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A phase shift analysis is made of the P-He' and p-T elastic scattering data using theoretical predictions
wherever possible to reduce the number of parameters. It is pleasing that the resulting phase shifts all have
their expected signs and reasonable magnitudes and satisfy relations connecting the P-T and p-He' phase
shifts. The analysis was also made without using the theoretical conditions, and we present all the solutions
we have found. However, we reject these other solutions. The phase shifts which we accept as correct are
discussed in terms of resonances.

I. INTRODUCTION The 8's which we accept as correct are discussed in
terms of resonances.

II. BORN'S APPROXIMATION

Born's approximation is

k'0 = —J
4x

(2)S(gt)S(U&,)drJ=
(m+M)h' &

Here m= 1 and 3I=3 (the masses of the proton and He'
or T, respectively). The wave number k is given by

2m( M
~
Ei,ib=2.71Ei,b)&10" cm ' (3)I' &m+Z&

where E&.b is the energy of the proton in the laboratory
system. |P; and Pt are the wave functions for the initial
and Anal states, and V is the sum of the potentials
between the proton and the particles in He' or T. S is an
operator which makes SP antisymmetrical in the coordi-
nates of any pair of neutrons or protons of which |p is a
function. The integral stands for a sum over the spins of
all the particles involved as well as an integral over all
of their coordinates.

Both He' and T have spin S=-', . Their spin functions
are

x.+=ni(nsps —psns)/v2,

X,+= (nin2ps+nipsns —2pinsns)/g6,

where the superscript + means 5,=+is, and the sub-
scripts u and s mean that x is antisymmetrical or sym-
metrical in particles 2 and 3 (the two protons in He' or
the two neutrons in T), respectively. We assume that
the spatial parts of the He' or T ground state wave
functions are symmetrical in all three particles, and
therefore we must use x.because of Pauli's principle.

Then f; (for example) is formed as follows:

p, =n47(.+y(123)f(k,4), S=1, 5,=1,

0"=(1/~2)( X. —P X. )4(123)f(k,4),

S=0, S,=O,

06

' +HASE shift analyses of the p-He' and p-T elastic
scattering data have been made before. '' The

present work is new in that theoretical predictions are
applied wherever reasonable to reduce the number of
parameters which occur in the phase shift analysis.

Phase shifts (8's) for values of the angular momentum
l )~ 2 are assumed to be zero. This assumption is probably
safe in the energy range (1—3.5 Mev) of the experiments
analyzed here. The effects of inelastic scattering are
neglected. This is certainly safe for p-He', but the
threshold for the T(p,l)He' reaction (1 Mev) is not high
enough to justify its neglect in the P-T case. These same
assumptions were made in references 1 and 2.

The problem was coded for an IBM 701 computer.
The code allows for the possibility of spin-orbit splitting.
However, the data can be fitted without spin-orbit
splitting, and even, in the case of p-He, without spin
dependence, as Lowen pointed out. Therefore, efforts to
study a possible spin-orbit splitting were abandoned.

Born's approximation makes qualitative predictions
about the phase shifts. It says, for example, that in the
p-He' case there should be little spin dependence, just as
Lowen observed. It says that in the p-T case, the 8's for
the two spin states (singlet and triplet) should be equal
in magnitude and opposite in sign.

We 6nd that it is possible to impose these predictions
of Born's approximation on the 8's in the p-He' case for
l=0 and 1=1 and in the p-T case for /= 1. These are
auxiliary conditions on the phase shift analysis which
reduce the number of parameters used in fitting the
data. It is very satisfying that when this is done, the
resulting 6's all have the sign predicted by Born's
approximation. It is also pleasing that relations which
result from Born's approximation and connect the p-T
and p-He' phase shifts are satisfied by the P phase shifts
and very roughly by the S phase shifts.

The analysis was also made without the auxiliary
conditions suggested by Born's approximation, and we
present all of the solutions we have found. However, we
reject these other solutions.

t Work done under the auspices of the U. S. Atomic Energy
Commission.' H. R. Lowen, Phys. Rev. 96, 826(A) (1954).

s McIntosh, Gluckstern, and Sack, Phys. Rev. 88, 752 (1952).
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where particle 4 is the incMent proton, g is the ground
state wave function of He' or T, and f is a plane wave
function of k and the radius vector locating particle 4
with respect to the center of gravity of particles 1, 2,
and 3. In the p-T case

S= (1—Pg4), (&)

and in the p-.He' case

S= (1—P24—P34), (7)

where Pq4 (for example) interchanges all of the coordi-
nates (including the spins) of particles 1 and 4. The S's
should not be normalized in any way; at large distances
SP will approach a plane wave for particle 4 times the
ground-state wave function for particles 1,'2, and 3 as it
should.

The potential between a neutron i and a proton j is

)1+P;,*y (1+P;; yV(j)=U(j) V-:i
2 ) ( 2

)1+P;; q (1—P;

p1 P,,'q t1—+P;; ~+ V.;/

(1 P;;*y (1 —P,,'q-
+'V-;I

) 2 )
where I';;* and I';; exchange the space and spin co-
ordinates of particles i and j. U(ij) is a potential of
some shape, and its depth is fixed by the requirement
that 'V„y+=1; that is, U(r) is the potential for the
ground state of the deuteron. When i and j are identical,
V has the same form except the triplet even parity and
singlet odd parity forces are not present because of
Pauli's principle.

It is necessary to insert Eqs. (4)—(8) in Eq. (2) and
perform the spin sums. This tedious work can be
simplified somewhat by using the Hermitean character
of the S and the relations

S'=2S for p-He',

S'=3S for p-T.

We And for the J's the following expressions:

J=nJg+PJ2+PJ3,
where

3M
Jg ————' y(123)f*(kg,4) U(14)g(123)f(k;,4)dr,

2 k2

3'
J'2=- — P(134)f*(kj,2) U(14)y(123)f(k;,4)dr, (11)

2a ~

335 rJ =—— $(123)f*(kg,4) U(14)y(234) f(k;, 1)dr,
2 A2 ~

where the integrals are now over the spatial coordinates.
k~ and k; are the 6nal and initial wave number vectors
of the scattered proton Ltheir magnitudes are, of course,
equal for elastic scattering and given by Eq. (3); the
angle of scattering is the angle between themj. The
results of the spin sums are contained in n, P, and y.
For P-T, S=1,

~=2'V» +2'V-y++2'V-y +2'V-y++2'V-y,

P = —3'V.,+—'V.„+,

2'V„y +2'V „+ 2' y —+,"V„„+ -,"V y
—. —

For P-T, S=O,

yy +2 Vny +2 Vny +2 Vny +2 Vny

P 33V ++1V +

p=2'V ++-,"V +——,"V y +/V „+—PVny .

For P-He3, 5=1,
~=2'Vny"+2'Vny +2'Vyy"+PVyy ~

P = -3'V„„+-3'V»+,

For P-He', 5=0,
n= ,"V.„"+,"V„„+2'Vy-y +PV„-„, —

P = —3'V.„+—3'V„„+,

(12)

(13)

(14)

We are not going to calculate the integrals in Eq.
(11);we are only going to use what can be read from
Eqs. (12)—(15).

An immediate consequence of these equations is that
if the odd-parity forces are weak, then no matter what
the values of J~, J2, and J3 (they may even be calculated
with a better approximation for f(k;, 4) than a plane
wave) the p-He' phase shifts for the different spin states
are related as follows:

5-triplet 'V „++'V»+
~ 2

8-singlet ' V ++'V +

where the numerical value is calculated assuming that
the potentials are charge-independent and that the
singlet potentials are weaker than the triplet potentials
by a well-known factor (which is slightly dependent on
the shape of U(r); we use the one for a Yukawa poten-
tial); that is, assuming

'V„„+='V„„+=0.69'V „+.

We suppose that J2is larger than J~ and J3 for l&~ 1.It
is the only integral in which the potential overlaps one
of the wave functions p. We suppose that J2 is positive
for even / and negative for odd /. All this is in accord
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Fro. 1. The 3S and 'P phase shifts found for p-He' scattering
when the 'S and 'P phase shifts are set equal to 1.2 times the 'S and
~P shifts respectively (Born approximation). The circles represent
an acceptable set of solutions the triangles an unacceptable set.
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Fro. 2. The 'S, 'S, and 'P phase shifts found for p-T scattering
when the 'P phase shift is the negative of the 3P shift. Several
additional possible phase shifts were found at each energy; how-
ever, only the set shown has an acceptable energy dependence.

s M. E. Ennis and A. Hemmendinger, Phys. Rev. 95, 772 (1954).
4 Classen, Brown, Frier, and Stratton, Phys. Rev. 82, 589

(1951).
« Famularo, Brown, Holmgren, and Stratton, Phys. Rev. 93,

928(A) (1954).
DR. Sweetma, n I(private communication).

with what is known about the corresponding integrals
which occur in the theory of p-d and m-d scattering.

The consequences of these assumptions and Eqs.
(12)—(15) are the following. For p-Hes, the S phase shift
should be negative and the P phase shifts positive. For
p-T, the 'P phase shift should be positive and the 'P
phase shift should be negative, and these should have
the same magnitude:

(18)

h(sS) should be negative, and 8('S) should be positive.
We might expect a very strong attraction in the 'S state
corresponding to the strong binding of He' Lb("S) should
be large and positive].

Except for Coulomb eGects, the triplet 6's should be
equal for p-T and p-He'.

III. PHASE SHIFT ANALYSIS INCLUDING SOME OF
THE QUALITATIVE FEATURES OF BORN'S

APPROXIMATION

We have made a phase shift analysis of experimental
P-T data" and p-He' data, ' ' using an IBM 701
calculator.

The code was designed to allow for spin-orbit splitting.

When spin-orbit splitting is allowed, six parameters
('So, 'Px, Sx,'Ps, 'Pt, 'Ps) are available to 6t the data even
when / is restricted to 3&~1. A confusion of solutions
results, none of which suggests anything (to us anyway)
in terms of resonances. We therefore gave up trying to
6nd out about possible spin-orbit splitting in the
problem.

This reduces the number of parameters to four
('S,'P, 'S,'P), and several solutions are found at each
energy. The phase shifts must be reasonable functions of
energy, and this eliminates most of the solutions. The
results of these analyses with no further restrictions
imposed are given in the last section.

We find it possible to impose the condition Eq. (16)
on both the, S and P phase shifts as an auxiliary condi-
tion on the analysis of the p-He' data and still get good
fits. This can be anticipated in view of Lowen's results.

0.5
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FIG. 3. Plot of aF/(1 —b Y) ss F for the 'So p-T phase shift.
b/a is taken to be 1.5, with a equal to 3.0)(10 "cm. The slope of
the line gives a value of yz'/a=2. 85 Mev and the intercept is
Kg=0.84 Mev.

The 8's which result when this is done are shown in
Fig. 1 as a function of energy.

The condition Eq. (18) can be imposed on the P phase
shifts in the p-T case. For the S phase shifts, it is
reasonable to impose Eq. (16) in the P-Hes case but not
in the p-T case. The reasons are as follows. Both Sphase
shifts are repulsive in the p-Hes case, but the 8('S) is
attractive in the p-T case. Born's approximation may be
valid for small negative 5's (repulsive), but almost
certainly not for large positive 8's (attractive). Even
more important, Eq. (18) depends on the assumption
that J2 dominates J& and J3, which is probably not
correct for /=0, but Eq. (16) depends on no such
assumption. The 8's which result when Eq. (18) is
imposed on the P-5's are shown in Fig. 2 as a function of
energy.

All of the predictions of Born's approximation are
satis6ed by these solutions. All of the phase shifts have
the expected sign. LIt should be noted that in imposing
Eqs. (16) and (18) we do not fix the sign of any phase
shifts, but only ratios of phase shifts. j 8('P) for p-T
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scattering is slightly larger than the b(sE) for p-He', as
it should be in view of the stronger Coulomb repulsion
for p-He'. The 'S phase shifts for p-T and p-He' are
about equal in magnitude.

I I I I I I I I I I I I I I
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4 is p-Hpl

IV. RESONANCES

The repulsive S phase shifts found in the phase shift
analyses including the predictions of Born s approxima-
tion are about those for scattering from a hard sphere of
radius 3&(10 "cm, as shown in Figs. 1 and 2.

According to%igner, ' the reciprocal of the logarithmic
derivative evaluated at some radius should have the
following dependence on energy:

" O.o
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FrG. 4. cI' is plotted against E for the 'P phase shift for p-He'
(19) and p-T. The vertical lines at the highest and lowest energies show

the efkct on uF of changing the phase shift by ~2.0 degrees.

+b,
E),—E

(20)

TAsLE I. Resonance parameters for the 'S state in p-T.

a
cm

2.6)(10 "
3.0&(10 "
3.4)&10-»

b/a =1.50
B), y)P/a

Mev b/a Mev

0.84 1.50 3.13
0.84 1.50 2.85
0.84 1.50 2.50

b =4.5)&10» cm
p)P/a

Mev b/a Mev

0.84 1.73 3.51
0.84 1.50 2.85
0.84 1.32 2.02

Only one E& is likely to lie in the neighborhood of a
narrow range of energies (such as we have here), so that

sensitive to the value of b/a and so two prescriptions
were tried for this parameter. The first was to keep b/u
the same as that used for u=3.0&(10 ", the second to
keep b the same. The results are showy. in Table I. It
will be noted that the value of E~ is found to be inde-
pendent of both u and b.

Plots of uV es 8 are shown in Fig. 4 for the attractive
P-states in p-T and p-He'. It is not possible to say much
in terms of resonances. Probably the best thing is to say
that the levels are all distant and aI' is just the negative
constant read o6 the graph. This means that there is at
least one negative E~, and the corresponding level is
broad.

uI" E),—E
1—(b/a) (aY) yis/a

(21)

where F'=1/R and a is the radius at which the loga-
rithmic derivative is evaluated. To evaluate the
logarithmic derivative, we use

where E& is the nearby resonance and 5 represents the
eGects of all distant resonances. Thus COc
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where P and 6 are the regular and irregular Coulomb
functions, F' and 6' their derivatives, p= ku, and 5 is the
phase shift.

For the 'S state in p-T a plot of the left hand side of
Eq. (21) vs 8 is shownin Fig. 3 for a radius of 3X10 "
cm. The quantity b/u is adjusted to make the plot a
straight line. From this it is possible to determine E), and
y&s/a. Two other values of the radius were tried; these
are 2.6 and 3.4&(10 "cm. The plots are not extremely

r E. P Wigner, Pro.c. Cambridge Phil. Soc. 47, 790 (1951).
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FIG. 5. The 'S, 'S, 'P, and 'P phase shifts found for p-He'
scattering when the only restriction placed on the phase shifts is
that there is no spin-orbit splitting. ln addition to the three sets
shown several more possible sets of phase shifts are found at each
energy; however, these do not have a reasonable energy de-
pendence.



R. M. FRANK AND J. L. GAMMEL

V. OTHER SOLUTIONS FOUND IN THE PHASE
SHIFT ANALYSIS

Even in the cases where we impose the predictions of
Born's approximation on the phase shifts, we find several
solutions at each energy all of which fit the cross
sections within the experimental error. Only one set of
these has a reasonable energy dependence as shown in
Figs. 1 and 2. However, if we use as a restriction only
that all 'P phase shifts shall be equal (that is, no spin-
orbit splitting), we find a large number of possible
solutions at each energy. For the case of p-He' scatter-
ing, those solutions which have a reasonable energy

dependence are shown in Fig. 5. The solutions which do
not have a reasonable energy dependence are not shown
to keep the figure readable.

Since good agreement with experiment was found by
using the Born approximation, no attempt was made in
the p-T case to find solutions with other types of
restrictions on the 6's.
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The approximate eigenvalues for a spherical well with an exponentially diffuse boundary and with spin-
orbit splittings are applied to the study of particle binding energies. If the A-value locations of the low
velocity 3s and 4s maxima in the neutron cross-section surface are taken at A =55 and A = 150, the general
trends of experimental binding energies and experimental radii sharply restrict the degrees of diffuseness
that can be allowed. It would appear that the general trends of both proton and neutron binding energies as
well as their discontinuities can be accounted for if a di6useness parameter (i.e., tail length to e point
divided by inner radius) is chosen which drifts gradually from 8=0.3 for light nuclei to 8=0.2 for heavy
nuclei. The diffuseness parameter needed goes to somewhat smaller values (S 0.13) if the critical 4s A-value
is taken at 170. For heavy elements the diffuseness of the potential well obtained here is comparable to the
diffuseness of the nuclear charge distribution obtained in recent studies.

1. INTRODUCTION

'HE approximate eigenvalues for a spherical well
with an exponentially disuse boundary have been

obtained in a previous study. ' To apply these results to
the investigation of particle binding energies in complex
nuclei one must first determine the magnitudes of the
well strength parameter eo and the radius parameter a
for various values of A. It should be obvious that for a
given A, as the diffuseness parameter 6 is increased, the
well strength parameter eo and the radius parameter a
needed to account for specific experimental observations
will grow smaller. The precise relationship es(8,A) and
a(5,A) will depend upon the particular experimental
observations which are taken as standard. Let us now
consider a basis for arriving at these functions.

2. IDENTIFICATION OF THE WELL PARAMETERS

The particle mass used in this work is taken to be the
average of the neutron and proton, i.e.,

m=-', (res„+m„)= 1008.288 mMU. (1)
*This work is supported by a contract with the U. S. Atomic

Energy Commission.
r A. E. S. Green and Kiuck Lee, Phys. Rev. 99, 772 (1955).

This work will henceforth be called GLI.

Since the independent-particle model (I.P.M.) places
each particle in a field of force set up by the A —1 other
particles, the natural energy unit takes the form

Es——A'/ pu'= UsL1+ 1/(A —)]/a'(8 A), ( )
where

Us ——22.267 mMU= 20.734 Mev, (3)

and a(8,A) is a dimensionless distance parameter ob-
tained by dividing a itself by 1)(10 ' cm. The dimen-
sionless well strength parameter is now given by

so= (1'o/&o)'= (l'o/Uo)'~(~ A)/L1+1/(A —1)j'* (4)

where the constant Vo represents the depth of the uni-
form portion of the potential function. It is not un-
reasonable to expect Vo to be a universal constant which
measures the strength of the interaction of a single
nucleon in condensed nuclear matter. Accordingly
es(8,A), apart from the small reduced mass effect, is
expected to vary simply as a(B,A). To proceed further,
it shall be assumed that'

es(b) A) =f, (o)A'+ fs (5), (5)
' It would perhaps be more desirable to let o(B,A) be given by

Eq. (5) and to let eo(B,A) embody the reduced mass effect. Equa-
tion (5) however, was chosen because it brings the 2s resonance
closer to A=11.


