % by
Born approximation wave functions and approximate
# and w by Hulthén wave functions. For example, at
340 Mev we find

S0=0.45; D;=0.42 (Born approximation).

Here we approximated w(x) by tu(x).

If we examine (2.4) more carefully, however, we see
that £ is also sensitive to the difference between the D
and S proton phase shifts, 6,—8,. Therefore, the only
consistent approach would be to use the “exact” wave
functions for #¢ and %, in evaluating the integrals (2.5).
It is found that the effects of an interaction on #, and
u» can seriously modify the Born approximation results.

It should be noted that our model does not lead to a
D to S, or S to D singlet to triplet nucleon transition if
we neglect terms in 8. (These transitions are represented
by the integrals .Sz, Do, for example.) These transitions
would be proportional to 72(qx/2k.), which is negligible
in the energy range we consider, i.e., threshold to 515
Mev in the laboratory system. It is interesting that it
is not necessary to include the D to .S transition to
obtain a large anisotropy in the angular distribution.
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We come now to the evaluation of the radial integrals.
The proton wave functions are defined by using the
Jastrow singlet and triplet potentials* in Schrédinger’s

equation.
Singlet well:
V=0, r<ry, 7y=0.60X10"% cm,
V==Voexp(r—r/rs), r>70, 7,=0.40X107% cm,
V=375 Mev. (2.6a)
Triplet well:
V=— Vtslz exp(—r/rt), 7= 0.75X 10—18 cm,
V:=350.8 Mev. (2.6b)

While this well is not completely satisfactory, it gives
the best available fit of high energy proton-proton
scattering data.® While the poor agreement with
polarization experiments® casts considerable doubt on
the validity of the triplet well, the general features of
the singlet well, i.e., the hard core and deep, long-tailed
well, are of particular interest. The use of (2.6) is
further justified by the fact that the transition from the
proton singlet state gives the major contribution to the
process.

Solutions for the wave functions #,, %, and their
phase shifts were found numerically at laboratory
energies of 340, 372, and 437 Mev. This corresponds to
energies, in the center-of-mass frame, of 163, 182, and
207 Mev, with corresponding meson energies of 22, 40,
and 62 Mev. Numerical tables of the deuteron wave
functions were obtained from the work of Feshbach,
Schwinger, Harr,® and Pease.” They use a combination
of tensor and central Yukawa wells,

V(r)=—Vo{[1—3g+3g(e1 03) Je 7"+ S1e7/1},
Vo=46.96 Mev, g=0.005, ~v=0.5085,
7.=1.18X10"% cm, #,=1.70X10" cm.

The five parameters were obtained from comparison
with experimental values for the binding energy of the
deuteron, its quadrupole moment, and the triplet and
singlet neutron-proton scattering lengths and effective
ranges. Charge independence of nuclear forces is
assumed to obtain the central force range 7, from proton-
proton low-energy scattering data. The tensor range,
74, is fixed by the work of Pease and Feshbach” on the
binding energy of triton. The percentage of D state
obtained is 3.1 percent. Equation (2.7) fails to predict
high-energy scattering data. The apparent incon-
sistency in the well shapes (2.7) and (2.6) is not very
serious, especially since the shapes and relative ampli-
tudes of #(r) and w(r) are largely independent of the
potential wells assumed, provided they yield the correct
properties of the deuteron.

4 R. Jastrow, Phys. Rev. 81, 165 (1951).

5 L. J. B. Goldfarb and D. Feldman, Phys. Rev. 88, 1099 (1952).

8 Feshbach, Schwinger, and Harr, Harvard University Report

HUX-5. Computation Laboratory, Harvard, 1949 (unpublished).
7 R. L. Pease and H. Feshbach, Phys. Rev. 78, 135 (1950).
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F1c. 2. Comparison of exact 3P; proton wave function at 240
Mev, obtained using the Jastrow potential, with a “modified”
Born approximation wave function.

Since less accuracy is required in evaluating the
triplet terms, we represented the 3P; wave function, u,,
analytically. The triplet well given by (2.6b) is rela-
tively weak so that a Born approximation would seem
valid. We calculated the 3P; phase shift exactly at 240
Mev to check the work of Goldfarb and Feldman® who
calculate the phase shift, using (2.6b) and Born approxi-
mation wave functions. Agreement was to a few percent.
In order to get a better approximation for #; in the
region of interaction, we modified the Born approxi-
mation slightly, using

741=k01’j1(k07'+51>.

Figure 2 compares (2.8) with the exact solution at 240
Mev. For a given energy we obtain §; from the Born
approximation. Finally, in order to evaluate P, analyti-
cally, we approximate the deuteron wave function by

M(?’) =1.98 (47!’7'1))—}|:e~pr__ e““:],
p=0.237X10% cm™!, A=1.09X 10 cm .

(2.8)

(2.9)

Equation (2.9) is an exact solution to Schrddinger’s
equation using the Hulthén potential®

—Voexp(—r/a) Vy=46.6 Meyv,
virn=————"1-,
1—exp(—7/a) a=1.17X10"3 cm.

For small 7, (2.10) is almost identical to (2.7), and a
comparison of (2.9) with #(r) obtained from (2.7)
shows that the wave functions are identical to within a
few percent.

In evaluating the integrals given by (2.5), we keep
in mind their relative importance. .So and D, are evalu-
ated exactly at the three energies mentioned earlier.
This gives us a clear picture of the energy dependence
of o(xt,d) for B=0. We investigate the effect of the 8
terms on the angular distribution at 340 Mev only, and

(2.10)

8 Gunn, Powers, and Touschek, Phil. Mag. 42, 523 (1951).
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Tasie I. Radial integrals for the singlet and triplet transitions and the singlet and triplet phase shifts.

Proton energy

in Mev (lab 1595851 1Dy —3S1 1S0—3D1 1D2—3D) 3P1—351 Phase shifts
system) So ‘ Sa Do D P 80(1So) 81(3P1) 82(1D32)
340 0.423 2.26 0.075 0.394 —0.371 —0.537 0.30 0.413
372 0.442 0.366 —0.630 0.424
437 0.458 0.338 —0.734 0.398

for that purpose we evaluate Ss graphically and estimate
D, rather roughly. The latter is justified since D is very
small. Finally, P; can be obtained to reasonable accu-
racy at 340 Mev and, because it is evaluated analyti-
cally we can express P; rather simply (to about 109,
accuracy) as a function of energy,

376 Ko=hk0/,u.c,

Prm— -
U k4236 2.36= (M /uo),

(2.11)

where u is the meson mass and A is defined earlier in
(2.9). Table I summarizes the results of our calculations.

Consider first the case where 8=0. The differential
cross section becomes

do E
—=4(M /p)*(mpp) 'gank > ———(Ei/2M )
daQ E42
X[A+3B cos?8](h/uc)?, (2.12)

A= (So)1/2(Ds)*—VZ(SoDs) cos(62—s),
B=%}(D3)*+VZ(SoDs) cos(82—60),
pp=pcrp/h=3.06, n=rhgq/uc.
E=E,/ud,

where E, is the total, relativistic energy of the meson,
E; is the total relativistic energy of the system, and M
is a nucleon mass. Table IT shows the values of 4, B,
£=23B/A at various energies. The value of £ at 340 Mev
is consistent with experiments, though the experi-
mental errors are too large to make a definite com-
parison. The values of £ at higher energies are less
satisfactory, with definite disagreement with experi-
ment at 437 Mev where we have the measured value
of £=54-0.5 obtained by Fields ef al.? The total cross
section, for =0, becomes

o (wt,d)=16pp7 (M /1)°ga™n’xo

% (ﬁ—z) (-5 oo+ <D2>2](£)2.

As seen from Table II, (So)?+ (D.)? is practically
constant, so that we write

(So)2+ (D)2=0.323[1+8(E)], 8<1. (2.13)

9 Fields, Fox, Kane, Stallwood, and Sutton, Phys. Rev. 95,
638(A) (1954).

E;
2M?

We obtain §(E;) as a function of energy by fitting the
values of 6 obtained from Table IT with a smooth curve.
With this substitution, ¢ (7+,d) becomes, with 3=0,

o(rt,d)= 73.3ga2(2fE) (2362)[1+5(E6)]

<(Z)(2) e

In comparing (2.14) with experiment, we assume
various energy dependences for g/, i.e., we assume g.7,
gl2E, or g2E! is constant. The value of g.? is fixed in
each case by requiring o (r+,d)=0.269 mb at 338 Mev.
It is found that agreement with experiment over a wide
range of energies is possible only for g,? constant,

g2=2.04. (2.15)

The curve of (2.14) is given in Fig. 1. The low
theoretical values of o(xt,d) near threshold are to be
expected since the S-wave meson emission has been
neglected. An important factor in the comparatively
good fit at the higher energies is the strong x;=° de-
pendence on the proton momentum. While ko does not
vary much over this energy range, x;~° does. It is
interesting that the use of the Born approximation for
the proton wave functions would have resulted in a &,
dependence more like k=%, which would predict values
of o(rt,d) that are too low at the higher energies. As
in the case of the angular distribution, (2.14) becomes
less satisfactory at increasing energies.

Since the existence of an .S state interaction, as proven
by reaction (1.3), requires that 8540, let us consider
briefly the effect of the 8 terms on our results. The
effect of 8 on the angular distribution was investigated
at 340 Mev. Using the values of the radial integrals
given in Table I, (2.4) becomes, at 340 Mev,

% ZMImlel'% Zm,M’!mtlz
= (161/7p)ki2{ (q/k0)2[0.11842— 0.52ab+0.206
+ (0.214a24-0.52ab+0.306%)3 cos ]+0.2568%}.
(2.16)

The last term, proportional to 4% in (2.16), comes from
the S-wave emission in the transition from the proton
triplet state and consequently lacks the factor of
(g/ko)2. Since (g/ko)2==1/25, the last term in (2.16)
would certainly dominate unless 4<a. This term is
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isotropic and would lead to too small values for £ It
is found that for values of 8/a such that —0.10=b/a
=0.20, £ ranges from 6.5 to 2.1. The slight increase in
£ for very small values of b/a is not enough to account
for the large discrepancy with the experimental value
of £ at 437 Mev. If we require £>3 at 340 Mev, then
we must restrict 5/ to the range,

—0.05<5/a<0.20. (2.17)

We shall see now that a consideration of the energy
dependence of o(7rt,d) for 870 will lead to a more
stringent condition on b/a than (2.17). After integrating
the differential cross section over angles, the cross
terms in ab cancel out so that o (7*,d) depends only on
@ and 82 Since the major contribution to the term pro-
portional to b? comes from the triplet term (P;)? (about
80%,), we can approximate o (rt,d) fairly accurately by
the expression

o(r+,d)="73.3g2[E/ 2+E)J(E:/2M Hxi~y
XL (n/ko)’[14-8(E:) 1+-82.3(8/a)?
X[ko?+2.36 2] (/uc)>.  (2.18)

We have used (2.11) for P;. Again, we fix g, for a given
value of b/a by requiring o(z*,d)=0.269 mb at 338
Mev. The term in 5/a will lower the curve at increasing
energies and raise the curve at the low energies. Thus
we can obtain an upper limit on /e if we compare
(2.18) with experiment. Very roughly,

|5/a| <0.13. (2.19)

Smaller values of /¢ can result in a better fit with
experiment at the lower energies. Figure 1 shows (2.18)
plotted as a function of energy for 4/a=0.054, chosen
so that ¢(xt,d) falls exactly on the center of the lowest
energy measurement at 311 Mev.

Before going on to discuss the case when the final
nucleons are unbound, let us say a word or two about
the importance of the potential well in obtaining these
results. As has been mentioned earlier, (2.19) makes the
transition from the proton singlet state the only im-
portant one, and, consequently, the model is sensitive
only to the singlet well, at least for the case of the
Jastrow well. The singlet .S and D phase shifts and the
important radial integrals, So and D,, were evaluated
for various square wells with or without repulsive cores.
For no well chosen was there any chance of obtaining a
reasonably acceptable angular distribution at 340 Meyv,
nor did it seem possible for any other square well to
give agreement. By examining the various effects of
different square wells and the core, we concluded that
only a singlet well of the general features of the Jastrow
well, i.e., hard, repulsive core, and outside a deep,
narrow well with a long tail, could give the proper
angular distribution over any reasonable range of
energies, i.e., 100 Mev. The hard core seemed to be
essential. Also, the proton singlet well leads to a weaker
dependence of the total cross section on the incident
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TasLE II. Values of 4, B, and £=3B/A as a function of energy.

Proton energy

in Mev
lab. c.m. A4B '
frame frame A B £¢=3B/A =(So)2+4(D2)?
340 163 0.118 0.214 5.44 0.332
372 182 0.154 0.173 3.37 0.327
437 207 0.180 0.143 241 0.323

proton momentum, i.e., k;~5 rather than something like
ko as predicted by the Born approximation.

3. p+p— =t4n+p

We estimate the order of magnitude of the total cross
section, o(7*,np), at a lab energy of 340 Mev. Since
the final neutron-proton state is now unbound, a few
modifications are necessary. The matrix element for the
transition should be written'

M= [ T[g:H), 3.1)

where ;) denotes the time reversed final state, i.e.,
the scattered state with ingoing waves. We make use of
the relation

Ynp ¥ (7,0) =0, (r, 7—0). (3.2)

Including isotopic spin eigenfunctions in ¥, neces-
sitates splitting up ¥, according to even and odd
angular momenta since ¥,, must be completely anti-
symmetric. For example, for the triplet spin state, x1™,
we must write Y, as

Yup=Ve (I')X{”Ao-l-’#o (r)leAlo:

with ¢, (—1)=y.(r), Yo(—1)=—¥0(r); A, and A,® are
the antisymmetric and symmetric neutron-proton
isotopic spin states. For simplicity, we have neglected
tensor mixing of states and approximate 91 by including
only S to .S state transitions. Since the singlet to singlet
transition is forbidden, this leaves only one transition.
The final state is now a three-body state so that a con-
tinuum of values of meson momentum, 7, is possible.
Consequently, we find for the total cross section per
unit meson momentum,

de 8/M\?* ot s E; 7\?2
A (e ). o
dy w\p KkKko® \2M ¢? e

Here « is the relative momenta of the final neutron or
proton. By is given by

(3.3)

0

Buo= f o (w)ato (%) o e/ 2eo) i,

with #, the singlet .S proton radial wave function and
wo(x) the triplet S neutron proton radial wave function.
We have assumed 3=0. By is approximated by using

1 B, A. Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950).
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the low-energy approximation for w,, relating w, to
the scattering length and effective range,

wo=sin (kr+8) —sinde#". (3.5)

This is reasonable since the maximum relative energy
is only 20 Mev and, more significantly, the strong %
dependence favors transitions to final states with low
neutron-proton relative energy. We apply a similar
approximation to the incident proton state, writing #,
in the same form as (3.5). We choose 8 by requiring
to give as close a solution to Schrédinger’s equation as
possible. This is done by substituting #, in the form
of (3.5) in Schrédinger’s equation, leaving us with

A=— U(r—?’())uo— (k02+,802) sin (50+k070)6~ﬂ"(r—"’) =0.

In general, A is not zero, so that we find the “best”
value of 8, by requiring

f |Al%dr
70

be a minimum. 7, is the Jastrow core radius. This
approximation, when compared with the exact nu-
merical solution, is not too good and leads to a value
of By which is about 209, too high.

In evaluating By, it is necessary to redefine it, since,
as the integral now stands, the integrand is not defined
as «x approaches infinity. This is remedied by writing

W= Wo+wo (o ), U= 'IZO+740( e );
where
lim wo= 'ZU()(OO ),
20

and similarly for #,. Boo is now defined by setting the
nonconvergent part

fwo(oo)ug(oo)jodx=0.

This follows since wo() and #() are oscillating
functions with radically different wavelengths. This
shows how the nuclear interaction is necessary in order
to obtain a nonzero result for the transition. Further-
more, neglecting terms in 4y, i.e., neglecting the inter-
action in the initial state, would reduce do/dn by a
factor of two.

Evaluating Boo for various values of 7, at 340 Mev,
we obtain the result

o(rtmp) = 0.25 mb. (3.6)

The results obtained for deuteron formation indicate
that including tensor forces will make the D state
transition appreciable. Hence, it is more reasonable to
expect ¢ to be roughly equal to

o(rtm,p) =0.4 mb. (3.6")

Compared with o(7t,d) =0.3 mb at this energy, we see
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that the theory predicts roughly the same order of
magnitude for the two processes.

4. K-SHELL CAPTURE OF =~ BY THE DEUTERON

The existence of the reaction,!"?
7 +d— ntn, (1.3)

with absorption of the meson from the K-shell orbit
about the deuteron, proves that meson absorption or
production processes also takes place when the meson
isin an S state. In terms of our model, 30. It is found,
however, that the alternate reaction,

7|'_+d - 2”+7)

competes with (1.3). The ratio of the two reaction rates
has been measured by Panofsky, Aamodt, and Hadley,"
and by Steinberger and Chinowsky'?; they obtain the
values

(4.1)

R(2n)/R(2ny)=2.37£04, 1.5+£0.8, (4.2)

respectively. Since one would expect the reaction with
the emission of a gamma ray to be much less probable
than (1.3) because of the weakness of the electro-
magnetic interaction, (4.2) shows that absorption of a
meson from an S state must be partially forbidden, or
in terms of our model, |3|<|a|. We shall show now
that the value of 8 required to satisfy (4.2) is consistent
with the restrictions on 8 deduced earlier. Our procedure
will be to calculate R(2#n) with our model and estimate
the value of R(2#%,y) from the arguments of Brueckner,
Serber and Watson.!

‘Reaction (1.3) is very similar to (1.1), and we assume
charge symmetry so that the potential well defining
the neutron 3P; state will be (2.3b). The only real
modification of the earlier calculation is to replace the
plane wave for the meson function by the K-orbit wave
function

¢ (r)= (4m)~¥2a5de I,
a=72(\e)1=2.05X 10" cm, A=2Mu(Q2M~+p)
4.3)

Since the variation of ¢(r) over the size of the deuteron
is negligible, we can replace ¢(z) in the interaction by
¢(0). Using the approximation (2.8) for u:(ke), the
Hulthén wave function, (2.9), for the deuteron S state,
and including the deuteron D state by assuming
w(r) =~ u(r), we obtain for the transition rate of (1.3),

R(2n)=(0.946) (M /)5’ |¢(0) |2(%/ uc)* Jei*(c/7p)
= (0.946) (M /w)[2M ] 2M+p) P (x)*
XaPgyki™ (¢/7D),

where ko and rp were defined earlier, ¢ is the velocity
of light, and « here is the fine structure constant coming

(4.4)

1 Panofsky, Aamodt, and Hadley, Phys. Rev. 81, 565 (1951).
2 W, Chinowsky and J. Steinberger, Phys. Rev. 95, 1561 (1954).
13 Brueckner, Serber, and Watson, Phys. Rev. 81, 575 (1951).
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from the factor |¢(0)|2. From the work of Brueckner,
Serber, and Watson, we have

R(@npy)=(4/3)f (1—p/M)|$(0) |co (y+n—m"+p) /3,

with f’ a factor introduced to allow for modifications
introduced by the interaction of the two neutrons in
the final state. We shall take f'=1, and using the latest
measurements,!

o(y+n— 7=+p)=(0.1962:0.03)n mb,

we have
R(2n,y)=2.5%X10" sec™. (4.5)

Using the larger of the values given by (4.2), we have,
from (4.4) and (4.5),

g?=0.0329; |b/a|=]gs/gs] =0.128.  (4.6)

Using the lower value of R(21)/R(2n,y) will reduce
|8/a| to 0.10. While we might have hoped for a lower
value of |b/a|, 0.128 falls within the limits deduced
earlier. Considering the uncertainties in the values of
R(2n)/R(2n,y) and R(2n,y), we cannot take the value
of g? too seriously.

V. CONCLUSIONS AND SUMMARY

The simple, nonrelativistic model of meson produc-
tion used here is consistent with present experiments. In
particular, the large anisotropy and energy dependence
of the reaction, p+p — =t-d, could be described over
a reasonably wide energy range. The fact that this
agreement is obtained with energy-independent param-
eters is certainly surprising. The model becomes less
satisfactory at increasing energies, especially in the case
of the angular distribution. It is possible, however, that
a better choice of potential might improve the results.
The total cross section for the alternate reaction,
p+p— 7t4n-+p, roughly calculated, is found to be
of the same order of magnitude as the cross section with
deuteron formation. Finally, the calculation of #~-d —
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2n, where the 7~ is in a K orbit about the deuteron,
predicts an S-wave interaction sufficiently weak to be
consistent with results of the calculation of p4p —
wt4-d.

While it is difficult to draw any definite conclu-
sions from the success of this model about the prop-
erties of a fundamental theory of meson production,
the model does contain a number of interesting
points which might be kept in mind when dis-
cussing meson production from a phenomenological
point of view. The interaction between the nucleons in
both the initial and final states is of major importance
for the success of the model. In particular, the general
features of the Jastrow singlet well, i.e., hard core,
narrow deep well with a long tail, are necessary for
agreement with experiment. The effect of the D state
in the deuteron (or of the unbound #-p system) is not
necessarily small since the D to D transition can be the
same order of magnitude as the corresponding S to .S
transition. A discussion of the energy dependence of
these reactions in terms of meson momentum alone can
be misleading since a strong dependence of the cross
section on the incident proton momentum is possible.
It is not necessary to assume a 7'=%, J=% meson-
nucleon resonance in order to account for the anisotropy
in the production of mesons. Finally, the model shows
that the nuclear wave function can be important over
the entire region of interaction rather than just at
close distances.
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