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FIG. 2. The effect on the deformation-induced charge Qow of
removing and reapplying a load increment. The loading schedule
is indicated by the heavy line at the top of the diagram. The
current in amperes may be obtained by multiplying the deflection
by 5X10 " E*=E(1&3,). (2)

tribute to the conductivity but they may contribute
appreciably to the self-diffusion. In such cases devia-
tions from (1) may be expected (and have been found)
such that o/D(Ne'/kT. '

Recently a careful study on AgCl yielded an example
where o/D) Ne'/kT. ' The purpose of the present
note is to point to a probable explanation of this type
of deviation from (1).It is based on a correction which
must. be applied to the customary derivations of (1)'
in the case of d electrics.

The force which an external electric potential differ-
ence V, applied across a crystal of length /, exerts on a
charge e inside a polarizable medium is not eV/l=eE,
but greater. The effective field E*and the field E= V/1
are related by

at jogs, ' and since the energy of formation of a positive
ion vacancy is probably less than that of a negative
ion vacancy, 4 it follows that plastic Row should produce
positively charged dislocations and leave behind in
the lattice a net excess of (negatively charged) positive
ion vacancies. When the deformation is inhomogeneous,
it is then reasonable that the side on which the stress is
concentrated develop a negative charge, as observed,
since the positive dislocations move into the crystal,
leaving behind negatively charged vacancies.

*This research was supported by the United States Air Force
through the Ofhce of Scientihc Research of the Air Research and
Developmen t Command.' A. W. Stepanow, Physik. Z. Sowjetunion 4, 609 (1933).

s F. Seitz, Revs, Modern Phys. 23, 328 (1951).' F. Seitz, Phys. Rev. 79, 1002 (1950); 80, 239 (1950).
4 N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485
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HE coefficient of self-diffusion D and the ionic
conductivity o- of ionic crystals, both referring

to one type of transport mechanism, are customarily
related by the Einstein relation

rr/D= Nes/kT,

where E is the number of ions of a given kind, e the
electron charge, 7 the absolute temperature and k
Boltzman's constant.

If the carrier of the ionic current is capable of forming
electrically neutral aggregates with another imperfec-
tion (for example, with vacancies of opposite sign or
divalent ions) then these neutral aggregates cannot con-

If the charge carrier is assumed to be a sphere with
dielectric constant e~ in a homogeneous medium of
dielectric constant eo, then

6= ei(ep 1)/(2ep+ et). (3)

Equation (2) leads straightforward to a generalized
Einstein equation for dielectrics:

o/D =Ne'(1+ 5)/k T)Ne'/k T. (4)

Equation (4) qualitatively explains the discrepancy
observed by Compton and Maurer for AgC1. The
conditions under which Eq. (3) is valid are not well
satisfied for a conducting ionic vacancy or interstitial
ion, so that (3) is only a rough approximation of the
true value of A. Because the polarization on an atomic
scale is not homogeneous and the path of the vacancy
or interstitial ion avoids places where the polarization
is high, it is reasonable to multiply the right side of
(3) by a correction factor of the order rs. We shall now
discuss two typical cases: AgC1 and NaBr. For inter-
stitial ions the dielectric constant will be taken equal
to the dielectric constant of the material since their con-
tribution to the over-all dielectric constant is greatest
by far. Thus one expects for interstitial ions for AgCl
(c= 12) 6= 1.85 and for NaBr (s= 6) 6=0.84.

For vacancies one may either take e&= 1, yielding for
AgC1 6=0.22 and for NaBr 6=0.19, or one may make
an estimate of 6 with ei ——eo by considering the motion
of the ion jumping into the hole. This ion moves
through the central part of a region with an extremely
low polarization field exerted by other Ag+ ions. De-
pending on which of several crude approximations one
uses, he finds that this 6eld is from 10 to 25 times as
weak as that through which an interstitial ion moves,
leading to 0.19)d&0.08 for AgCl and 0.1&6)0.04
for NaBr.

The essential conclusion of this crude analysis is
that for vacancy transport 6 is so small that it may
well have escaped detection but for interstitial trans-
port, especially for ionic crystals with high dielectric
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constant, 6 will be appreciable. This a6ords a new
criterion for deciding whether electrolytic transport
takes place interstitially or by vacancies. The fact that
for NaBr 6 was found to vanish within the accuracy
of the experiments' supports the vacancy transport
assumption for this material. The fact that for AgCl 6
was found experimentally' to range between 1 and 2
is strong support for the interstitial transport assump-
tion for the silver salt.

' See for example H. W. Schamp and E. Katz, Phys. Rev. 94,
828 (~9S4).

'W. D. Compton, doctoral thesis under R. J. Maurer, Uni-
versity oi Illinois, Urbana, Illinois, 1955 (unpublished).

3 See for example N. F. Mott and R. W. Gurney, Electronic
Processes in Ionsc Crystals (Oxford University Press, Oxford, 1940),
p. 63.

Let /+I"(p, r) denote the Dirac wave function with
asymptotic form: plane wave with momentum p

t'out&
together with l . l-going spherical wave, p being the

I, in)
spin label. In an arbitrary coordinate system this can
clearly be written as

where T& are the spherical harmonics, (jj,llmsp) the
Clebsch-Gordan coefficients, 5~, , the phases and C t~~.,
the standing wave solutions
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' 'T is well known that, in calculating transition prob-
abilities between stationary states, a scattered

particle in the final state should be represented by a
wave function whose asymptotic form is plane wave plus
ingoing spherical wave, rather than by the usual scatter-
ing wave function. The importance of this point has
been stressed repeatedly, and in particular in connection
with the recent calculation of bremsstrahlung at high
energies. '

On the other hand, it has been pointed out' that this
particular choice of 6nal state wave functions is only
required if the differential cross section for a given
direction of the scattered particle (final electron in the
case of brernsstrahlung) is to be calculated. If it is
asked for the cross section integrated over the direction
of the scattered particle, then one can equally well use
the outgoing wave type of wave function for the 6nal
state. This may be understood from the fact that in this
case the direction of motion of the scattered particle
merely represents a degeneracy of the final state. One
may therefore use any complete set of states to represent
the particle; in particular the outgoing wave modi6ca-
tion may be chosen.

In the bremsstrahlung problem, these statements
hold if the total cross section for emission of a quantum
of a given energy and direction is desired. Ke need in
this case a complete set of wave functions for the
electron of a given energy. The statement that outgoing
waves may be used for the electron will now be proved
explicitly for a Dirac electron in a spherical symmetric
potential.

i f, , (r) (rrr/r)xt;;,
rrF.+m) ' E+rrc

c i...(r) =-4vr
l

——
lE2z) a~, (r)Xt ~

xt~y, being the central field spinors, ' and f~, , and gt, ; the
usual radial functions with asymptotic behavior:

ft, (r)~(1/pr) cos(pr ', l7r+8, ;)—, -

gt; (r)~(1/pr) sin(pr —isa+8~, ;).
The probability for a process described by a perturba-

tion 8, integrated over angles and summed over spins
in the 6nal state, is pr'oportional to

On account of the orthogonality of the spherical
harmonics and of the Clebsch-Gordan coefficients, the
factor exp(&i 5)tdepending upon the choice of out- or
ingoing wave modifications, disappears from the
expression

2

d'r4 &~~,t(r) 8$, ' (3)

giving the matrix element in terms of standing waves.
Turning now to the bremsstrahlung, it will be seen

that the present remark introduces considerable
simplifications:

Although it is necessary to use the final state wave
function tP in order to obtain the correct differential
cross section, ' it is now clear that as soon as the cross
section is integrated over angles of the electron, we can
forget about the difference between lk r and f+r. We
may therefore take advantage of using ll+r in the final
state, and hence we can deduce the bremsstrahlung
cross section integrated over angles of the electron
from the corresponding pair cross section by the
familiar transformations der/ks~dk/kprs and the change
of sign of ps and es. This conclusion holds whether the
screening is absent, partial or complete. In particular


