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Reaction p+ p ~~++d with Polarized Protons*
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The reaction p+P~z++d is analyzed. Using the statistical operator methods, we derive: (i) the pro-
duction cross section for s-, P-, and d-wave mesons for the case of a polarized proton beam; (ii) the polar-
ization of the deuteron for both polarized and unpolarized incident protons. With the restriction to s- and
p-waves, the deuteron polarization gives new information about the production amplitudes; for an unpolar-
ized proton beam for the p-wave production only, for a polarized one for s-waves as well. We discuss:
(i) the possibilities of measuring the deuteron polarization; (ii) the relation of the phases of the production
amplitudes to the pp-scattering phases.

l. INTRODUCTION

HE object of this paper is to discuss the reaction
p+p~ +d, using polarized incident protons.

This process was first analyzed by Marshak and
Messiah, ' who restricted themselves to s and p--wave

pions, and has recently been discussed by Rosenfeld, '
%'olfensteig. ,

' and Gell-Mann and Watson. ' It has been
studied experimentally by Crawford and Stevenson'
and by Fields et al.6

We shall give a general expression for the 5-matrix
for the reaction considered and hence derive the cross
section for s , p-, and-d-wave pions. Restricting our-
selves to s and p-w-aves, we shall consider the polar-
ization of the recoil deuteron which gives new infor-
mation about the production amplitudes. In fact,
together with the data already available, a knowledge
of the deuteron polarization would determine these
amplitudes completely. This is of particular interest as,
near threshold, these amplitudes are simply related to
certain proton-proton scattering phases. The informa-
tion gained from the deuteron polarization assumes
rather different forms according to whether one uses an
unpolarized or a polarized incident proton beam. In
the former case it concerns only p-wave production,
in the latter both s and p-wave-s. The possibilities of
measuring the deuteron polarization, which would be
very difFicult, are discussed.

2. GENERAL THEORY

To calculate the cross section and the deuteron
polarization we shall use the S-matrix formalism first
developed in this connection by Dalitz~ and by Wolfen-

stein and Ashkin. ' In this formalism the differential
cross section for the reaction

is given, in terms of its scattering matrix 5, by

where'
do/dQ= Tr(SU,St),

U =-'(1+p e&'&).

(2)

(3)

U; is the statistical operator describing the polarization
of the incident proton beam, o&') its Pauli spin operator
and y its polarization vector, given by

p= (trt'&) =Tr(a &"U;). (4)

2'i+'= W-', &3(S,a iS„), T io =gz S„
and

(Sa)

Ts+' ——-,'W3{(S ' S„')+—i (S,S„+SoS,)),
Ts+' ——Wy/3((S, S,+S,S,) Wi(S,S„+S„S,)}, (Sb)

Tso = (1/V2) (3S,s—2) .

If U~ is the statistical operator of the Anal state,
given by

Ug ——SU;St, (6)

then the polarization of the deuteron is specified by

The polarization of the deuteron, having spin 1, is a
much more complicated quantity than that of a proton.
Its specification requires not only the expectation values
of the deuteron spin S but also of the second rank
tensor T~ which can be formed from the spin vector.
%e define

This work was suPPorted iil Part by tile U. S. Atomic Energy P so (2 .m) Tr(U 2'. )/TrU (~(
~ ~ ~ ~ 1 2) (7)Commission.

)On leave of absence from the Atomic Energy Research
Establishment, Harwell, England. where the denominator Trv~ ensures correct normal-

R. E. Marshak and A. M. L. Messiah, N«v«imen«&&, ization. It is simply the differential cross section for the
337 (1954).

s A. H. Rosenfeld, Phys. Rev. 96, 139 (1954). scattering angles considered, as follows from (2) and (6).
'L. Wolfenstein, Phys. Rev. 98, 766 (1955). The S-matrix can generally be written
4M. Gell-Mann and K. M. Watson, Ann. Rev. Nuc. Sci. 4,

219 (1954).
5F. S. Crawford and M. L. Stevenson, Phys. Rev. 95, 112

(1954). ' L. Wolfenstein and J. Ashkin, Phys. . Rev. 85, 947 (1952).
Fields, Fox, Kane, Stallwood, and Sutton, Phys. Rev. 96, One easily sees that this is still the correct de6nition of U; for

812 (1954). two identical fermions since only antisymmetrized states are
r R. H. Dalitz, Proc. Phys. Soc. (London) A65, 175 (1952). allowed.
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p+ p~~++d WITH POLARIZED PROTONS

where 0'; and %f are the asymptotic forms of complete
sets of wave functions describing the initial and final
states of the system and the /U, f, are suitably normalized.
We choose these states as eigenstates of the initial and
final relative orbital angular momenta l and l', of the
total angular momentum J and its z-component M.
Since we are only interested in the angular dependence,
we can write for the initial states

+ =&Des' && (0,0)4'ss,

where we have taken the z-axis, tI=O, for the direction
of the incident proton beam, (8,$) being the scattering
angles of the meson in the c.m. system. The Cm&m&""'

are Clebsch-Gordan coefficients, and the l/ are the
four spin states of the pp-system (M= —1, 0, +1 for
the triplet states, and a different label, say M=O', for
the singlet state). Because of the choice of axes, no
summation occurs in (8). For the final states we have
similarly

"(8A)e-, (9)

pp-singlet, /= even, J=/; ~/'=/&1,

where @ (m= —1, 0, 1) represents the three deuteron
spin states. The matrix element p,f; corresponding to
the transition from state (8) to (9) we shall label qadi'.

Angular momentum and parity selection rules allow
these transitions:

considerations show that S must be of the form

where /=c o8s= (g; gf). We shall explain the general-
ization of S for the case of higher angular momenta for
singlet pp-states, The extension to triplet states will
then be apparent. From (12), one sees that the singlet
part S""ghas the form

~""'=~(/)( ' 0)4o'+&(/)( N)ko' (13)

If S~, ~+~""g denotes that part of S""g corresponding
to a transition from orbital angular momentum E to
/+1 (/=even, since we have a singlet state, and J=/),
then S~, ~+~""g must be a spherical harmonic of order l
in g;, of order /+1 in gi, irrespective of how the other
variables are fixed. Hence if we put Po t——1, P= (0,0,1),
and g, = (0,0,1) or g~

——(0,0,1), the result will be a
function of the z-component of g; or gf respectively,
and, as explained, has to be a Legendre polynomial of
order / or /+1 respectively, i.e.,

A(/)+/a(&)=n/', +,(/), /A(/)+a(/)=PI', (/), (14)

where n and P are constants. Putting t=1, we obtain
a=/, and we can write, without loss of generality,
a=P=/+1. Equations (14) have the solution

[
J=/; —+/'=/&1,

pp-triplet, /= odd
I J=/+1; —+/'=/~1

A (&)= —P,'(/), a(/) =s,+,'(/),

where the prime denotes diQ'erentiation with respect to
nstead of the matrix elements Ij,zi' we found it t. It follows that, apart from a constant,

convenient to use the production amplitudes '(/)(x .N)4 '—&'(/)(x' N)0', (16 )

(2/+1) &

I
»v'.

& 4~ i
Combining these results, the S-matrix becomes

~= Z4-(ZE Z ~n'~~=-"'

and similarly one obtains

~&+2 i+& i+i (/) (Xf 'tl)A'
—~~2 (/) (x' N)A' («b)

For the triplet pp-states, the same procedure leads
to the formula

where J=/ if / is even
We construct S by

useful if only low angu
Let g;, gf be unit

initial and final relative momenta, and let Q and P be
the vectors Pia., @ defined above. S must be bilinear
in P and ittt or $0 t (depending on whether the initial
pp-state is triplet or singlet); it depends on g; and gi.
and must transform like a pseudoscalar. With the
restriction to s- and p-wave pions, simple invariance

where / is now odd and /'=/ 1, / or /+1 li an—d p, are.
to be determined by fixing J. This can be done by
observing that S«"'I' arises by contraction of two
irreducible tensors of rank J, constructed from y, ;Qt
and g~P. Suppose we have /'=/ 1, J=/, 1f we r—eplace

XCO ' F''~ ™(8&)}fiat (11) Sii "' =l~lP&"(/)(K; [Kixp](X; Q )
+(~; y)~,"[~&xy']}

, and J=/ —1, /, /+1 if / is odd. —r, ."(/){~; [~,xy](~, gt)
a second method, particularly +(~~ y)~' [~rxq']}]

lar momenta are involved. +p[&i'(&)g;. [Px&']
vectors in the directions of the —& '(/)Xr L X ']I, (16)
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TABLE I. Coeflicient p in Eq. (16c)for different transitions (X= 1).
The initial orbital angular momentum is l (odd).

Final orbital
angular momentum

lr

Total angular
momentumJ

l—1
l—1
l+1
l+1

l—1
l
l+1
l

1—l—l—1
l+2
+l

fi by I(y, the resulting tensor will be an odd function of
degree / in gf, but we know it must be a tensor of rank
J=/, hence it must vanish. This condition gives us a
relation between X and p. The same method enables us
to determine S in all other cases as well. The result is
shown in Table I, where we have taken X= 1.

y2= (1/14) [42r22 —21r32+35rs2+60r32+21rs2
—84v2ooo2+42v2oiis+ (42+10)toi4+ (12+35)oiis
+84~~16+ (42/5) a~34+ (6+70)toss —294ooso

—(90/14)oi43 —(126+5)o~43—(18+70)o~ss], (20b)

y4
——(1/28) [—100r32+35rss+630to 33+ (200+14)a&43

+ (350+5)to43+ (50+70)o~ss), (20c)

Xo= 2 [4v2Qot —4Qi2 —8Qos —6Qos
—4%2Q23—3v2Q23], (21a)

4= (1/14) *[(15+14)Qos+ (18+7)Q23+ (6+35)Q24

+ (6+10)Q23—(9+7)Q23), (21b)

X,= (5/14) l[(4+7)Qis —6&2Qis+ (2+14)Q34 —6Q33

+ (10+5)Q43+ (+14)Q43—3Qso J, (22a)

3. CROSS SECTION FOR s-, p-, AND d-WAVE I3IONS "3 (5/ )*[ (2 +5)Q43 (5+ )Q43+ 5Qssh (22b)

do (e,y) 1

dQ
{'ro++2 cos'F)+'r4 cos'fl

32ir

For final meson states with t'(2, there are 7 possible
transitions, shown in Table II.The 6rst column speci6es
the pp-system; the second specifies the Ore system,
the aux 3 referring to the deuteron spin. We have
simplified the general notation introduced in Sec. 2 and
label the amplitudes (10), ao, ai, as, as shown in the
last column of Table II. If we consider only s- and
p-wave mesons, only the amplitudes ao, ai and a2 differ
from zero. They were so ordered that in this case the
sufFix gives the J-value of the transition considered,
i.e., we can write ug, J=O, 1, 2. Of the 7 transitions,
the first two arise from pp-singlet states, the remaining
five from pp-triplet states.

Using Eqs. (11) or (16), and (2), we obtain for the
differential cross section for reaction (1), allowing s-,
p-, and d-wave mesons, and assuming the incident
proton beam polarized in the y-direction [i.e., p
= (o,p,o)j:

The angular distribution (17) is of the form to be
expected from general considerations and one can easily
extend it to include higher partial waves. The asym-
metry due to the polarization consists of two parts.
The first is an interference effect between s- and p- or
between d- and p-waves; it arises from interference of
a singlet and a triplet pp-state. The second part results
from interference of s- and d-wave mesons; it arises
from two triplet states of the pp-system. This second
part is asymmetric about 0=90', so d-waves should
show up as such an asymmetry. Although the s-wave
amplitude itself is small, this asymmetry might be a
more sensitive test of the presence of d-waves than
deviations from a (go+f2 cossf))-dependence of the
unpolarized cross section. With the restriction to s-
and p-waves, our result agrees with that of Marshak
and Messiah, ' and our parameters are easily related to
those used by Rosenfeld2 and by Gell-Mann and
Watson. 4 In particular,

Vo/72 Q Xo/ro n2) Ayl PrP A (ro +y2 )

—P sinf) cosg[(Xo+X2 cossil)

+ (Xi cos8+Xs cos'F))j), (17)

2ro'+r2'+2V2&oo2

3 (r2' —2v2o~o2)

4. DEUTERON POLARIZATION

(23)

where the coeKcients yp ' ' Ap ' are defined in
terms of the amplitudes u as follows. I-et

We now restrict ourselves to s- and p-wave mesons.
The reaction is then completely speci6ed in terms of

8 =F 8 ) (18) TABLE II. Transitions involved for s-, p-, and d-wave pions.

~ „=r r„cos(n —n ), Q „=r r„sin(n —n„). (19)

Then,

go= (1/28)[56yo +56yi2+28y2 +70ys +70y4
+20r32+35ro2+56&2oro2 —28&2&223—(28+10)coi4

—(8+35)oasis
—5642oois —(28+5)co 34

—(4+70)oooo+ 70ooss+ (20+14)co43

+(14@'5)(u43+(2+70)cussj, (20a)

'Sp—+3Pp

'D2~9'2
3+1

+lg
3D1

3P2

3P Z
'D3

p.g '

Sp



p+ p~m-++ d WITH POLARIZED P ROTONS

the 5 parameters ro, r&, r& and two of the phases cxo, o,]
and a&. At present, experiments only furnish us with
four data at any given energy: A, Q, n, and P, Eqs.
(23). A and Q are obtained at any energy from the
angular distribution of the unpolarized cross section
and the asymmetry when using polarized protons. e
and P are obtained by assuming the energy-dependence
of the s- and p-wave contributions to the total cross
section, as given in (23), r) being the pion momentum
in the center-of-mass system. As Rosenfeld' shows,
this energy dependence gives good agreement with
experiment, but, except near threshold, there is no
reason why it should be generally valid.

Following Rosenfeld' and Gell-Mann and Watson, '
we introduce the following ratios of production ampli-
tudes

V3 1
(2yo +ys +2v2poos) sin ge+ 'p

2 32Ã

&3 1
+1

2 16m
( 2rp—s+2rss+V2oops) cosg singe+'&,

(27b)
1 da(x —8, y+x)

Vg'= ——2
W2 dQ

v3 1
Ws+' ———— (V2Qpi —Qis) singe+'&,

2 16m

3
+ {ris+s(2rps+rss+2v2cups)) sin'8,

16m

As fifth parameter to specify the reaction completely,
we can then introduce the phase angle coo given by 1 3

II 2 (v2Qol Qls) slilg cosf.
V2 16'.go= —(1/V2) (1+3X)+(3/V2) (X'+X)&e'"p (25)

gp=
I gp

I

e'"=~o/~s gi=
I gil e'"=~i/~s (24)

2 16x.
(28b)

p.m(g y) —{p'.m(g y)+.ppr m(g @)}/
{da (x —8, y+x.)/dQ), (26)

where the incident proton beam again has polarization
p= (O,p, O) and

K3 —3&2
V~+'= —i— Qo~ cose since+'&,

2 16m (27a)

WP =s (—&2capt+2pors) cosg~
2 16m

1
Wt'= —gs (v2&upt+cvts) sing sing,

16m

(28a)

'OK. A. Brueckner and K. M. %atson, Phys. Rev. 86, 923
(1952); and Aitken, Mahmoud, Henley, Ruderman, and Watson,
Phys. Rev. 93, 1349 t,'1954)."For the value of X deduced from experiment, (1/V2) (1+3X)
& (3/v2) (Xs+X)i.

The determination of the parameter coo is of con-
siderable interest, as this would completely specify the
parameters entering the reaction. Moreover, near
threshold these parameters are simply related to the
scattering phases of the pp-states involved (see Sec. 5
below). There are some theoretical arguments" to
suggest that ~go~ is small which would imply that cup is
small. "

coo must be determined from a measurement of the
deuteron polarization. From Eqs. (5) to (7) one obtains
the polarization of a deuteron emitted in the direction
8, P (i.e., the meson is now emitted in the direction
7r —8, y+s.),

The co „and Q are defined in Eq. (19).
To consider the vector part of the polarization, we

introduce the expectation value of the spin

(S)= {v+pw)/{da/dQ), (29)

where v and w are simply related to V& and S'&, as
follows from Eqs. (5a) and (7).

The vector v, due to unpolarized protons, is perpen-
dicular to the plane of scattering. Its angular depend-
ence is given by sin28/(A+cos'8). It vanishes for 8= 0;
for A 0.29, it attains its maximum value for 8=65'.
From (25) and (27a) we see that v is proportional to
sincoo. The polarization v agrees with the result of
Watson and Richman" if one allows for the fact that
they only considered p-wave mesons. It should be noted
that this contribution to the polarization depends only
on p-wave mesons, and so only involves (np —ns).

With polarized incident protons, there is a second
contribution w to the vector polarization. In the forward
direction, 0=0, only the y-component of w divers from
zero and moreover has a maximum. For other angles,
w has a more complicated behavior; in particular, it
also has a nonzero s-component. w involves both
(up —ns) and (ni —ns), i.e., it also yields information
about the s-wave pions.

In Fig. 1, we show the polarization (S) as a function
of rap. Curve (A) gives the polarization from an unpolar-
ized proton beam Li.e., s„/(da/dQ)$ in the direction
where this polarization is a maximum. Curves (8) and
(C) show the contribution to the polarization due to the
polarized part of the incident beam Li.e., ta„/(do/dQ) j
in the forward direction 0=0. The proton energy is
315 Mev. For the parameters (23) we have taken (see

"K.M. Watson and C. Richman, Phys. Rev. 83, 1256 (1951).
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|,'S„&

(B) (C)

Fro. 1. y-component of the deuteron polarization (S) versus coo.
Curve (A): polarization produced by an unpolarized proton beam
emitted in the direction of maximum polarization. Curves (B)
and (C): polarization produced by the polarized part of a com-
pletely polarized beam [p= (0,1,0)j, the deuteron being emitted
in the forward direction. The two curves (B) and (C) correspond
to the two possible values of ri. The other components of (S)
vanish for the cases considered.

reference 2) a=0.14 mb, P=1.0 mb. For X we took
the more recent value' X=0.082, instead of X=0.1
suggested by Rosenfeld, ' and for Q we took the value
0.39 of Crawford et aL' The two curves (8) and (C)
are the result of the fact that the polarization Q does
not determine ri=(ni —ns), Eq. (24), unambiguously
but only through sin/arg(8o+gs) —rij.

Considering the tensor polarization next, one finds
that only the components V2+' and 8 2+' lead to new
information; i.e., the particular combinations of the
reaction amplitudes which occur in the other compo-
nents can be expressed in terms of the parameters X,
y2, and Ao, defined above.

To measure the deuteron polarization is clearly
dificult. The deuteron has a threshold energy of 141
Mev and hence is emitted nearly in the forward direc-
tion, so that in any experiment one necessarily inte-
grates over a wide cone in the c.m. system. The cross
section for the reaction is small, particularly at low
energies, and so the intensities may not be adequate
for the additional scattering experiment required to
analyze the deuteron polarization.

To analyze this deuteron scattering, we introduce a
new coordinate system with the direction of the initial
momentum of the deuteron in the laboratory system as
polar axis. (Quantities referred to this coordinate
system will be distinguished by primes. ) From general
invariance considerations it can be shown" that the
azimuthal asymmetry of the scattered deuterons is
given by

I=&o+&oLso'

+E1{cosP(Ls"+pMi")+sinP'( —pL,"+M,")}
+E's{cos2P'(Los')+sin2P'(M ")} (30)

where
(T ™)'=L-'+ sM -' (31)

and p' is the azimuthal angle of the scattered deuteron

"W. Lakin, Phys. Rev. 98, 139 (1955).

in the primed coordinate system. Io is the intensity for
an unpolarized deuteron beam. The E's and p are
unknown functions of the scattering angle 0,

' of the
deuteron and of the magnitudes of its initial and Anal
momenta. A calibration, by means of a double scat-
tering experiment, of the target used to analyze the
deuteron beam will give the E's. To obtain p, the
sensitivity of the deuteron analyzer to the two types of
polarization must be known. From (30) it follows that
we cannot separate (Ts')' and (Ti')' by a double scat-
tering experiment. The only unambiguous azimuthal
asymmetry results from the terms in cos2p' and sin2p'.

One easily obtains the (T; )' from the (T, ) for a
general rotation of axes. If $ is the ratio of the deuteron
velocity in the proton-proton c.m. system to the
velocity of the center of mass, and O~, C are the angles
of emission of the deuteron in the laboratory system of
the pp collision, then C =p and

cosO'=1+0(P), sinO'= g sin8+O(P), (32)

where we used the fact that $ is small even for quite
high proton energies ($ 0.04 for 315-Mev protons and

0.15 for 800-Mev protons). For the component of
interest, (Tss), one then finds

Ls"= {Ls'cos2$+Mss sin2$}

+P sin8{Ls' cosg+Ms" sing}+0 (P),
(33)

M "={ L' sin2&+—Mss cos2&}

+g sin8{—Ls' sing+Ms' cosP}+O(P).

Hence the determination of +0 requires experiments
sufFiciently accurate to measure the terms proportional
to $ sin8 in (33) (since Vs+' and W,+' depend only on
Xys and )io).

%e briefly consider the experimental possibilities of
measuring coo on the assumption that we have an
analyzer for the deuteron scattering whose sensitivity
to the vector and tensor types of polarization we know,
i.e., p is known, so that we can deduce (S) from a
double scattering experiment.

Using unpolarized protons requires a double scatter-
ing experiment. This would determine coo and the
remaining parameters (apart from the ambiguity men-
tioned above) if we assume the energy-dependence of
the reaction amplitudes, Eq. (23). The simple angular
distribution of the polarization and the fact that it is
proportional to sincoo may allow a comparatively simple
experiment and analysis. For example, an experiment
might be possible where "no azimuthal asymmetry in
the second scattering" could be interpreted as coo=0
within the experimental error.

Using polarized protons, one requires a triple scat-
tering experiment. The resultant loss of intensity makes
this a much more dificult experiment and rough
estimates suggest that one would at any rate have to
go to higher energies, say 600 Mev, to obtain adequate
intensities. This experiment has the advantage that a
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suKciently detailed analysis of the deuteron beam
would give information about both 0,0—o,2 and n~ —0.2
and consequently would allow one (possibly in con-
Junction with the ftrst type of experiment) to determine
the reaction amplitudes completely without assuming
their energy dependence. However, the more compli-
cated angular dependence might make it dificult to
obtain suKciently detailed information.

One may question whether an analysis in terms of
s- and p-waves is still adequate at the high energies
considered above, particularly since interference sects,
such as we are discussing, are very sensitive to small
admixtures of states. But the fact that d-waves do not
seem to play an important role in pion-nucleon scat-
tering even at quite high energies, together with the
explanation, in terms of the p,*resonant state, of recent
experiments'4 on pion production in nucleon-nucleon
collisions up to energies of 1 Bev, suggest that such an
analysis may be adequate. On the other hand, the
determination of the reaction amplitudes would be of
particular interest near threshold because of their
relation to the pp-scattering phases.

rp ——a ('Sp) —o.('Ds)+I tv.,

(rr rr/2) =n('I'r)—cr('Ds)+Nsrr, — (34)

where Nr and us are integers and n(' +'Lq) is the pp-
scattering phase in the state ' +'I.z at the energy of
the pp-system considered. These relations are also
stated by Gell-Mann and Watson. 4 In deriving them,
the meson-nucleon interaction is taken as suKciently
weak. to be treated only in erst-order perturbation
theory. This is justi6able for low meson energies for
which all the meson-nucleon scattering phases, in-
cluding 0.33, are small. In spite of this uncertainty as to
their range of validity, relations (34) should be very
useful in determining the pp scattering phases in the
300—400-Mev region, once the meson production pa-
rameters vo and rj are known. We illustrate this in
Fig. 2, where we have plotted rs and rr —7r/2 versus dies

'4 S. J. Lindenbaum and L. C. L. Yuan, 1955 Rochester Con-
ference on High Energy Nuclear Physics (to be published)."K.M. Watson, Phys. Rev. 95, 228 (1954).

5. RELATION TO THE PP-SCATTERING PHASES

Watson" has related the phases of the amplitudes
for photomeson production to the pion-nucleon scat-
tering phases. Using the same method, we have related
the meson production amplitudes in reaction (1) to
the pp-scattering phase shifts. One obtains

FIG. 2. ro and rr 90' (w—hich are related to the pp scattering
phases by Eq. (34)) as a function of co&. Curve (A) gives ro,
curves (8) and (C) give the two possible values of rq which were
used in the corresponding curves (8) and (C) of Fig. l.

for a proton energy of 315 Mev, using the same data
as were used for Fig. 1. One sees that a knowledge of
coo would quite strongly restrict the values of the three
pp-phases concerned, particularly if &os really turns out
to be small. The pp-phases are not sufficiently well
known for the procedure to be reversed. Klein" has
analyzed the pp-data in the energy range 170 Mev—
330 Mev in terms of s- and p-waves, using the differ-
ential cross section, including small angle scattering,
and the polarization. For positive polarization, as
determined by Marshall and Marshall'~ at low energies,
Klein obtains several sets of phase-shifts but none of
these agree particularly well with Fig. 2. This is perhaps
not surprising, since Klein cannot 6t the 330-Mev
polarization data in terms of s- and p-waves, as has
already been pointed out by Fried."
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