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Calculations for the nuclei with mass 19 were based on a shell model with harmonic oscillator wave
functions, central Gaussian interactions between the three outer nucleons, and a single-particle operator
which leads to the energy differences between 1' 2s~ and 1d; levels observed in 0".Energy matrices for
all con6gurations of the 1d, 2s shell were calculated. Wave functions of four nuclear states were obtained.
They lead to the observed ft value for the allowed unfavored 0"it transition, as well as for the favored Ne"
tt+ transition. Energy differences between 5/2+ and —',+ states of F" and ground states of 0" and F" are
correctly given. Disagreement with the measured energy of the ~2+ state of 0' and the magnetic moment of
F", however, indicates that at least modi6cations of this model are necessary to obtain general agreement.

1. INTRODUCTION

'N the preceding paper, ' which will be referred to as I,
a variation method for obtaining nuclear wave

functions was described. The notation of I and the
assumptions for V(i,j) and V (r;) introduced there will

be used in this paper. Results' for mass numbers A = 17
and 18 will be reviewed, and methods of calculation for
A=19 as well as their numerical results will be pre-
sented. The set of f for each (T,J) will be taken to
consist of the wave functions for all states of the con-
figurations

(]s)4(1P)12(1d)k(2s) A—ls-s (1a)

with all possible k. Neither configurations with higher
states of the harmonic oscillator potential V'(r, ), nor
those without completely closed 1s and 1p shells will be
included. The considerations of I for the wave function
of 0"lead us to expect that admixtures of these higher
states are small. The present assumption for the set of

evidently permits only the description of states of
positive parity.

In the light of Sec. 4 of I, we may substitute the con-
figurations

(1d)s(2s)A—ls—s (1b)

for an (A —16)-particle system for (1a), provided that
terms in C(2s, 1d), which accounts for the variation with
nl of the interaction between an nl state and the double
closed shells, are added to the diagonal elements of the
energy matrix. A single-particle operator which can be
written

6 (i)= —0.302(8.75—js)'+2.525(8.75—js) Mev, (2)

equals 0 for j,=5/2, 0.875 Mev for j;=—,', and 5.08 Mev
for j;=—,. It is diagonal in any j-j coupling representa-
tion. While the calculations which follow will be made
in such a representation, their results will show that
neither j-j nor I.-5 coupling is accurate in this mass
region. We shall henceforth speak of one-, two-, and
three-particle configurations, in the sense of (1b).

The Parameters of the Calculation

The Gaussian internucleon potential, Vx (i,j)of I (13),
which accounts for all the properties of the neutron-
proton system in the triplet state at low energies except
for the deuteron's quadrupole moment, will be used
here. The depth of this potential is Uo= 70.8 Mev. The
harmonic oscillator potential V'(r, ) of I (14) with
parameter vp was used in the calculations for A =18
and will be used for A = 19.From Fig. 1 of I, however, it
seems that a parameter as large as v~, corresponding
to a smaller expectation value of r, would be more
suitable.

The numerical calculations of the present paper were
made for two values of the depth of the two-nucleon
interaction. It turns out that an arbitrary increase in
the depth to about cUO, with c=1.46, leads to much
better agreement with experiment for A =19 than does
Vo. It can readily be seen that a happy correspondence
exists between this change in depth and a change in v.
The matrix elements of Vz(i, j) are linear combinations

TABLE I. Some diagonal matrix elements,

(a', r,~ I e(Vw+ V~) I
a', 2',~),

in Mev, X (—1), evaluated for two sets of parameters. Vw and
Vsr are de6ned by Eq. (13) of paper I.

is introduced in order to account empirically both for
C(2s, 1d), which follows from the model of I, and for the
splitting between. —,'+ and 5/2+ levels of 0", which
does not. D(s) is analogous to A(j~) of reference 2; it

~ A preliminary report of this work has appeared in Phys. Rev.
98, 199 (1955).

t This investigation was started at Palmer Physical Laboratory,
Princeton University. It was supported by the U. S. Atomic
Energy Commission.' M. G. Redlich, preceding paper /Phys. Rev. 99, 1421 (1955)g.

s M. G. Redlich, Phys. Rev. 95, 448 (1954).

Config. am

(1')'

(2')s

1)0
12
1,4
0,1
0,3
0,5

1,0 or 0,1

Depth cVo

5.43
1.59
0.83
3.06
2.15
4.16

4.68

vp

4.97
1.62
0.86
2.86
2.19
4.31

4.60

1427



MARTIN G. REDLI CH

of certain radial integrals, which vary roughly as v&.

Consequently an increase in depth corresponds ap-
proximately to an increase in v. This is seen in Table I,
where diagonal matrix elements for the configurations
(1d,)' and (2si) are given for parameters (i s, cVs) and
(vi, Up). Similar results are to be expected for other
con6gurations and also for interconfiguration matrix
elements, since the changes in all radial integrals
save one range from —10 to +13% in going from

(pp, GVp) 'to (pi, Vp). The exception, P4(1d, 1d) in the
customary notation, changes by —30%. Its coeflicients
are, however, generally small, and its eGect may be
gauged from Table I, since it appears in all (1d,)s
matrix elements. The numerical calculations throughout
the text and in all except three of the tables in the fol-
lowing sections will refer to the parameters (vs, cVs).
In Tables III, XI, and XIII, results of calculations for
both (i s, Vs) and (i 0, cVp) will be presented.

2. THREE-PARTICLE WAVE FUNCTIONS

Wave functions for states of a con6guration C= j&j2j3 of three particles, each with isotopic spin t=-„can
readily be obtained. Let us consider the complete set of wave functions of j&j2, antisymmetric in coordinates,
spins, and isotopic spins of particles 1 and 2, with total isotopic spin and angular momentum fT,J j. There
exists a state of jijsjs with (T,J) which corresponds to the following vector additions:

T'+t= T; J'+js ——J. (3)

By use of the vector addition coeKcients one can readily obtain a wave function P(1,2; 3) which has these (T,J)
and $T',J'$, and is antisymmetric in 1 and 2. A completely antisymmetric wave function is then

C (a),=Et f(1,2 3)—P(1,3; 2)—P(3,2; 1)j,
where E is a normalization factor. The subscript a on C stands for antisymmetric. The state is described by

~= (jijs)js I:7',J'j, (2',J), 2'rJ'
The two-particle state determined by jijs $T',J'j will be called the parent of the three-particle state.

Fractional Parentage CoefBcients

The fractional parentage coeScient' is defined by

~().=E' Z,L(C.,I'-J-).&,(3),», ,JJ.jX(C„I J-;,,It2'J;I'J).

(4)

The symbol C& stands for Cj& . The function p describes the configuration C& of particles 1 and 2 in an anti-
symmetric state $T",J"j, with T"J"added to /, and j&, which describe particle 3, to give TTrJJ,. The factor of
p is a fractional parentage coefBcient. The summation over k runs only over distinct j&. The relation between
expansions (4) and (5) can be seen most clearly in a representation given by

p= ppsps, with p, =jj„t,tr, .
Then we can write

~ (1) ~.(1) ~.(1)
1

C (P) Pi(2) P&(2) Ps(2)
g6

P (3) P (3) P (3)

(7)

where p, (p) stands for the wave function of particle k speci6ed by the quantum numbers P;. The determinant
C (8), can be expanded in terms of cofactors &,& in two ways:

C (8).=Z ~'.~;(&)=Z ~'~'(3)

The first expansion corresponds to (4), the second to (5). It should be noted that the set of antisymmetric wave
functions for all 0. is a complete set for the con6guration j&j2j3 of identical particles. This can be demonstrated by
comparing the total number of linearly independent wave functions corresponding to all fP,J'j and the vector
additions (3) with that obtained by the usual method of counting, made in the representation P.

Calculations in the representation n will be described. If we assume that f's and p's are both normalized, then

g (1,2; 3) = p$(j ij s, T'J'), js(3),TTr,JJ,j.
' G. Racah, Phys. Rev. 62, 438 (1942). This is Racah's paper III.
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The connection between the other terms of (4) and (5) can be established by application of a formula which follows
directly from (4) of reference 3:

X(l,l2L i /2LLg) =Q /2(/1/2/3)L L L) X(/2/2L"; /1LL,))

where
lg l2 I.'

h(/ l /, L'L"L)= t (2L'+1) (2L,"+1)$&(—)"1+'2+'&+ "
123) (9b)

=L(2L'+1)(2I-"+1)Ji(—)"+1" z W(ltlsj. ls, L'I"). (9c)

(9b) is expressed in terms of the six- j-symbol' and (9c) in terms of the Racah coeflicient. s The quantity l can stand
equally well for total angular momentum j or isotopic spin t. The subscripts serve not only to differentiate angular
momenta, but also to indicate coordinates in x; i.e11 l;=l;(i) on both sides of (9a). The )/ of (4) can be expressed
as a product of a space and spin function $1 and an isotopic spin function $2, each having the property (9a):

1/(1,2;3)=41(jrj2J';jsJJ.)XA(2-', P;-', T Tr).

If j1——js——jWjs, then (4), (5), (9), and (10) lead to

(j',T'J' j2)T'J' TJ)=N=3

(jj,T"J";j jT'J', TJ)= (2/3)ih(jj j,J'J"J)X/2(-', -', —,', T'T"T).

(10)

(11a)

(11b)

The details of this calculation, for a specific example, may be found elsewhere. '
If js also equals j, the normalization N of (4) is changed, since the three f s are, in general, no longer orthogonal.

The fractional parentage coefficient becomes

(j',T"J";j)T'J', TJ)=N'[8(J', J")+2h(jjj J'J"J)Xh(2 2 2, PT"T)g,
where E' is obtained from

(12)

(13)

The wave functions of j' for the same (T,J), speci6ed by d'ifferent [T',J'j are not necessarily orthogonal. In
particular, for j=5/2, we shall be concerned with two states of (id.,)2 with (1/2, 5/2). The two wave functions
with this (T,J) whose parents are

l 0,1j and
l 1,01 form a complete set, but are not orthogonal. We shall choose

instead the wave function determined by l 1,0j and that other one which is orthogonal to it (Tr and J, will
sometimes be left off from now on):

C (d L1,0$; 1/2, 5/2). ;
(14)

0'(dis J- i 1/2~ 5/2)~= 8 &(13&C'(dis L0~1]i 1/2~ 5/2)s+51C'(dts l 1~03i 1/2~ 5/2)~l.

The fractional parentage coeKcients for (id~)2 have also been calculated by another method.
If all three j; are different,

(jj T'J' j jlPJ'TJ)=3—
&

Ups T"I" j1P'J', TJ)'=3 'h(j1 jsjs,J'I"I)X&(2 2 2,T'T"T),

(j.jsT"J" jsIIT J TJ)=3-1(-)'+'-11-1'I(jsjrjs,J J"J)X/(22 2)T T"T)

(15a)

(15b)

(15c)

Formulas for L Scoupled wav-e functions can, of course, be obtained in an entirely analogous way with (9).
The parent state is then described by

(2T~+1) (ss'+1)LIj
All matrix elements needed in the present paper can easily be calculated with the fractional parentage coeK-

cients. The matrix element of an operator

F(2)=P f(i),

4 E. P. Wigner, "On the Matrices which Reduce the Kronecker Products of Representations of Simply Reducible Groups, "circa 1942
(unpublished).

M. G. Redlich, Princeton University dissertation, January, 1954 (unpublished).' A. R. Edmonds and B.H. Flowers, Proc. Roy. Soc. (London) A214, 515 (1952).
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where f(i) operates only on particle i is'

(C,T'J', TTrJJ. IF"'I C»'J'»Tr JJ ) =3 2' & (Cs, T"J";j slftT'J', TJ)*
p// J//

X(C?, T J jsTTrJJ I f(3) IC»T J j&TT&JJ) 8(C»Ct) (C»T"J";j?,')IT'J', TJ) (.17)

The star denotes a complex conjugate. The function 8 equals 1 if Cl, is the same configuration as C& and 0 otherwise.
The matrix element of

V"& = V(1,2)+ V(1,3)+V(2,3),

where V(i,j ) is a scalar operator on particles i and j only, has also been given by Racah:

(C,T'J', TJ
I
V "&

I C, T'J', TJ)=3 Q' Q (C,T"J";j ]jT'J',TJ)*
Jt: T// J//

X(C&,T"J"
I V(1,2) I C&,T"J") 8(j &j &) (C&,T"J";j&)T'J',TJ). (19)

This formula shows that matrix elements of V& ' can be obtained directly from those of V(1,2) for two-particle

configurations by use of the fractional parentage coefBcients.

TABLE II. Comparison of theory with experiment for A =17.
Column (i) refers to the variation method of I, with one wave
function for the conf?guration (1s)4(1p)"(1d)'. Column (ii) refers
to a model for the system: Core+outer nucleon. Es(X??) is the
energy (in Mev) due to nuclear forces only of the lowest J+
state of X".The ft value for F??(P+)0?? is not included here, since
it was used to determine the Gamow-Teller coupling constant.

Datum

t (0??)

Theory (i) Theory (ii) Experiment

—1.9130 —1.8542 —1.8937 nm
~0.0001

V(0") 0 —0.0020 —0.005 X 10 '4 cm'
~0.002

T, (0",s;)

@4(F1?) g4 (01?)

380

0

1.7
&0.7

03a

X10 M sec

Mev

a This number =Kp+(F»)+Re+D» —AZc(9). LFor definitions, see Eq.
(21) R.j

3. RESULTS FOR ONE- AND TWO-PARTICLE
CONFIGURATIONS

A = 17.No interaction between outer states appears
here. In Table II, experimental results are compared
with (i) the model of I, and (ii) a model with two bodies,
a core and an outer nucleon. In the second model center-
of-mass effects are taken into account. The experi-
mental magnetic moments in Tables II and XI are
taken from a current table~; all other data in all tables
as well as in the text of the present paper, are taken
from a recent summary. '

The magnetic moment, p, of 0'~ is given rather
accurately by either model; this agreement is most
remarkable. Model (ii) leads to roughly the correct
value of the quadrupole moment, q, of 0".The next
line of Table II, however, contains a sharp disagreement
with experiment. The theoretical value for the half-life
of the E2 y transition from the 875-kev state to the

Coulomb energy differences are de6ned as

a&c(z) =Ec(Z) Zc(Z 1), — —(21)

and therefore always positive. The details of the energy
difference due to nuclear forces as deduced from experi-
ment are given in footnote u of Table II. The notation,
here and in Tables III and XI, is: ICp ——maximum
kinetic energy of the P-particles, R,=rest energy of
the electron=0. 511 Mev, and D„„=neutron-proton
rest energy difference= 1.293 Mev.

A calculation of the ratio Jt." of Gamow-Teller (G-T)
to Fermi coupling constants in P decay can be based
on the assumption that the G-T matrix element for the
transition F??(P+)0?? is of pure single-particle type.
Actually, we expect that there will be admixtures of
wave functions of other configurations, with small am-
plitudes a . Their sects upon the G-T matrix element,
however, will be of order a ', since there are no cross
terms between (1s)4(1p)"(1d)' a'nd any other con-
figuration. In the formula

ft=&PZ, F'+~ E/ ~ Gh-', (22)

F and 6 are Fermi and G-T matrix elements, and the
summation is over final states. The constants are

ground state of 0' is about 220 times the experimenta
one.

In the last line of the table there appears the con-
tribution of nuclear forces to the energy difference
between the (T,J)= (1/2, 5/2) states with Tr= ——',

and —,'. The theoretical value is 0. The value in the
column marked "Experiment" was obtained by using
the following rough formula for the Coulomb energy Ez.

3 Z(Z —1)e' Z(Z —1)
Ec(Z) =—X = X0.61 Mev. (20)

1.&A'X10 "

8= 6550&150 sec, E=1.22&0.11. (23)' H. E. Walchli, Oak Ridge National Laboratory Report 1469,
1953 (unpublished). 9 has been determined' from a 0+ —+ 0+ transition,

F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77
(1955). ' I. 3. Gerhart, Phys. Rev. 95, 288 (1954).
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R from the F" decay. These constants will be used in
later calculations.

A = 18. Calculations had been made' for these nuclei
with an interaction potential

V(ris)=3[Vive(ris)+Vsr(ris)J, (24)

with V~ and V~ the Gaussian potentials of I, Sec. 2.
The reason for this mixture of ordinary and exchange
forces will appear in the following section. Matrices of

V(r .)+~(1)+~(2) (25)

were diagonalized. The calculations have been repeated
with cVO, and applied also to the recently investigated
transition Ne" (P+)Fis. The wave functions for cVs are
similar to (8) and (9) of reference 2; however, the am-
plitudes of the states with s~ or d; particles are somewhat
larger than for Vs, and those of (d;)' are slightly smaller.
This is to be expected, since an increase in Vo to cVO

has the same effect upon the wave functions as a
decrease in d, (i) to c 'h(i).

The calculations are compared with experiment in
Table III. There is definite disagreement for the con-
tribution of nuclear forces to the diGerence in energy
between the ground states of F"and 0".The theoretical
value lies 2 Mev above the one deduced from experi-
ment, as has recently been emphasized. "The inaccuracy
in the calculated Coulomb energy difference is unlikely
to be more than 0.5 Mev, which is the discrepancy
between theory and experiment for the Tt- ———1 and
Tl 1components ——of the (1,0) charge multiplet. A
third energy difference given in Table III is that
between the lowest 2+ and 0+ states of 0".Itis not.
known whether the only excited state yet observed for
0", which has energy 1.99 Mev, is 2+. The theoretical
ft value for F"(P+)0" is too small. The possible error
due to uncertainties in the constants (23) amounts to
about 11 percent, and is not su%.cient to increase the
calculated value to within experimental uncertainty of
the observed one. For the Ne" decay, on the other hand,
there is agreement with the observed value, whose
uncertainty is, however, extremely large.

From charge independence we expect that the ground
states of Ne' and 0"dier only in Tt-. The double-bar
or reduced matrix elements (reference 2, Sec. VI) for
the transitions Ne" (P+)F'3 and F"(P+)0"3 are therefore
equal. The theoretical ft value for the Ne" transition,
however, equals 3 that for the Fis transition (see
Table III), since there are three final states for F", but
only one for 0'8.

4. THREE-PARTICLE CONFIGURATIONS: RESULTS OF
SOME CALCULATIONS

Energies

Let us write

Vxisl = Vx(ris)+ Vx(ris)+ Vx (r33), (26)
"J.P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)

A229, 536 (1955).

TABLE III. Comparison of theory with experiment for A = 18.
The potential energy operator is

3PVw(ri3)+ Usr(r»)g+ri(1)+ri(2)
Here Uw(r») and Vsr(r») are the Gaussian potentials of I, Eq.
(13); results are given for two depths, Vo=70.8 Mev, and cV3
=103.4 Mev. The operator tt(i) is defined by Eq. (2). In this
table, Zz(X' ) is the energy (in Mev) of the lowest state of X'3
with J+, due to nuclear forces only.

Datum

E (F")-Eo(Q")

Eo (Ne") —Zo (Q")

(Qi&) g (Qi8)

ft value for F' ~ Q"3

ft value for Ne" ~ F"

Theory,
with Vo

1.02

2.95

3110

1037

Theory,
with cV0

0.73

4.40

2890

963

Experiment

—13'
—0.5b

(1.99)o

4170
~330

800
~340

a This number =Kg+ (FIS) +Re+D&2, —bRc(9). )For definitions of
symbols, see Eq. (21) 6.)

b This number =Kp+ (Ne») +Kp+ (F'8) +2Re+2Dny —AZc(10) —&&c(9).' The only excited state of OIg yet known has this energy: however, its
spin has not been determined.

and
al»= a(1)+a(2)+~(3). (27)

We shall denote the expectation values of (26)+(27)
by

(V (3)+gQ)) ~ (28)

they were calculated for all states of three-particle
configurations with d; and s~ particles for the four types
of exchange forces. This is readily done with the frac-
tional parentage coefficients (Sec. 2), the two-particle
matrix elements (reference 2), and formula (19). The
results are given in Table IV. The various configura-
tions can be divided into three types: The ones with
no d particles, which lie lowest, are of Type 0; those
with 1 or & 2 particles in d; states are of Type 1 or 2, re-
spectively. The operator 6(3& raises Type 1 configura-
tionsby 5 Mev and Type 2 configurations by 10 or 15
Mev above the Type 0 ones; we may therefore expect
that the Type 0 configurations alone will give a rough
indication of the order of the lowest levels.

%e notice from Table IV first of all that T=-,' states
lie generally above those with T=-', . This is the result
of the greater space-symmetry permitted for lower T.
Since the interaction is attractive and has short range,
states with a large number of space-symmetric couplings
between pairs of nucleons will lie lowest. This situation
is, of course, just the reverse of that in the atom, where
the interelectron forces are repulsive, and the states of
minimum space-symmetry lie lowest. It is also plain
from the table that for ordinary (W) and space-exchange
(M') forces, states with small J are the lowest (for either
T= —', or -', ), while for spin-exchange (8) and space-and-
spin-exchange (II) forces, the states with maximum spin
are lowest. This is an indication that the total space-
symmetry of a three-particle configuration is very
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largely determined by that of its parent two-particle
configuration. Specifically, the lowest state of (d~)' for
W and M forces has J=5/2; the state (dc)' $1,01,
which is predominantly d' 'S, may be considered its
parent. (This two-particle state evidently cannot be
taken as parent of any state of (d;)' that does not have
J=5/2. ) We recall that of the states of (d;)' for 8' and
M forces, the L1,0$ state is by far the lowest. ' The
situation for (d;)'s„with J=-,' for the lowest state, is
entirely similar. For H and 8 forces, the lowest 7=-,'
state has J=13/2 for (d;)' and J=11/2 for (d;)'s;.
The parent of each of these is (d,)' L0,51, which is just
d' 'G, and this is the lowest state of (d;)' for 8 forces
and near the lowest for P forces.

In Fig. 1, all states of the nuclei with A = 19 for which
there is experimental evidence of parity + are given.
We note that there are in fact two low states of F"with
J=-,' and 5/2. There is a state with J=-,' and negative
parity just between them. If this state could be ac-
counted for by the present method, it would require
either a breakup of the 0" double closed shell or
moving one of the outer nucleons into the 1f shell.
Either process would be expected to lead to a state
with much higher energy. On the basis of these offhand
considerations, it is not clear how the present model
could account for such a low ~

—state. At all events, in
the present calculations all outer nucleons are in the
1d, 2s shell, and only states with parity + can be
accounted for.

It is apparent, then, that on this model the dominant
role in accounting for the observed low lying parity +
levels of F"is played by 8' and 3f forces. The potentials
V&(3) and VII&') lead to low states with very high spins.
If these potentials are multiplied by —1, then Table IU
shows that the T=~3 states lie far below those with
T= —,', contrary to experiment. It is for that reason that
the equal mixture of 5' and M potentials denoted

V(r;;) and given in (24) was chosen for these calcula-
tions. V"& is defined by (26), with the subscript X
left off. Expectation values of V"&+6 "& are given in

Table V, together with the lowest characteristic values
of the matrices of states of all configurations in this
shell, for some (T,J).

A remark about the pairing energies for 1d; and 2s;
particles: The expectation value of the interaction
V(ric) between two particles in a (1,0) state amounts
to —4.69 Mev for (2s;)'; —5.43 Mev for (1dy)'. Is it
to be expected then that the addition of two 1d;
particles to, specifically, a one-particle con6guration
(nl, )', coupled to yield a three-particle state with J=j,
will result in a lower energy than the similar addition
of two 2s~ particles? If el;=1d~ the answer is yes:
From Table U, the expectation values of V&') for the
lowest J'=5/2 states are

—11.70 Mev for d;(d;)',
—9.45 Mev for d;(sc)'.
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The answer is no for el; =2si. Now (V&') ) is

—10.20 Mev for si(df)',
—14.06 Mev for si(s;)',

for the lowest J=-,'state of the first and the only state
of the second configuration. (These states are higher in
Table V because of the effect of 5&s).) The reason for
the dependence of the pairing energy upon el; follows:
For s particles the dependence of the energy E(esp. ) of
the configuration (es;) upon the number es of particles
does not vary with the range of the forces. It is just

E(es;")=-,'re(es —1)F'(es,es), (29)

where P' is the usual Slater integral. Thus even in the
present case, with forces much doser to the 0-range than
to the oo-range limit, the energy of (2s;)' is 3 times that
of (2si)'. For configurations involving other particles,
a formula lite (29) holds only at oo range. At lower
ranges, the energy varies much more slowly with m.
The reversal in sign of the pairing energy is therefore
not surprising.

Wave Functions

It was plain from Table V that for each of T=~3
and s, the lowest two states have j=-,'and 5/2. The
matrices of

P'(3)+g(3))
(&E))' (dg)'5'$ (~$)'dg

E(T,J)

1/2

9/2
7/2
5/2
5/2
1/2

13//2
11/2

9/2

7/2

5/2

3/2

1/2

2.98

6.21
4.13

7.48
6.03
7,54

7 67e
5.18b
5 95e

11.70*
5.90

5.61

0.32
3.76
1.86 . 4.84
3.76
6.45

5.18
7.27~
5.47b
3 54a 484
3.76b
4.89~ 6.17'
5.86 7.70g
4.86& 7.14
4.90o
5.42'
9.32g

11.44

8.60

8.02

16.89

17.06

'10,53 t14j 'L1 2j L0.33 e J (see Eq. 14). f E0,1~ fL t'10

TABLE V. Expectation values of
lr(())+A(()) = ~ LV)v(3)+ P')(r(()) j+g(s) (')

for the states of the three-particle configurations of Type 0. The
symbols are dered in the caption for Table IV. Whenever a
state is not determined by (T,J) alone, the parent )T',J'g or
other speci&)cation is given in a footnote. Also given is E(T,J)
for the two lowest states with each T. This quantity is the lowest
characteristic value of the matrix of (*) for all states of all con-
Qgurations of the id, 2s shell, not just of the Type 0 con6gurations
listed here. All quantities are in Mev, )& (—1).

M= V(»y~(» (30)

were calculated for all con6gurations of the 1d, 2s shells
and these four (T,J) values. The submatrix of the
Type 0 and 1 configurations was diagonalized by a

card-programmed electronic computer, and the charac-
teristic vector for the lowest characteristic (i.e., energy)
value was obtained. All states of Type 2 con6gurations
were taken into account by further subdiagonalization
and 6rst-order perturbation theory. Subdiagonalization
between two terms a and P is generally necessary when

6—
l.47 ~ +

(31)

5— o" (v)+

Ne (&)+

QR

l 59 (e)+

G-
020 ( ~+

IP

l9
F ~+a

FIG. 1. All states of the nuclei with mass 19 for which there is
experimental evidence of parity +.A number of spins are uncer-
tain and are enclosed in parentheses. R,= rest energy of the elec-
tron. E'p= maximum kinetic energy of a P transition. The multi-
pole order of the 0.20 Mev y transition in F" is E2.

For (ss, s), there is only one TyPe 0 configuration and
Type i. configurations are almost negligible. There is,
however, a signilcant higher configuration, (dl)'si,
which is of Type 2. This con6guration was included in
the original submatrix. The contributions of Type 2
con6gurations due to second-order perturbation theory
are generally of the order of 0.01 in amplitude. This is
small compared to the large 6rst-order amplitudes,
which are around 0.30. The second-order contribution
entails a substantial change for the very small ampli-
tudes; however, this has been neglected, since their
effect upon matrix elements is generally also very small.
The total energy is denoted E(T,J) and was given in
Table V. We note that the (1/2, 5/2) state lies0. 1/ Mev
above that for (—'„—,'). This is good agreement with the
experimental difference of 0.20 Mev; differences in
Coulomb energies, as well as uncertainties in the
numerical calculation are considerably larger than 0.03
Mev. This calculation was 6rst made for t/'0, and led
to —0.08 instead of 0.17 Mev (see Table XI); we see
that with increasing depth, that is, in eGect, decreased
nuclear radius, the J= rs and 5/2 levels cross over.
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It is plain from Table V that the combined sects of
interactions among the Type 0 configurations, which
are listed there, and the Type 1 and 2 configurations,
which are not, are very substantial. E(st, —,'), for example,
is 5.6 Mev below the lowest of the energies of individual
states.

Table VI contains the detailed wave functions. The
predominant configurations of (st, rs), which corresponds
to the, ground states of F" and Ne", are (si)' and
(d;)'si. The main configuration of (3/2, 5/2), which is
theoretically the ground state of 0', is (d;)'. The
weights (quantum mechanical probabilities) of the
individual Type 0 configurations, together with the
total weights of all three types of configurations are
given in Table VII. Type 0 conhgurations are by far
predominant. None the less the admixtures of the
higher configurations are very important; without them
it would be impossible, for instance, to account for the
high unfavored ft value of an allowed P transition from
0" to F" (see Sec. 5).

It may seem surprising at first sight that admixtures
of Type 2 configurations are nearly as large as (for T= st)

or even larger than (for T=as) those of TyPe 1 con-

TABLE VII. Weights (i.e., quantum mechanical probabilities)
of the individual Type 0 configurations, and total weights of the
different types of configurations, for the wave functions of Table
VI. All entries are in percent.

(T,J)

(1/» S/2)
(1/2, 1/2)
(3/2, 3/2)
(3/2, 1/2)

Type 0 0 0
COnfig. (ds)3 (ds)2S~ (Sy)2d~s

50 10 19
9 40 ~ ~ ~

68 0 19
~ ~ o 90 ~ ~ ~

Type Type Type
0 0 1 2

(s~)3 Total Total Total

~ ~ ~ 79 11 10
30 79 14 7

~ 87 3 10
~ ~ o 90 1 9

figurations. The Type 2 configurations are around 5
Mev above those of Type 1; however, the largest inter-
configuration matrix elements connect Type 0 and

Type 2 configurations. Let us consider this first for the
two-particle case. The interconfiguration matrix ele-
ments between various j-j coupling configurations of
(1d)' are given in Table VIII. By far the largest element
connects (d;)s and (d;)' in the (1,0) state. This is easy
to understand, since each of these states contains a
large amount of (1d)' 'S, and that state is by far the
lowest of (1d)', since (1) it is space-symmetric and (2)
the two d particles are at or near coincidence more
often in an 5 state than a D or G state. The largest
admixture of d' '5 appears in the (0,1) states of (d;)',
(d,*), and d;d;, so it is not surprising that two matrix
elements between these configurations are large. (In
the third case the '5 and 'I' contributions are of op-
posite sign and the matrix element is small. ) The other
interconfiguration elements, involving 2s particles, are
generally much smaller because of less overlapping of
the radial wave functions. The one with largest mag-
nitude equals 1.81 Mev. In this framework, it is easy to
picture the situation for three particles. For each (T,J)
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of Table VI, the state with largest amplitude of all

Type 0 states except (s;)' is listed, together with its
amplitude, in Table IX. Similar data are given for
Type 2 configurations. The Type 2 state in each case
has a (d,)' $1,0j parent; similarly, each Type 0 state
has a (d;)' $1,0j parent. From formula (19), the matrix
element between them will equal that between (d;)".
and (di)', which amounts to —4.44 Mev, multiplied

by 3 times a product of fractional parentage coefficients,
which altogether amounts to 1.08, 1, —0.82, and 1, for
the states listed above. No other two-particle matrix
element can enter, since the two configurations diGer

by two single-particle states.

TABLE VIII. The intercon6guration matrix elements,

(C,,T,Ji V(r&2) iCr)T,J),
in Mev, for the various j-j coupling configurations C; and Cy of
(1d)s. The potential V(r&s) is defined by Eq. (24).

0 1
3

0
2

Cs (ds)2

d~sds

—3.14—1.33

~ ~ ~

1.12
1.67

(ds) 2

(d,')2

2.35
0.91

-4.44—1.21

dsda

(dg)'

0.74—1.22

0.86

were analyzed in order to determine whether j-j or
I;5 coupling is a better approximation. For the con-
figuration ll' or kl'3", the weight of the dominant j-j
coupling con6guration, /;l;

' or /, l; 'l;"", and the weight
of the dominant I;5 coupling state, " +'&I., are given
in Table X. For two particles, the wave functions are
easily transformed from one type of coupling to another,
and there is exactly one state specified by l,l,'' and one
by (' +')I.. For three particles, there are in general
several states in the specified groups. Their weights
have been added, since we could have altered the re-
maining speci6cations of the states in each group, for
instance, by adding wave functions of several diGerent
LT',J'j, and obtained a single state state of Isl; '1,' "
or with (' +"I.whose weight is the sum of the weights
of the individual states thus specified. For the three-
particle configurations, the j-j coupling wave functions
of the present paper were used. Those for I;S coupling,
however, were taken from the paper of Elliott and
Flowers. " Their calculations are based on a Yukawa
interaction and a Rosenfeld mixture of forces. None the
less, the wave functions which they obtain appear to be

j-j vs LS Coupling

The two-particle wave functions for (0,1) and (1,0)
were obtained in reference 2 for parameter t/'0. They
and also those for (1,2) and (0,3) have been calculated
for cVO. The wave functions for these four states of
two-particle configurations, as well as for the four
states of three-particle configurations in Table VI,

(T,J)
(1/2, 5/2)

(1/2, 1/2)

(3/2, 5/2)

Type 0

(d-)' D,03

Amplitude

0.69

(d;)' s, L1,0$ 0.52

(d, )s 0.82

Type 2

(d-;)'d-: D 0j

(d-:)' s-; L1,03

Amplitude

0.29

0.22

(d~)'dr $1 0$ —030

(3/2, 1/2) (d;)' st 0.95 (du)' si 0.30

very similar to those of the present paper. This is
definitely true for two particles. For three particles the
total weights of various con6gurations, which are, of
course, independent of coupling, are usually about
equal for their wave functions and the ones calculated
here, as is seen in Table X.

TABLE X. Comparison of weights of the dominant states,
speci6ed in the third column, of the main configurations for
several two- and three-particle wave functions. The weights are
in percent. Wave functions for two difterent potentials, described
in the footnote, were used.

(2,J)

(1,0)

(1,2)

Con-
figura-
tion

j-j coupling
configura-

tion or
(2S+1)L,

(d;)'
1S

Weight
of

specified
state (s)

75
74

50
42
42
38

Weight
of other
state (s)

9
10

5
13
3
7

Tota
weight
of con-
figura-

tion Source&

55
55
45
45

(3/2, 1/2) d s

(3/2, 5/2) d'

dS

(0,1) d2

(0,3) d2

ds

(dl)' ss
2S

(d )'
2D
d;(si)'
2/7

(di)'
3S

(dy)'
3D
d$$&
3D

90
74

68
63
19
10

42
71

37

57
57

9
25

12
27

35
6

99
99

80
90
19
10

77
77

43

57
57

(1/2, 1/2)

d3

(d;)' sj.
2S
(d-;)'
2S

40
54
9

10

16
6
5
2

56
60
14
12

(1/2, 5/2) ds

d$

(d-;)'
2D'

d-;(s;)'
2D
(d;)' s;
2D

50
57
19
20
10
12

18
9
1
1
2
2

68
66
20
21
12
14

a The sources are:
a =—The present investigation. The two-nucleon inter-action has Gaus-

sian shape with depth cV0 and equal ordinary and space-exchange forces.
The potential energy is given by Eq. (25) for two-particle configurations,
and by V(»+&(», defined in the caption of Table V, for three-particle
configurations. Two-particle wave functions have not been given explicitly
here, but the three-particle wave functions were taken from Table VI.

b —=J. P. Elliott and B. H. Flowers, reference 10. The two-nucleon inter-
action has Yukawa shape and a Rosenfeld mixture of forces.

TABLE IX. The states of Type 0 and Type 2 con6gurations
except (sl)' with maximum amplitudes in the wave function for
the lowest state with (T,J), together with these amplitudes. The
data are taken directly from Table VI.
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Datum

EI (p») —E, (p»)

Ef (Ne») —Ei(p»)

Ef(P") Es.(F")—
Ehl (P») E.(P»)

Theory,
with Vo

—0.08

5.39

0.58

Theory,
with cV0

0.17

8.47

0.59

Experiment&

0.200
&0.002

—0.1b

7.7e

Mev

ft value for
Qe19 ~ P19

1590 1700
&170

ft value for 129 000 373 000
P» ~ P19(5/2+)

335 000
&100 000

t'(p», 4+)
Ti(F", 5/2+)

2.94 2.94 2.628

27&(10 '7 27)&10 ~ 10&10 ~ sec
~0.2

a I am indebted to Dr. D. H. Wilkinson for communicating to me a
number of these results prior to publication.

b This number =Z 8+ (Ne») +R&+D» -DZc(10). t These symbols were
defined by Eq. (21) ff;g

o This number =KJIt- (019)+(200-kev y-energy) +Rp Drty +DEQ (9).

The table indicates that, in general, neither j-j nor
L-S coupling is a good approximation. This is not sur-
prising in view of the fact that the matrix elements of
the interaction V( &, which is diagonal in L-S coupling,
are of about the same order of magnitude as those of
the operator 6&3), which is diagonal in j-j coupling.
The present calculations may therefore be considered
to be of "intermediate coupling" type.

It is plain, however, that j-j coupling is a better
approximation than L-S coupling for the larger T
values, here for T= —,

' and 1. Just the reverse is true for
T= —, and 0. Again, this is easily understood in terms
of the greater space-symmetry of the states with lower
T, which has as its consequence larger expectation
values of the two-nucleon interaction. For higher
excited states, the matrix elements of V &') decrease,
while those of 6 (3' do not change. The j-j coupling
approximation therefore improves with increasing
energy of excitation.

S. THREE-PARTICLE CONFIGURATIONS:
COMPARISON OF THEORY WITH

EXPERIMENT

Differences in Energy Between Various States
In Table XI the values of several quantities which

have been measured or deduced from experiment are
compared with those calculated from theory for both

TABLE XI. Comparison of theory with experiment for A = 19.
The potential energy operator is

~
Lps'(&) +ptr (&)g+g (3)

These symbols are dered in the caption of Table IV. Results of
calculations are given for two depths of the Gaussian two-nucleon
interaction, U0 and cUO. The wave functions for V0 were not
given explicitly, but the ones for cVo were given in Table VI.
Here E~(X») is the energy of the lowest state of X"with spin j
and parity +, due to nuclear forces only. T2, =half-life. p = mag-
netic moment.

Vo and cVO. The energy differences between various
states due to nuclear forces only are readily obtained
from the quantities E(T,J) of Table V. The energy dif-
ference between the 5/2+ and —,'+ states of F" has
already been discussed (Sec. 4). The energy difference
due to nuclear forces between the ground states of the
mirror pair Ne" and F" is 0. This is in good agreement
with the total mass difference and the Coulomb energy
difference calculated by (20).

The lowest state with parity + of 0" is predicted to
have 7=5/2. It is assumed in Fig. 1 that this is in
fact the ground state of this radioactive nucleus. (Its
half-life is 29 seconds. ) It is then possible to compare
the observed energy difference between the ground
states of O" and F"plus the Coulomb energy difference
with the calculated difference between the nuclear
(3/2, 5/2) and (rs, —', ) states. The value deduced from
experiment lies between the calculated ones for Vo and
cVo, but much closer to the latter. This is, of course,
better evidence that cVO is a more accurate depth than
the agreement for the 200-kev energy difference in F".

For either parameter, however, the energy diff erence
between the lowest (-,',—,') state of 0",which presumably
should correspond to the observed 1 .47-Mev state with
ts+, and the (3/2, 5/2) state is only about 0.5 Mev.
This discrepancy of 1 Mev is of similar magnitude to
one for A = 18 given in Table III. The inaccuracy of
this calculated energy diGerence casts some doubt upon
the predicted spin of the ground state of O' . Indeed,
there seems to be an empirical indication that the spin
of the ground state of an odd nucleus is determined by
the odd nucleons. Such a rule would lead us to expect
J= -,' for the ground state of O", since Na" with three
odd protons has that spin. The present calculations cer-
tainly do not con6rm this: From Table V, we would
expect the ($,—',) state to lie higher than either the
(3/2, 5/2) or the (-,',—,') state. Further calculations have
been based on a (3/2, 5/2) ground state for 0", in
order to ascertain the consequences of a definite
assumption.

ft Values

ft values for two allowed p transitions at A = 19 have
been calculated, and are given in Table XI.The method
of calculating matrix elements between states of single
configurations given by Talmi" was used. It is based on
formula (17). Some details of calculations involving
conhguration interaction may be found in reference 2.

Ne" (p+)F". This is a favored transition. The calcu-
lated value is slightly low, as is that for F"(p+)0", but
it is just within present experimental uncertainty of
the measured one.

0"(p )F», 5/2+. This is an unfavored transition,
with ft=355 000. Calculations based upon single con-
figurations in j-j coupling lead to a favored ft value. ""
"I.Talmi, Phys. Rev. 91, 122 (1953).
'9 E. P. Wigner, Proceedings of the Harwell Nuclear Physics

Conference (Ministry of Supply, Harwell, 1950).
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A somewhat larger, but still not unfavored, ft value is
obtained if all Type 0 configurations are taken into
account. It is because of this result of earlier calcula-
tions, that it was decided to take the Type 1 and 2 con-
figurations into account. The contributions of the
various types of configurations to the total double-bar
(or reduced) matrix element g of Sec. VI, reference 2,
are given in Table XII for cvo. The large contribution
of Type 1 configurations, which have rather small
amplitudes, is due to cross terms between them and
terms of Type 0. In particular, the largest such con-
tribution is that of

Type 0
Type 1
Type 2

Total 5

019(P-)F19 g/P +

0.803—0.421—0.088

0.294

Ne19 (P+)F19

—1.644—0.310-0.311

—2.265

TAsz, E XII. The contributions of the various types of con-
figurations to the total double-bar or reduced Gamow-Teller
matrix element, g, for two p transitions. Each line includes the
contributions of all direct and cross terms between configurations
of the listed type. The second line contains in addition the cross
terms between Type 1 and Type 0 configurations, and the third,
the cross terms between Type 2 and Type 1 configurations.

and is
(d-)s ~ (d )' d L1,43

0.824 X0.199X (—2.343)= —0.384.

The first two numbers in the product are the initial and
final amplitudes, the third is the value of g for this
transition. For comparison, the contributions to 5 of
the various types of configurations for the favored
transition are also given in Table XII. The contribu-
tions of Type 1 and 2 configurations now amount to
only 38 percent of those of Type 0 configurations, and
are of the same sign, as against 63 percent and opposite
sign for the unfavored transition. It is thus possible to
account in a rather unambiguous way for one allowed
unfavored fl value. Only further calculations will tell
whether the present model can account for some of the
many other unfavored transitions.

If the basic wave functions of the L-5 coupling
scheme are used, the reason for the small matrix element
of 0"(P )F", 5/2+ is seen more directly. A state
d''D has the largest weight" in both the initial and
final wave functions. However, the initial and final 'D
states diGer in orbital symmetry, i.e., belong to dif-
ferent partitions, and the P-decay matrix element
between them is 0. The smallness of the matrix element
of this transition is therefore due to breakdown of j-j
coupling; on the other hand, the fact that it is con-
siderably larger than 0 is due to breakdown of L-S
coupling.

There is also a P transition of lower energy, from
the ground state of 0"to a state of F"at 1.59 Mev. The
ft-value of this transition is 21400; it is therefore
allowed and we expect the 1.59-Mev state to have
parity +.However, neither its spin nor the spin of the
initial state of 0" has been definitely established by
experiment. For this reason the ft value has not been
calculated.

Magnetic Moment of F"
This quantity was calculated by means of formula

(17) and the fractional parentage coefficients. The
theoretical value is too large by 0.31 nm (Table XI). It
varies only very slowly with a change in the depth of
the potential. At first, the submatrix of (—,',—,') for Type 0
configurations only was diagonalized. The magnetic

moment for a wave function of these configurations
alone was just 2.63 nm, the observed value. We see that
the e8ect of the higher configurations here, too, is
rather substantial. We must conclude that the (sr, ts)

wave function of the present paper is not accurate;
however, it has been pointed out that small admixtures
of higher configurations can affect nuclear moments
substantially. "

Half-Life of the 5/2+ State of F"
The 200 kev, 5/2+ level of F"decays to the ground

state by a p transition of order E2. With the initial and
final wave functions for (1/2, 5/2) and (i,—', ), the half-
life for this transition can be calculated. "The operator
is of type (16) with

f(~)=(l 7'r) —'r(5/ 4)' ("'(s), (32)

in the notation of Racah. ' The calculated. half-life
(Table XI) is 2.7 times larger than the measured one.
For a single-particle E2 transition, of type 1dy —+ 2s~„
with the same energy, the result would have been

T;=1.4&10—' sec.

For a three-particle configuration with only one proton,
the matrix element is necessarily smaller and Tg larger.

Ke saw from Sec. 1 and Table I that matrix elements
of the two-nucleon interaction do not vary much for
the change from (vp, cVp) to (z i, Vp). Consequently, the
wave functions and energies are about the same. This
is true also for matrix elements of all operators (16)
which, like the magnetic moment operator, do not
contain r, . It is not true for (32). In order to obtain the
half-life for (vt, Vp) from that for (rp, cVp) we must
multiply the latter by a factor

(rt/t p)s= 2.02,

since the matrix element of (32) varies as i '. This
demonstrates simply that a decrease in nuclear radius
increases the half-life.

"A. Arima and H. Horie, Progr. Theoret. Phys. Qapan) 12,
623 (1954).Also, a paper on quadrupole moments, to be published.

'4 R. G. Sachs, iVzzctear Theory (Addison-Wesley Press, Cam-
bridge, 1953), pp. 232—241; J. M. Blatt and V. F. Weisskopf,
Tlzeoretical trtzzclear Physics (John Wiley tir Sons, Inc. , New York,
1952), p. 595.
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TABLE XIII. The interaction energy between states of 8 outer
neutrons and states of the double closed shell, obtained from the
experimental binding energy, S&, of 8 neutrons, and the cal-
culated interaction energy Ez of outer states. Ez is defined by
Eq. (34), and given for two values, Vp and cVp, of the depth of
the Gaussian two-nucleon potential. All energies are in Mev.

smaller depth Vo, however, we recall that for this
parameter much of the agreement of Table XI is
spoiled, . We may put this result in another way: The
present model does not account for the joint bind, ing
energy of two or three outer nucleons.

Nucleus V0

—Ea (&) = (&+&&)/&
V0 cVo 6. CONCLUSION

017
018
019

4 14 o ~ ~

12.21 5.05
16.16 5.54

~ ~ ~

7.81
8.59

4.14 4.14
3,58 2.20
3.54 2.52

It seems possible that better agreement between
theory and experiment for the half-lives of the states
of both F" and. 0'7 which decay by E2 transitions could
be obtained if higher configurations are taken into
account. In particular, configurations in which the core
is broken up may change the radiative transition matrix
elements substantially, even though their amplitudes
in the wave functions are very small. In transitions
between such configurations more than one proton may
be involved, in contrast to the transitions considered
here. The contributions of higher configurations to the
diagonal matrix elements of operator (32), that is, to
the quadrupole moments, have been calculated by
Horie and Arima. " Their work shows that these con-
tributions generally lead to better agreement with
experimental quadrupole moments.

Interaction Energy between the Outer States and
the Double Closed Shell

According to the model of I, there should be a term
in the potential energy due to interaction between
each outer state and the double closed shell. For central
forces this term depends only upon the orbital angular
momentum of the outer state; furthermore, a harmonic
oscillator potential leads to a kinetic energy term which
has the same value for each state of the same main
shell. .Since both s~—d; and d; —d; energy differences
have been taken into account empirically, we would

expect to find a contribution e(B) to the energy which
is just proportional to the number of outer nucleons.
(Compare, I (41).$ This contribution

e(&)= (+s+&s)/» (33)

is given in Table XIII. S~ is the experimental binding
energy of 8 outer neutrons in an oxygen isotope. E~
is the calculated total interaction between outer states
plus the empirical contributions just mentioned. Thus

+2 (V(+12)+&(1)+&(2)),and &p= (V"'+6"')„(34)
where the brackets denote the expectation value for the
ground state. It is plain from the table that e(B) is not.
constant for cVO. A similar discrepancy appears for the
F and Ne isotopes, since the observed mass diGerences
for each A are roughly accounted for by the present
mode1. The situation is improved somewhat for the '

In I a variation method is used to obtain the best
shell model wave function for a system of A nucleons
under two-nucleon interactions. In reference 2 and the
present paper calculations have been made for A = 17,
18, and 19 which assume that the two-nucleon inter-
action is just an equivalent central potential which
accounts for part of what is known about the neutron-
proton system. The energy differences between single-
particle levels in the 1d, 2s shell observed for 0'~ have
been introduced in an empirical way.

The ft value for the unfavored 0"p transition, and
the energy diGerence due to nuclear forces between the
ground states of 0" and F", as well as that between
the 5/2+ and —,'+ states of F", change rather rapidly
with the depth. The remaining quantities in Table XI
are seen to change slowly. It is plain that generally
better agreement is obtained. for the set of parameters
(vp, cVp) than for (vp Vp); however, it was shown in
Sec. 1 that these results are roughly equivalent to
others with exactly the deuteron depth Vo, but a new
well parameter v&, corresponding to a somewhat smaller
nuclear radius. Actually a parameter intermediate
between vo and v~, but very close to v», would seem
best. The effects of a change in h(i) can also be related
to a change in depth (see Sec. 3), and hence to the
nuclear radius. The same holds for changes in the range
po of the two-nucleon interaction, since its matrix
elements depend only upon pp 'i ' and Vp (see refer-
ences 2 and. 5).

The calculations for cVO lead to agreement between
theory and experiment for the following quantities
(neglecting very small discrepancies, such as that of
0.02 nm in the magnetic moment of 0", and taking
account of present experimental uncertainties):

(1) The magnetic moment of 0".
(2) The ft value for Ne"(P+)F" (which, however, is

very inaccurately known).
(3) The energy difference between 5/2+ and is+

states of F".
(4) The energy difference between ground states of

0" and F"
(5) The yf value for Ne" (P+)F"
(6) The ft value for 0"(P )F",5/2+.

L(7) The quadrupole moment of 0".)
But there is at least quantitative disagreement for:

(—1) The energy difference between the ground states
of F" and 0".

(—2) The ft value of F"(P+)0"
(—3) The energy of the —',+ state of 0".



THREE NUCLEONS I N 1d, 2s SHELL 1439

(—4) The magnetic moment of F".
(—5) The half-life of the 5/2+ state of F".
(—6) The binding energy of the two outer neutrons

of 018

(—7) The binding energy of the three outer neutrons
pf 019

L(—8) The half-life of the i~+ state of Oi7.]
Two quantities are enclosed. in brackets. They are the
ones which depend most substantially upon a, center-of-
mass e6ect. This has been taken account of by a core
+ single-particle model, which destroys the full anti-
symmetry of the A-particle wave function, and is
therefore not consistent with the present model. None-
theless this assumption might have some validity, and
for that reason q(Oi7) is included in the first list. We
recall from paper I that the present model also accounts
for the binding energy of one neutron in 0",but not for
the total binding energy of 0"

There are two conclusions:
(1) The assumptions of the present model together

with the approximations used here fail to account in a
general way for the properties of states with parity +
in the region of A =17 to 19. The very similar results
obtained" for a Vukawa central interaction and the
Rosenfeld mixture of forces make it appear unlikely
that still another central potential or mixture of central
forces could substantially alter this situation.

The possibility that contributions of configurations
with 1f and 2p and even higher states may lead to
better agreement with experiment should, however, be
mentioned. Indeed, some calculations" based on a
model in which neutrons and protons couple separately
have indicated that this is generally true for the mag-
netic and quadrupole moments. Furthermore, one

s&j=2
V(& i)

where V(1,2) is an interaction which accounts accu-
rately for all that is known about the two-nucleon
system at low energies. (b) A totally antisymmetric
A-nucleon wave function which, for nuclei in the oxygen
region, can be approximated. by a linear combination
of a limited number of products of A single-particle
wave functions.
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would expect that noncentral forces which are surely
present in the interaction between two free nucleons
would also prevail between bound nucleons. Their
eGect upon already measured quantities in the oxygen
region has not yet been calculated and might sometimes
be substantial.

(2) The agreement with experiment which was
sometimes obtained may well be accidental. Neverthe-
less, in view of the possibilities mentioned under (1) it
is conceivable that an accurate picture does contain
some features of the present model. One might venture
to surmise that such a picture would include: (a) A
Hamiltonian containing a term


