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Classical Calculation of Differential Cross Section for Scattering from a Coulomb
Potential with Exponential Screening*
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The potential energy function considered is V= (ZiZ&e /r) exp( —r/a), which approximately represents
the potential between two atoms in collision taking into account the screening of the atomic electrons.
Here the first factor is the Coulomb potential and the exponential factor contains a screening length a.
It is shown first that a classical orbital calculation should give valid results under certain conditions in
problems where ions with energies of many thousands of electron volts scatter from atoms. Calculated values
of the impact parameters and differential cross sections are presented for all angles of scattering. These
quantities are tabulated for a wide range of parameters corresponding to various degrees of screening.

a= as/[Zti+Zs'*]', (2)

for the screening length. Here ao is 0.53X10 ' cm, the
radius of the 6rst orbit in hydrogen. Mott and Massey'
have pointed out that a classical calculation of diRer-
ential cross section for scattering is valid when: (a) the
deBroglie wavelength ) of the incident particle is
negligible compared with any significant dimension of
the scattering center, and when (b) the collision is well

defined within the limitations of the uncertainty
principle.

Condition (a) requires that X be much smaller than
the screening length a, and also much smaller than the
collision diameter b, defined by

b =ZtZse'/(-, 'srtw').

In this expression m is the reduced mass of the system,
and v is the relative velocity of the collision. The length
b, which varies inversely with the energy of the collision
would be the distance of closest approach in a "head on"
collision were there no screening. Since this length is
also the diameter of the cross section of backward

1. VALIDITY OF A CLASSICAL SOLUTION

HE interaction between two atoms during a
collision is approximately represented by the

potential energy function,

V= (ZrZse'/r) exp( —r/a), (1)

over a wide range of energies. The first factor is the
Coulomb potential energy function between two nuclei
of charges ZIe and Z~e. The exponential factor takes
into account the electron screening, whose extent is
measured by the screening length a. Bohr' has discussed
this potential in some detail and has suggested the
expression,

scattering in the absence of screening, it is a good
measure of the size of the scattering center when b/a
is small. Bohr' has shown for this potential that the
second condition, (b), leads to a lower limit on the
scattering angle, namely,

8*=X/2sra. (4)

For angles greater than this, the classical solution is
valid.

By way of illustration, numbers will be put into the
above equations for a particular case. For the collision
of 50-kev neon ions with argon atoms, one calculates
a=160X10 "cm, b=78X10 "crn, X=0.42X10 "crn,
and 0*=0.026 radian, or 0.15'. Thus both conditions
for the validity of a classical solution are satisfied at all
angles greater than 0.15' in this case. In fact, for most
collisions between atoms in the energy range from
about a hundred electron volts to hundreds of thousands
of electron volts, the classical calculation of diRerential
cross section is valid except at very small angles.
Massey and Smith' calculated differential cross sections
for 72-ev protons on argon targets, and for 110-ev
protons on helium targets using classical methods. They
used, however, the self-consistent field instead of the
screened Coulomb field considered in the calculations
presented here.

There has been no general quantum mechanical
solution worked out for the potential of Eq. (1). The
Born approximation solution for this potential is well

known, '4 but when the appropriate validity criteria
are examined, ' ' ' the solution for particles heavier than
electrons is found to be valid only for angles less than
0*, or X/2sra. Since the classical solution is valid for
angles reater than this limit, it is seen that the two*This work was sponsored by the Ofhce of Ordnance Research methods are valid in mutually exclusive angular ranges.

through the Katertown Arsenal Laboratories and the Springfield
Ordnance District.' N. Bohr, Kgl. Danske Videnskab. Selskab, Mat-fys. Medd. 'H. S. W. Massey and R. A. Smith, Proc. Roy. Soc. (London)
18, 8 (1948). Paragraphs 1.4, 1.5, 1.6, and 2.1 are particularly A142, 142 {1933).
pertinent to the discussion here. See, for example, L. I. Schiff, Qtsarstttm Mechartscs (McGraw-

~ N. F. Mott and H. S. W. Massey, The Theory of Atomic Col- Hill Book Company, Inc. , New York, 1949).
Iisions (Oxford University Press, London, 1949), second edition, Everhart, Stone, and Carbone, Technical Report No. 2 to
Chap. VII, Secs. 4 and 5. Office of Ordnance Research, April 20, 1954 (unpublished).
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FIG. 1. Orbit of a particle scattered through an angle 0 showing
the impact parameter p, the distance of closest approach rp, and
the screening length a.

2. TABULATION OF RESULTS

Figure 1 shows a typical orbit in which the impact
parameter p, the screening radius a, and the angle of
scattering 0 are indicated. The distance r p shown is the
actual closest distance of approach for the orbit.

In any given experimental study, the particles in
question and the energy will be known and the corre-
sponding value of b/a is readily calculated from Eqs.

(2) and (3). The case b/a=0 applies in the limit of
higher energies where screening is negligible and here
the potential reduces to the Coulomb potential. In this
limit the differential cross section is given by the familiar
Rutherford formula,

a-(8) = (b'/16) csc4(8/2). (5)

However, as the energy decreases, b/tt increases, which
corresponds to more effective screening.

The formulas for the classical calculation of the dif-
ferential cross section at all angles from a given poten-
tial are well known. The integrations for the potential
of Eq. (1) must be carried out numerically for each
point. The formulas and details of the method of cal-
culation are given in the Appendix to this paper. Of the
two numerical procedures presented there, one method
is suitable for all angles, and the other, somewhat
simpler, is applicable at small angles only.

It is convenient to plot the ratio of the differential
cross section o.(8) to the square of the collision diameter
b, since this dimensionless quantity is a function only
of angle 8, and the ratio b/a. All calculations are in
center-of-mass coordinates. Figure 2 shows o (8)/b'
plotted for angles up to 0.6s. for eight values of b/a. It
shows the general behavior of the screened differential
cross section and its relationship to the Rutherford
cross section.

Table I gives a complete summary of the numerical
results, tabulating actual distance of closest approach,
impact parameter, and differential cross section for
angles between 0.01s and s and for b/a=0, 0.1, 0.2,
0.5, 1, 2, 5, 10. These calculations are particularly
useful in interpreting results of experiments in which
differential cross sections have been measured for single
collisions between atoms at large angles. ~
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4. APPENDIX

a. Large-Angle Calculations

The differential cross section for scattering from an
arbitrary potential energy function V(r) is calculated
classically' ' from

Q.ot
0 P, I 'F p.yvf

tst, CENTER 'OF MASS COORDJNATES

where
a (8) = PdP/sin8d8, —

8= —2 Lrg(r)] 'dr,
4rp

(6)

FrG. 2. Differential cross sections 0.(8) for scattering from an
exponentially screened Coulomb potential plotted as a function
of scattering angle 8 in center-of-mass coordinates. Here b is the
coHision diameter and c is the screening length. For the case
b/ O, oar a= oe, there is no screening and the curve follows the
Rutherford formula. Successively larger values of b/a correspond
to more and more effective screening.

' von C. Ramsauer and R. Kollath, Ann. Physik 16, 570 (1933).
~ A. G. Rouse, Phys. Rev. 52, 1238 (1937).
'Everhart, Carbone, and Stone, Phys. Rev. 98, 1045 (1955).' H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic

ImPact Pheaomeaa (Oxford University Press, London, 1952), p.
373.



CALCULATION OF 0 I FFE RENTIAL CROSS SE CTION

g(r) = [r'/p' 1--r sV(r)/(-,'mv sp s)j:.
Here rp is the largest positive root of Eq. (8). Letting
z= a/r in the above equations and substituting

TABLE I. Distances of closest approach ro, impact parameter p,
and differential cross sections a (8) calculated classically for scat-
tering from an exponentially screened. Coulomb potential. Here a
is the screening length and b is the collision diameter. Angles 8
are in center-of-mass coordinates.

V (r) = (ts rmv'b/r) exp( —r/u)

from Eqs. (1) and (3) into Eq. (7) there results

pZO

8=a-—2(p/a)

where
y = 1—(p/a)' s' —(b/u) s exp( —1/s), (10)

and sp is the root of Eq. (10). The integral of Eq. (9)
must be evaluated numerically for each value of p/a
and b/a In th. is form there is difhculty in maintaining
sufhcient accuracy at some angles because the second
term of Eq. (9) is comparable with m. and must then
be subtracted from m to find 0. Letting

0.01m
0.02m.

0.03m.
0.04m
0.06m
0.08m
0.10m
0.15'
0.20~
0.30m
0.40m.
0.50m.

0.75m

32.3
16.4
11.1
8.46
5.81
4.49
3.70
2.64
2.12
1.60
1.35
1.21
1.04
1.00

31.8
15.9
10.6
7.95
5.29
3.96
3.16
2.08
1.54
0.981
0.688
0.500
0.207
0

1.03X106
6.42X10'
1.27X 104
4.02X10'
7.97X10~
2.53X102
1.04X 102
2.11X10'
6.85X10'
1.47X 100
5.23X10 '
2.50X10 '
8.57X10 2

6.25X10 ~

ro/b
b/a =0.2
0/b ~(8)/b'

b/a =0 (a = ~)
rolb p/b 0 (8)lb2 rolb

14.3
9.85
7.63
6.28
4.69
3.78
3.19
2.35
1.90
1.45
1.24
1.10
0.961
0.913

ro/b

14.2
9.65
7.39
6.00
4.37
3.42
2.81
1.91
1.43
0.924
0.651
0.474
0.197
0

1.02X10'
1.47X 104
4.27X 103
1.71X10'
4.45X 102
1.62X10'
7.4 X10'
1.67X10'
5.7 X10'
1.28X10'
4.64X10 '
2.23X10 '
7.7 X10 '
5.65X 10-~

b/a =0.5
(8)/b

b/a =O.i
~/b (8)lb

zo pZO

&=m' —2(p/+) yp '*ds — (yp
'*

y ')ds, (12)
0 ~0

in which the first integral is readily evaluated analyti-
cally. The m cancels and the result is

2p/b
-

2p
9= 2 cot— +— (yp-l- y—:)ds. (13)

exp( —1/sp) a ~ p

yp= 1—(p/a)' s' —(b/e)s exp( —1/sp), (11)

Eq. (9) can be put into another form:

0.01m
0.02m
0.03m.

0.04vr
0.06m.

0.08m
0.10m.

0.15m
0.20m
0.30m
0.40m.

0.50m.

0.75m.

9.59
7.11
5.77
4.94
3.87
3.19
2.74
2.09
1.73
1.34
1.13
1.02
0.878
0.845

rolb

9.51
6.99
5.62
4.75
3.63
2.92
2.44
1.73
1.32
0.865
0.615
0.450
0.187

0

b/a =1
&lb

3.63X104
6.3 X10'
2.01X103
8.8 X102
2.62X10'
1.06X10~
5 1 X101
1.29X10'
4.65X 10'
1.09X 100
4.06X10 '
1.99X10 '
7.0 Xio~
5.14X10 2

5.26
4.16
3.56
3.14
2.60
2.22
1.99
1.59
1.35
1.08
0.931
0.839
0.738
0.703

ro/b

5.22
4.10
3.48
3.04
2.46
2.06
1.80
1.35
1.07
0.729
0.529
0.391
0.166

0

b/a =2
p/b

8.1 X10'
1.70X103
6.1 X102
2.91X102
9.8 X101
4.32X10'
2.26X10'
6.5 X100
2.57X10'
6.9 X10 '
2.78X10 '
1.43X10 '
5.4 Xio-~
4.01X10 '

In this form the numerical evaluation of the remaining
integral by Simpson's rule yields a small quantity
which is added to the 6rst term and accuracy is main-
tained. There is an infinity in the integrand at a=so
which varies as (sp —s) & and has to be handled sepa-
rately. Three place accuracy was maintained in the
calculation of 8 as a function of p/b

The calculation of dp/de needed for Eq. (6) was done

graphically using large scale plots of p/b es 0 on both
linear and logarithmic scales. A careful plot of the
resulting values of dp/de es 0 indicates that our values
of this quantity for each point are accurate to within
2 percent. The 6nal cross sections, calculated from Eq.
(6) are thus correct to within 2 percent also. This
should be suKciently accurate for comparison with
experimental data since the cross sections are rapidly
varying functions of angle.

b. Small-Angle Calculations

At small angles there is a simpler method based on
a calculation of the sideways impulse during a collision.
As shown by the dotted line in Fig. 1, the actual path
of the particle is approximated by a straight line x=ro
parallel to the y-axis along which the particle moves
with constant velocity e. Although the dotted line is

0.01m
0.02m.

0.03m
0.047r
0.06
0.08m
0.10~
0.15m-

0.20m
0.30m-

0.40m.

0.50m.

0.75m

0.01m.

0.02m
0.03m
0.04m.

0.06~
0.08m
0.10m
0.15~
0.20m

0.30m
0.40~
0.50m
0.75~

3.22
2.63
2.30
2.08
1.78
1.58
1.41
1.16
1.03
0.844
0.736
0.671
0.593
0.567

ro,/b

0.919
0.798
0.727
0.679
0.610
0.561
0.525
0.465
0.420
0.360
0.329
0.305
0.273
0.265

3.20
2.59
2.25
2.02
1.70
1.47
1.29
1.00
0.828
0.588
0.435
0.326
0.140
0

2.80X 103
5.7 X10'
2.15X10~
1.06X 102
3.82X10'
1.81X101
9.8 X100
3.13X100
1.37X10'
4.25X10 '
1.83X10 '
9.8 X10 2

3.84X10~
2.90X10 '

0.914
0.789
0.715
0.662
0.587
0.531
0.487
0.411
0.352
0.267
0.209
0.162
0.073
0

1.66X10'
3.63X10'
1 50X10'
7.8 X100
3.13X10'
1.64X10'
9.7 X10 '
3.80X10 '
1.90X10 '
7.1 X10 '
3.58X10 ~

2.17X10 '
1.02X10 '
8.14X10 '

b/u =5
p/b cr (8)/b2

1.91
1.61
1.43
131
1.15
1.04
0.957
0.817
0.723
0.610
0.542
0.497
0.440
0.426

"/b

0.523
0.460
0.425
0.398
0.363
0.338
0.319
0.284
0.263
0.230
0.211
0.198
0.180
0.175

1.90
1.59
1.40
1.28
1.10
0.975
0.880
0.712
0.595
0.438
0.332
0.252
0.110
0

8.5 Xio~
1.86X10'
7.2 X10'
3.61X10'
1.34X101
6.6 X10'
3.76X 100
1.34X10o
6.3 X10 '
2.14X10-1
100X10 '
5.6 X10 '
2.36X10 2

1.83X10 '

0.520
0.455
0.418
0.389
0.350
0.321
0.299
0.254
0.222
0.173
0.138
0.109
0.050
0

4.75X10'
1.06X10'
4.36X10'
2.31X10
9.5 X10 '
51 X101
3.15X10 '
1.28X10 '
6.8 X10-~
2.74X10 2

1.48X10 ~

9.2 X10 '
4.74X10 '
3.84X10 '

b/a =10
p/b a (8)/b2
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not close to the particular orbit shown in I'ig. 1, it
would lie close to the actual path of the particle if the
figure were drawn for a case where the scattering angle
8 was small. The x-component of the impulse along this
path is assumed to be approximately the same as it
would be along the actual path. This impulse over half
the path is

mv, = ( dV/—dr)(x/r)dt, (14)

For the potential energy function of Eq. (1), when

one uses Kqs. (3), (14), (15), and (16), the integral is
found to be

Oa )" (a/rp+u) exp( —urp/a)du

b u'(u' —1)'*

'0 See reference 1, p. 9.

where x/r is the cosine of the angle between the radial
force —dV/dr and the x-axis, and v, is the final x-
velocity. The integrand becomes a function of time
alone when it is assumed that

x= rp and r = (rpP+v't') & (15)

in accordance with the approximate path assumed
above. An example of calculation of impulse in this
way has been given by Bohr."The ratio of the final
g-momentum to the initial momentum mv is then half
the angle of scattering. Thus

Ha/b= (rp/a) (u' —1)& exp( —urp/a)du. (18)

By letting u=1/u, an equivalent integral, with limits
on m of zero to unity, can be obtained which is suitable
for numerical integration. Although applicable only at
small angles, this method has the advantage that ga/b
is a function only of rp/a. Thus a single set of nu-
merical integrations finds this function for all values
of b/a.

Although ro is nearly equal to the impact parameter

p at small angles, it is considerably more accurate not
to assume them equal and to calculate p/rp for each
value of b/a. By using Eq. (10) with sp ——a/rp, the rela-
tionship is seen to be

p/rp= L1—(b/rp) exp( —rp/a)]'*. (19)

By using Eqs. (18) and (19), it is possible to plot
curves of p/b as a function of 9 for each value of b/a
These curves agree with those obtained from the large-
angle calculations of Eq. (13) very well at small angles,
departing by no more than 1 percent at angles as large
as 0.1v. The rest of the procedure, obtaining dp/dg and
calculating the differential cross section, is the same as
has been described in the large-angle calculations.

where u= (1+v't'/re) ~. Upon integrating the first term
in the integrand of Kq. (17) by parts twice and the
second term by parts once, the infinities at I=1 disap-
pear and there is some cancellation. A simpler form
results:


