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Wave Functions for Nuclear Shell Theory by a Variation Method*
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A system of A nucleons with two-nucleon potentials U(i, k) acting between each pair of them is taken
as a model for the nucleus. A variation method for obtaining the best approximation to the wave function
of this system as a linear combination of a given set of functions, p&, ~ ~ ~, lit ~, is presented. In view of the
evidence for shell effects, each P is assumed to describe A identical particles moving in a central 6eld U .
In general, the amplitudes of only a small number of g are large. For a central Gaussian interaction V(s, k)
and a harmonic oscillator potential U', this method can account for the binding energy of one neutron
in 0", but not for the total binding energy of 0".The model is compared with a spectroscopic one for a
double closed shell core plus outer nucleons.

forces:

~ ~

UBSTANTIAL experimental evidence has long
suggested that single-particle wave functions play

a significant role in the description of the state of a
nucleus. The earliest and simplest model' can be
described as follows: The angular momenta of the
nucleons of an even-even nucleus couple to total
angular momentum J=O. A nucleus with odd mass
number A consists of an even-even core with J=0 and
a single outer nucleon, the state of this nucleon being
determined by the sequence of levels in an isotropic
harmonic oscillator well, assuming strong spin-orbit
coupling.

This model can be modified in order to take into
account charge-independence of nuclear forces' ': The
nucleons are divided into two groups, a core comprised
of the number of nucleons needed to form the maximum
number of neutron and proton closed shells according
to the harmonic oscillator model, and the remaining
outer or valence nucleons, which are not sufhcient in
number to form a closed shell. The outer nucleons are
assumed to move in a harmonic oscillator central
potential due to the core, and to be subject to an
interaction between pairs of nucleons at least resembling
that between an isolated system of two nucleons. The
possible states of the outer nucleons are determined by
the Pauli principle, on the assumption that the states
of the core nucleons are already filled. It is evident,
however, that if the A nucleons are to be treated as
identical particles, they cannot be separated into two
groups. The double closed-shell core model therefore
fails to take proper account of the total antisymmetry
of the nuclear wave function.

Here V is the Laplacian operating on the coordinates
of the ith particle, m is the mass of the nucleon, and
V(i,k) is a potential which may depend upon the spin
and isotopic spin components, as well as the coordinates,
of particles i and k. Although we would expect V(i, k) to
have a central and a tensor term, calculations will here
only be made for central forces. The addition of a
potential acting upon a single particle, in the form of

(2)p w(i),

would not alter the main features of this formulation.
In order to solve the equation

HC =M,
let us assume that 4 is a linear combination of q other
functions, P:

4 and the f are normalized. (When used in the plural
sense, f or a will refer to the set of all f„or a, with
n= 1 to q.) Further, let us choose the phases so that all
a are real. In order to minimize the inner product

(@,H+) =E(a&, ~ ~, a,)

and still maintain the normalization of 4, let us intro-
duce another parameter, 'A, in accordance with the
method of Lagragian multipliers. The condition for a
stationary point is then:

1. DESCRIPTION OF THE MODEL

In order to escape this difliculty, let us consider a
variation method for solving the total nuclear Hamil-
tonian of an A-nucleon system under two-nucleon (4, (H —X)+)=

88 Bc*Supported by the U. S. Atomic Energy Commission.' M. G. Mayer, Phys. Rev. 78, 16 (1950); Haxel, Jensen, and
Suess, Z. Physik 128, 295 (1950).' M. H. L. Pryce, Proc. Roy. Soc. (London) A65, 773 (1952).

s M. G. Redlich, Phys. Rev. 95, 448 (1954). It is convenient to use script letters for the elements of
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Since H is Hermitean, Eq. (6) leads to

(7)

here, since it is not possible to associate a nucleon with
a definite state.

2. ASSUMPTIONS FOR V(i,j) AND V'(r;)

The solution to this system of q homogeneous equations
in q unknowns is obtained by setting the determinant

equal to 0. The lowest X then equals the minimum of
the energy (5).

How should the set of trial functions be selected?
The qualitative success of the shell model suggests
solutions of a Schrodinger equation,

(9)

for A identical particles, each of which moves in the
same central field. Then V'(r~) = (Air, )'/2m, (14)

In the next section, some calculations for the oxygen
region will be made. A central Gaussian two-nucleon
interaction which leads to the binding energy of the
deuteron and to the effective range and scattering
length for low-energy neutron-proton scattering in the
triplet state will be assumed:

Vx(i,j)= Vx(r, ;)= —VePx exp( —r,P/2. 245). (13)

Here Pg ——1, P~= space-exchange operator, P~ ——spin-
exchange operator, and PII=P'JAP~. The internucleon
coordinate r;; and all other radial coordinates and
radii are in units of 10 "cm. The depth U0=70.8 Mev
leads to the deuteron binding energy and will be used
here.

For V'(r, ) we shall assume a harmonic oscillator
potential,

A
— $2

H'=P — ~,s+V'(r, ) .
i-1 2' (10)

with v determined from

Since the P are merely trial functions, it is not neces-
sary to say anything about the origin of this central
field. Equation (9) is separable into a sum of single-
particle equations, each of which in turn can be sepa-
rated into radial and angular parts, since U' is a central
potential. We assume that g is an antisymmetrized
A-particle wave function. V(i,k) must be invariant
under rotations in ordinary space, and will be assumed
to be invariant under rotations in isotopic spin space.
@ then has definite isotopic and ordinary spin, (T,J),
and the same may be assumed for the P . It should be
noted that for a complete set of antisymmetric f,
diagonalization of the matrix )~H~~ (with q= ~), would
lead to an exact expansion of O'. The variation process
merely leads to the best approximation in terms of a
set of q definite P . The kinetic energy part, X, of a
matrix element of K equals that for 3C', the corre-
sponding matrix for (10):

pp

Z(4- &'Vs) =X-s'.2' i=1

The potential energy part of a matrix element is
A

'U-s= 2 (4- V(&,&)A). (12)
i&k=2

This is by no means the same for 3C and K'. lt can be
separated into a sum of three terms: (a) Terms involving
only states belonging to closed shells; (b) terms between
an outer state (of an unfilled shell) and all closed
shells; (c) terms between outer states only. The phrase
"interaction between states" instead of rlucleorIs is used

R~t(r;)'r dr;= (2e+f ', )r '—=—(R
—(nl)'. (15)

0

Here R„i(r~)/r, is the radial wave function of particle i
moving in potential (14), and is denotes the number of
nodes of R„~ and l the orbital angular momentum.
(R (el) is a quantity about equal to the nuclear radius.
%e shall make calculations with several values v, of v

which are given, together with (R, in the following
table:

S (1d)
(R (1p)

In Fig. 1,

0.250
3.74
3.16

0.356
3.14

-2,65

0.462
2.76
2.33

0.568
2.48
2.10

)&1026 cm '
&(10-» cm
)&10» cm

P„,(r,) =R„,(r,)' (16)

is plotted against r1 for el= id and 2s, and parameter
ii. Here P„i(ri)8ri is the probability that a particle of
type ril be found at some point of an interval br1 with
r1 at its center. For reference, the quantity 1.4&17&
=3.60, the radius of 0",, is given on the abscissa. A 1d
particle will be found at r1&3.60 about 76 percent of
the time. This value of v, or even a somewhat larger
one, therefore seems a reasonable choice. The same
potential, (14), will be used for all single-particle
functions. However, the possibility of using diGerent
potentials for di6'erent shells has been pointed out. 4

The potentials (13) and (14) with is were used in
reference 2.

It may be worth while at this point to use the
potential (14) and the harmonic oscillator wave func-

' K. H. Kronheimer, Phys. Rev. 96, 1680 (1954).
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tions with parameter v to illustrate the present method.
I.et us consider a single particle with radial coordinate
r moving in another harmonic oscillator potential,
(iz(pr)'j2zzz. This potential will now be substituted for
the one in (1) and the variation method with just the
)P„obtained from (10) with 2=1 and the potential
(14) will be applied. If all R„i are taken as the set of
)P, then the (z„are given by the expansion (n now is
just zzs):

P i(r, )

.2

+(r) =Ri, ( ) (r) = P (z„R„,(")(r).
m=1

The erst three a„are:

(2 (P(p) ' ) ' (3) ' ((p—P l
Gy= j +2= ~l j( ~+p.i (2) l ~+p)

)r15q * (op —) q'
83= — Gy.( 8 i kopyz i

(17)

If we had happened to choose s equal to co, the series
would have had exactly one term. For p=1.2', a~
=0.993, a~ ———0.110, and a3=0.011. The larger ~—v

is, the larger is the number of terms necessary to obtain
a good approximation to +. In general, the most
felicitous choice of v leads to a minimum of con6guration
interaction. In this example, it leads to minimal
(namely 0) admixtures of the configurations (2s)',
(3s)', etc. , to the (1s)' configuration.

0
0 5

l

od) ).4x)7 ~
Al

Fro. 1. The probability per unit radial distance, P„)(rr), that
an nt particle be found at r1, for el = 1d and 2s. The well parameter
is vl. The coordinate r1 is given in 10 "cm.

and 9'(12) of Condon and Shortley, ' with an obvious
modification to take into account isotopic spin and
exchange forces. The interaction (21) may be expressed
in terms of (20) as follows:

'Ux(nis'+') = 2(2t+1) 'Ux(zzl zzP)+') (22)

The radial integrals tor the potentials of the preceding
section will be calculated by the method of Talmi. ' It
is important to note that (20) is independent of zzz(',

zzz, ', and z(,'. The terms of type (c) can be obtained
from an antisymmetric wave function of the outer
nucleons only. LThis is plain from reference 5, 7P(7).]

For double closed. 1s and 1p shells the following
abbreviation is convenient:

3. CALCULATIONS ON THIS MODEL (c.s.) = 1s4 1p". (23)

= Ux()zV, 1p")+'Ux(rz'l', 1s'). (24)

The total interaction for (c.s.) is

'Ux(c.s.)='Ux(ls4)+'Ux(ly")+4Vx(1s, 1p"). (25)
elm~sm, tp &

The matrix elements of ~ can be obtained by Then one can write

methods known from atomic spectroscopy. It is con- /)I )
venient to calculate in an

representation. Here, the state of each nucleon is
specified by one set of quantum numbers (19). 1 is
isotopic spin and equals —,; zz( is its i component. The
matrix elements of the kinetic energy are readily
calculated, since it is a single-particle operator. It is
convenient to introduce some detailed notation for the
terms of type (a) and (b) (see Sec. 1) of a diagonal
matrix element of the potential energy, on the assump-
tion of central two-nucleon forces. The interaction
between one outer e'l' state and all the states of the
ml double closed shell will be denoted

'Ux(zzV, zzP'+'), (20)

where X indicates the type of exchange force, as in
Eq. (13).The interaction of a double closed zzP'+' shell
with itself will be denoted

(nlpl+4) {21)

with boldface nl"+ . The quantities (20) and (21) are
given in terms of radial integrals by formulas 9'(11)

Xoo —5.0 ( 7.3)—
1 —5.0 BCoo+ 26.4. 0
2 (—7.3) 0 (Mop+31)

(27.)

~E. U. Condon and G. H. Shortley, The Theory of Atonzic
Spectra (Cambridge University Press, London, 1951), second
edition.' I. Talmi, Helv. Phys. Acta 25, 185 (1952).

The Wave Function of 0"
The (z in an expansion (4) for the wave function of

a system of 17 nucleons with two-nucleon potential

I"(z,j)= 2t I'w(z, i)+ I"~(',i)) (26)

will now be estimated, on the assumption of (14) with
parameter ) i. Let us set (t= 3 and denote by Po, )P,, and
fz the wave functions for the configurations (c.s.) (1d)',
(c.s.)(2d)', and (c.s.)(1p) '(1d)', respectively. We ob-
tain the following 3&3 matrix for 3C, with rows and
columns labeled by +=0, 1, and 2:

1 2
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TAsLE I. ln this table the following calculated quantities are
given in Mev for two values of the well parameter s .. (1) The
interaction 'U~ between one Nl state and all the states of the
double closed 1s and 1p shells. 'Uzz is given by Eq. (30). (2) The
kinetic energy X&(el) for the Nl state (3.) The calculated binding
energy $1(nl; x) of one neutron in 0'", de6ned by Eq. (31).

The Neutron Binding Energy of Q"
imp alone will be used for this calculation, and a

similar wave function, for the configuration (c.s.), for
O' . The diQ'erence in potential energy between the two
nuclei is merely one term of type (b), given by (24).

Calculated quantity

'Us (1d,c.s.)
'U~(1d, c.s.)
'Ue(1d, c.s.)
'U ir (2s,c.s.)
'U sr (2s,c.s.)
Ugg (2$sc.s.)
X,(1d) = X&(2s)
$,(1d; 0.5)
$,(2$; 0.5)
Sg (1d; 0.4)
Sz(2s; 0.4)

—36.2—11.2—10.0—45.2
7.2—15.2

18.0
5.7
8.2
3.2

—59.5—11.6—19.1—73.0—4.2—27.5
25.6
10.0
13.0
5.2
6.1

UH(mls)c. s.) = Uii(Ãl)c. s.). (30)

Two parameters, ip and it, were used. Xi(nl) is the
kinetic energy of a single nl state. The neutron binding
energy is defined as

Si(el; x)= —x'Us (el,c.s.)—(1—x)'U~(nl, c.s.)—X,(nl). (31)

The results are presented in Table I for three types of
forces; for the fourth, they can be obtained from

us= —o.19, ux'= 0.036, (29)

and u2= —0.24. It should be recalled, however, that
the estimates of %02 and BC22 are expected to be larger
and smaller, respectively, than their actual values. An
accurate calculation, therefore, is expected to lead to
a smaller absolute value of u2. A more accurate wave
function would be obtained by taking a larger set of 11 .
These would involve further breaking up of (c.s.) or
md states with e& 2. The energies of these states will be
considerably higher than those of Pp and Pi. Further-
more, the o8-diagonal terms BCo involving them will
generally be smaller than Ko&. Their amplitudes u
will therefore be smaller than u~.

The elements are in Mev; those not enclosed in pa-
rentheses have been calculated directly. The cross term
X02 was estimated as

%ps ——Xsp~(ip', L=O~ V(1,2) (1d', L=O)
= —7.3 Mev, (28)

since Pp and fs diBer by two single-particle states. An
exact calculation, in terms of fractional parentage
coefFicients, would lead to a sum of several terms like
(28) with different I,, and probably to a smaller magni-
tude of %02. There is no kinetic energy contribution,
because the angular parts of the single-particle wave
functions are orthogonal.

The diGerence in potential energy between X» and
Kpp was estimated as a sum of these terms: (1) The
interaction between two 1d states and (c.s.). This is a
lower limit to the actual contribution, since only 14,
instead of 16 particles remain in 1p and 1s states. (2)
The energy of the configuration (1d)s estimated as that
for the lowest state of (1ds~s)'. (3) The difference in
total potential energy between configurations (1p)" in
the I=0 state, which is lowest, and (1p)". (4) The
interaction between two 1p states and (1s)4 must be
subtracted. In its place, the interaction between two
1d states and (1s)' is included in term (1).

From the matrix (27) and perturbation theory,

The Binding Energy of 0"
We again assume the pure configuration (c.s.) for

0". The admixtures of higher configurations can be
expected to be no larger than the ones found for 0'".
The total potential energy,

Ux =Ux(c.s.), (32)

then consists just of type (a) terms. It is given in
Table II for various values of s. The total kinetic
energy X is also given. The Coulomb energy can be
calculated from the usual formula as 6=14 Mev. The
total binding energy is defined as

$ (x)= —H3s —(1—x)'Usr —X—6, (33)

and given in Table II for @=0.5 and 0.1. The experi-
mental value' is 127.6= 7.98)&16 Mev.

The table refIects a very large increase of —'U~
with ~, i.e., with decreasing radius. This is a well-known
eGect. There is an increase of —'U~ with v also, but it
is less rapid than that of X, which is proportional to v.
The quantity —'U& increases with v at a rate which lies
between that of —'U~ and X.

In making this calculation for the configuration
(c.s.) alone, we have, in effect, already applied the
present variation method in an approximate way, since
it was plain for parameter v~, at least, that the minimum

~ F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77
(1955).

It is also given in Table I, and found to be generally
of the order of magnitude of the experimental' value of
4.14 Mev, for @=0.4 to 0.5. We cannot expect accurate
agreement with experiment for two reasons: (1) S, is
the difference between two large quantities, neither of
which can be expected to be very accurate in this
approximation. (2) The present model does not account
for the difference between the 5/2+ and 3/2+ states
of 0'7. We recall that the quantity "Ux(1d,c.s.) is
independent of the orientation of the spin and angular
momentum of the 1d particle. The model does yield a
difference between Si(1d; x) and Si(2s; x).
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energy will appear for a wave function with only small
admixtures of wave functions of other configurations.
In Table II, the effect of these small admixtures upon
the binding energy has been neglected, not only for v&,

but for the other values of v as well. Actually, the
example at the end of Sec. 2 showed that a change in v

corresponds to a change in the amplitudes of the various
states. If, however, these changes are not substantial,
which seems likely, then we are justi6ed in considering,
as an approximation, only the configuration (c.s.). If
the model is correct, we would then expect to obtain a
minimum in the energy of the system for a value of v

about equal to v~, which corresponds to the radius of
0"deduced from experiment. Furthermore, the magni-
tude of the energy at this minimum should equal the
experimental binding energy. An examination of Table
II indicates that for a combination of ordinary (W)
and space-exchange (3f) forces, a minimum does appear
at vi for —$(0.1). The magnitude of $(0.1), however,
is too small by about a factor of 2. For an intermediate
value of x, like 0.2, $(x) will have a maximum value
equal to the experimental binding energy; but this
appears at about v3, which leads to far too small a
radius. The binding energy of one neutron in 0"would
be negative with such a low x, even at v3. Furthermore
agreement between theory and some experimental
quantities for 2=18 and 19 can be obtained with v~,

but not with v3. It does not appear that spin-exchange
(B) or space-and-spin-exchange (H) forces could im-

prove this situation substantially. Thus we see that
while the present model with central V(i,j) can account
for the binding energy of a neutron in 0'7, it cannot
account for the total binding energy of 0", nor,
consequently, for the total binding energy of 0".

4. COMPARISON OF THE VARIATION METHOD WITH
WITH THE DOUBLE CLOSED SHELL

GORE MODEL

(1) The present formulation will be compared with
a model which assumes that 8 identical outer nucleons
move in the 6eld of a double closed shell core. To be
speci6c, let us consider a nucleus with

particles, and a (c.s.) core. We compare the expansion
of 4 given by (4) with

4 (bi, , bi )= P b„q (4')

where the q ~ are antisymmetric wave functions for 8
particles, whose states in V'(r;) are neither is nor ip.
To each q ~ there corresponds a f, which is anti-
symmetric in A particles and includes the 16 states of
(c.s.). The converse is not true, since among the P
there may be some for con6gurations which do not
include (c.s.). The considerations of the preceding

s M. G. Redlich, fallowing paper LPhys. Rev. 99, '1427 (1955)7.

TAsz,z II. The follovnng quantities have been calculated for
a system of 16 identical particles occupying all the states of the
is and ip double closed shells: (1) The total potential energy,
'Ux, for four types of interaction. (2) The total kinetic energy X.
(3) The total binding energy $(x), defined by Kq. (33). Results
are given here in Mev for several values of v, deaned in Sec. 2.

Calculated
quantity

Uw'

UM
U8= UH
X
$(0.5)
$(0.1)

—428—236—77
185
133
56

—680—310—148
263
218

70

939—360—232
341
294

63

—1201—396—322
419
366
43

section for the wave function of 0", however, indicate
that the amplitudes of such f are small. If we neglect
them, and consider

N'= Q a,lf,
a 1

(4")

where the sum extends only over those f whose
configurations include (c.s.), then a correspondence
between 4' and 4 may be established.

Let us consider 6rst two Hamiltonians, H, de6ned
by (1), and

$2 A A

G= — g ~,s+ g V(i,k).
2m i=1? i&k 17

Their matrices are K, given by (7), and g given by

8- s = IIGII - f = (9- Gv f ). (7')

%e shall assume in the following argument that the
outer particles are only in 1d and 2s states. In general,
higher states )for potential (14), states of higher
harmonic oscillator shellsj will be present, but with
much smaller u . It appears, however, that coefficients
of states of several con6gurations of type

(id) k(2s)B—k (34)

are sometimes large. ~ 8' States may be described as
follows:

n= (c.s.)(1d)"i l(2s) —'i lE, T, J; n'= (c s )'n .(3.5).
E stands for all other quantities necessary to describe
the state, e.g. , intermediate angular momenta.

It is plain that

3C = g ~ +E(c.s.)+k E(1d)+ (B k) .E(2s), (36)—
where E(c.s.) is the total energy of (c.s.) and

E(nl) =Xi(ml)+'U (nl, c.s.). (37)
'0 stands for any combination of the 'Ux. In actually
making calculations it is desirable to introduce

C(2s, id) =E(2s)—E(1d). (38)
s J. P. Elliott and 3. H. Plowers, Proc. Roy. Soc. (London)

A229, 536 (1955).
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A—2.03 P I; s; Mev (39)

is also introduced, ' then it is possible to account by
(38) with an empirical C= —1.15 Mev and (39) for
the energy differences between the three lowest states
with positive parity of 0'~.g

A calculation similar to that for 'Ux(eV, nP'~) shows
that for central forces an interconfiguration matrix
element of type (b) vanishes, unless the two configur-
ations differ only in the radial quantum number n
of one single-particle state. If, further, states of
the same configuration which differ only in E are
orthogonal, then the total type (b) matrix element
between them is also 0, as may be seen from expansions
of the P in fractional parentage coeKcients. It follows
for states of the configurations (34) that

C is a theoretical quantity, which can be obtained from
Table I of the last section. I If a simple spin-orbit
operator of type

The exchange terms are seen to contribute —11.8 Mev
to the binding energy of one neutron, Si(1d; 0.5), in
0".In other words, the double closed shell core formu-
lation is exact only if an impenetrable wall encloses
the core.

(2) The operators for most observable quantities can
be expressed as nonscalar single-particle irreducible
tensor operators T(~"' of order k in ordinary and z in
isotopic spin space, or as sums of such operators. It
can be shown that matrix elements of such operators
are the same for 4' and C. Let us define

N

T&»=Z T'""'(i)

where T&~"'(i) operates on the space, spin, and isotopic
spin co-ordinates of particle i. At least one of k and z
is @0. It is convenient to consider again the repre-
sentation

n= ai, , ag with a, =l m&,sm„t,yg, . (45)

X~p B~'s'~ ++P. (40)
Also

(c.s.)= ai, , a&~ and n'= cia, , ag. (46)
Diagonal elements of X and g thus differ only by

E(c.s.)+B E(1d),

which is constant for all of them, and

LB—k(u)g C(2s, id),

(41)

(42)

which is not. The off-diagonal elements are the same.
It is plain that solution of the secular equation of a
new matrix whose elements are

g '=g +I B—k( )j C(2s, 1d) b (43)

leads to a C with amplitudes b ~ equal to the correspond-
ing ones of O'. That is,

6~& =G~.

It must be emphasized that this equivalence is essen-

tially a formal one, brought about by the theoretical
possibility for inclusion of the differences in type (b)
terms in a simple way.

The physical difference between the two models is
very obvious. The double closed shell core formulation
does not automatically ensure that there will be no
overlapping of the space wave functions of outer and
inner (core) nucleons which have the same spin and
isotopic spin components. For harmonic oscillator
wave functions such overlapping is not small. This is
evident from an examination of the direct and exchange
contributions to 'Ox(1d, c.s.). These follow, for pa-
rameter vl.

The diagonal matrix element of T(A~ is just

(~l T&~) l~) =Z(~'I T""'
I ~~» (47)

from 6'(9) of Condon and Shortley. ~ Then

(n I T&~~ ln) = (c.s.
I T&&6& I c.s.)+(&i'

I T&Ii& In' ). (48)

Equation (47) shows that the first term of (48) is
exactly the diagonal matrix element for the one state
of (c.s.). That state belongs to representations of order
0 in both ordinary and isotopic spin space. The same
is not true of T(16~, so that its matrix element is 0 by
the vector addition rule. The second term of (48) is
the diagonal matrix element for C. Only the second
term of (48) appears in off-diagonal matrix elements;
thus the entire matrix of T(A~ equals that of T(&).

Formula (47) reminds us that center of mass effects
are not accounted for in the variation formulation.
(47) leads to zero quadrupole moment for 0" if $0 of
Sec. 3 is assumed, contrary to experiment. If the double
closed shell core model is used, on the other hand, 0"
consists of a core and one outer nucleon, and it is easy
to calculate the e8ect of the core upon the quadrupole
moment.

Calculations using V(i,j) and V'(r;) of Sec. 2 for the
double closed shell core model modified by the terms
(39) and (42) have been made in reference 3 for B=2
and in the following paper for 8=3.

'Ug (1d,c.s.)
'U~(1d, c.s.)

-66.5—28.2
j.o

16.6

Direct term Exchange term Total

—59.5 Mev—11.6 Mev

I am grateful to Professor Eugene P. Wigner for
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