
GORDON, ZEIGER, AND TOWNES

any time. This type of modulation can be neglected
when small input signals are considered and is not
important under most circumstances. This shot effect
and also the effect of power Row through the cavity on
the frequency dependence of the amplification will be
discussed in more detail in a subsequent paper.

Amplification may also be accomplished using one
wave guide as both input and output, and the noise
figure of such an amplifier can also approach unity.
The amplified output signal might be coupled out and
detected through a directional coupler, which would
have to have a fairly small coupling so that little of
the input power was lost to it. Then so long as the
amplified input noise appearing at the detector was
large compared to k'1, the noise figure of this amplifier
would be small.

The maser amplifier may be useful in a restricted
range of applications in spite of its narrow band width
because of its potentially low noise figure. For example,

suppose that the signal to be amplified came from outer
space, where the temperature is only a few degrees
absolute. Then by making the coupling through the
cavity fairly large so that little noise is contributed by
the cavity itself, amplification should be attainable
while keeping the noise figure, based os the femPerature of
the sigma' solrce, fairly low. This might prove to have a
considerable advantage over electronic amplifiers. It
might also be possible to tune the frequency of a maser
amplifier through the use of the Stark or Zeeman
effects on the molecular transition frequencies.
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The time-dependent Schrodinger equation is solved formally for an atomic or molecular system which
is subjected simultaneously to a rotating magnetic fieM of constant amplitude and angular velocity and to
a constant magnetic Geld along the axis of rotation. The method yields the transition probabilities in terms
of the solutions to an eigenvalue problem. This eigenvalue problem is solved both for (o) a normal Zeeman
eifect and for (b) the case where a transition from a given level is isolated in frequency from other transitions
from the same level. Case (u) is exactly soluble and yields a solution which is shown to be the same as that
of Bloch and Rabi, but is in a form which is more convenient for integration over the velocity distribution.
Case (5) must be solved by an approximate method which results in a prediction of multiple quantum
transitions as observed by Kusch.

' 'N the C-field of a molecular beams apparatus, a
~ ~ system (e.g. , an atom or molecule) is subjected, in
a region of constant magnetic field, to an oscillating
magnetic field. The experimenter observes, as a function
of frequency, a quantity proportional to the number of
atoms which have left their initial states.

We will be dealing here with the case in which the
constant and oscillating fields are perpendicular to each
other. In this case, the solution is greatly simplified by
replacing the oscillating field by one which is rotating
about the direction of the constant field, One must then
correct for the effect of the other rotating component, '
but the correction is usually small. In the present paper,
we shall also explicitly assume that the constant mag-
netic field is uniform and that the rotating field is
uniform in both amplitude and phase.

*Research supported by the National Science Foundation.' See, for example, I. I. Rabi, Phys. Rev. SI, 652 (1937).' F. Bloch and A. Siegert, Phys. Rev. 51, 522 (1940).

With these assumptions, one may, for a normal
Zeeman effect, solve exactly for the probability of a
transition being induced by the rotating field. ' In other
cases, however, some approximate method must be
used. Allowed transitions may usually be treated by
assuming that only the two levels involved interact, '
but in the case of multiple quantum transitions which
take place only by virtue of the existence of inter-
mediate states, it is necessary to have a more general
approach,

The approach we shall develop here has the virtue of
not only yielding expressions for the probabilities of
multiple quantum transitions but also giving correc-
tions to the single quantum transition probabilities and
a convenient expression for the exact solution of the
normal Zeeman effect problem.

' F. Bloch and I. L Rabi, Revs. Modern Phys. 17, 237 (1945);
Z. Majorana, Nuovo cimento 9, 43 (1932).' H. C. Torrey, Phys. Rev. 59, 293 (1941).
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1. FORMAL SOLUTION

The problem may be stated as follows: A system
whose unperturbed Hamiltonian is invariant under
spatial rotations enters a region in which there is a
constant field of magnitude H, in the s-direction and a
rotating 6eld of amplitude Hp in the xy-pla, ne. If the
initial state of the system is

~

(t= 0)), what is the proba-
bility that at a time t= r it will be observed to have
left that stateP

We now proceed to solve this problem.

A. System in a Constant Magnetic Field

Let Kp be the unperturbed Hamiltonian, J the total
angular momentum, Jr, Jp, .Js the individual spin or
orbital angular momenta which make up J, and gr, gs,

~
gI1, the corresponding gyromagnetic ratios. Since xp

is invariant under spatial rotations it will commute with
both J' and J,. Its eigenstates may then be taken to be
eigenstates of J', J„and of a set of commuting vari-
able, F, which commute with J' and J,. The eigenvalues
will be independent of J,. The eigenstates will then
satisfy the equation

~pl»jm)=~p(~, j) l~, j,m&,

where p, Aj(j+1), and mh are the eigenvalues of I', J',
and J„respectively.

If we consider the eGect of the constant Geld alone,
the perturbed Hamiltonian will be

Se,= Sep+H, (&,P) (g,J .+g,J..+ "+g,J..). (2)

Although KJ in general no longer commutes with I' or
J' it does still commute with J,. The steady states in
this field will then be states for which m is a good
quantum number but p and j are not. For each state

~ p,j,m& there will be one steady state which approaches
it as H, approaches zero. We will use the notation

~ (p,j),m) for this state. The state
~ (p,j)m) will then

satisfy the equation
ih(d/dt)) )=X) ). (10)

Then the total Hamiltonian is

3C= 3C1+He(pp/") PglJle+g2J2e+ ' ' '+gsJhe)

+Ho( p/&)far J'o+gsJso+" +gsJ')
= BCt+ ', (H,-+iH„) (gr/k) fgr(J&, —iJr„)+

+gy, (Jp.—iJn„))+-,'(H, —iH„) (pp/5)

Xggr(J&.+iJ&„)+ +gp(Jp. +iJg)), (6)

= Xr+Ho(po/25) {e'"'[gr(J&, iJ—i„)+
+gs(Jp, iA„)—)+e '"'[gr(J& +iJi„)+

+gp(Jp, +iJso))}.
Making use of the fact' that (p,j,m ~

Js,&iJa,
~

p', j'm'&

is diferent from zero only when ns' is equal to ns~1,
we 6nd that

e '"(p,j,m~ Ja.+iJa„~p', j',m'&

=e """'—(p', j,m~ Js.*iJg~p', j',m')e"

=(yj m~e &'l"l *"'(Js,+iJa,)e&'lr' * '(P', y'zm'&,

and, therefore

e '"'(Je,&iJa„)=e &""&~"'(Js,+iJs„)e&"''"i '"' (8).

We thus obtain the expression

K= Xr+Hp(pp/25)e (""' *"'{fgr(J&.—iJ&o)+

+gs(Jp, iJn„)—)+[gt(J&,+iJr„)+
+gp(Jp, +iJn„))}e&'l@ *"' (9)

=e '" *"'{Xr+Hp(pp/5)

&&kg&Jre+ ' '.+gsJp, )}e('l"i '"'

since K~ commutes with J,.
We may make use of the fact that the expression in

the brackets does not contain the time to reduce the
solution of our problem to the solution of a problem
whose Hamiltonian is independent of the time,

If
~ ) is a state of the system it will satisfy the time-

dependent Schrodinger equation:

'I (p j),m&=~, h, j,m) I
h' j),m&, (3) Then if we make the substitution

with

~(p, j),m)~ ~p,j,m) as H. ~O,

where W'(y, j,m) is the perturbed energy.

B. System with Rotating Field Included.
Elixnination of the Time from

the Hamiltonian

Now we must introduce the rotating magnetic field.
If the x-axis is chosen in the direction of the field at
t=0 we have

H =Hp coscof, II&=Hp sinort.

)~&
—e(zip) Jz"t) )

~') will satisfy the equation

ih(d/dt) ~')

=e&zl"&'"'{ia(d/dt)
( )}—&OJ e&zlei *"'~ )

—e(zlh)Jzvtgg) ) &OJe(zip)Jzwt[ )
={(Set—&oJ,)+ (ppHp/A)

XLgrJr.+gsJ"+ "+gsJ"j}I'&

(12)

= sc'/'),
' See, for example, E. U. Condon and G. H. Shortley, The

Theory of Atom'c Spectra (Cambridge University Press, London,
1951), Eq. 9'11.



1276 HAROLD SALWEN

where

5C'= (&i—~~*)+( s&o/&)[gi~i*+ +gsj "7 (13)

is independent of the time.

C. Solution of the Equations of Motion.
Calculation of Transition

Probabilities'

Just as in any such problem, we may find the eigen-
states of the operator by solving the secular equation:

det(x' —u) = O (14)

for the eigenvalues X and then solving a set of linear
equations for the corresponding state vectors IX). In
general, there will be one eigenvalue X» for each state

I y,j,m) or
I (y,j),m&.

Now given any state I ) at 5=0, we may expand
I
')

in terms of the states IX):

I'&=K.I~)&~l'&, (15)

where the coeKcients &X I
') will be functions of the time.

Then the equation of motion

equation of the form

J, I
(t=o)&=ph

I
(t=o)&, (23)

x f&(i=o) I»l'I &(i=p) Il'&I'

=1—g, , , cos[(1/ls) (li —~') r3

x I&(t=o) l~&lsl&(t=o) Il'&I'

= 1—P, l&(t= 0)ll &ls Z, , l&(i=O)ll '&Is

+gq, q. (1—cos[(1/fi) (X—X')r)}
X I&(1=0)fl &I'f&(1=0)ll '&fs

=4 p„,. I &(i=0) I»l'l((i=o) Il '& I'

so that

&(t=o) I
(1=r)&=e '""'Qyf &(t=o) fl~&f'e ' ""'. (24)

Then

~[I(i=o)& 3

becomes
~7z,(d/dh)l')= x'I'), (12) Xsin'[(1/25) (X—X')r]. (25)

N(d/d1)& I')=&&X I'), (17)

with the solution

&Xf')= e—i'i»"'(XI'(t=o)) = e
—i'«'"'&X

I (1=0)&. (18)

We finally obtain

ol

&l l(i=o)& (19)

)=e i'i"' *"'Q),IX&e i"si"'&Xl (1=0)&. (20)

We must now calculate the probability that a system
initially in a state

I (1=0)) has left that state by the
time r. We may write this as

&[l(~=0)) 3=1- l&(i=o)l(i= )&I', (21)

where, by (20),

&(i=o)
I
(1= ))

=Z~((i=o) I
e "'""*"l»e "'"'"'&~l (1=0)& (22)

One ordinarily deals with initial states for which J, is
quantized. In this case, the initial state satishes an

'Note added ie proof. Mr. M. Hack has poi—nted out to me
that Besset ei ol. PJ. phys. radium 15, 251 (1954)g similarly
approach the problem of "multiple-Rop" transitions in terms of
the steady states of 3C'. Mr. Hack has also independently applied
this "spectral representation" to the problem of multiple quantum
transitions (unpublished ).

&.I»fsP (d/«) 0 I'&) =Z. ~'I»& I')
= P, fx)x&xf'), (16)

or

D. Physical Interpretation of the Result

The above discussion may be interpreted in the fol-
lowing way.

The substitution (11) was a transformation from a
fixed frame of reference to one which is rotating with
angular velocity u about the s-direction. In this frame
of reference, the effective Hamiltonian is BC' which is
independent of the time. The steady states, IX), of X'
are thus the steady states of the system.

If the initial state is one of the eigenstates, the system
will remain in this eigenstate and the transition prob-
ability will be zero. If, on the other hand, the eigenstate
is a linear combination of two or more of the eigenstates,
the final state will contain the same amount of each
eigenstate, but the relative phases will be changed.
This change in the phases will cause transitions to other
linear combinations of the same eigenstates.

In the expression (25) for the transition probability,
each term is the contribution due to the phase diQ'erence

of a single pair of states, I) ) and
I
V&. The effect of this

phase difference is given by

4 sin'[(1/25)(X —X')r]= fe "'»' e i'»" 'I' —(26)

I
&(1=0)I» lsl &(1=0)Iz'&

I

= (initial probability of eigenstate
I X))

X (initial probability of eigenstate
I
X'&) (27)

expresses the fact that the phase difference between
these states can cause transitions only to the extent that
both states are present initially.
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or
(m m') ll p—Wpi(y, j,m) Wi(p', j'—,m') (31)

At the rotational frequency given by Eq. (31), a
resonance should occur involving transitions between
the states

I (y, j),m& and
I
(y',j'),m'&

Up till now we have spoken in terms of a rotating
field, whose angular frequency can have either sign. For

E. The Case of
I
(f=O)& =

I (v~j)~ m).
Selection Rule for Transitions

In the usual experiment, the system enters the radio-
frequency Geld after it has already been in the constant
magnetic Geld, so that our initial state should be taken
to be one of the states

I (y, j),m&. For this case, the
formula for the transition probability becomes

I'Llh, j),m) ]=4Z~&i l(h, j),ml»l'

& I (h, j),ml)t'& I' »n'L(1/») (~—)t') r] (»)
In Secs. 2 and 3, we shall derive the transition prob-
abilities in the two cases which cover most experimental
applications. It is nevertheless instructive to determine
here the resonant frequencies which may generally be
expected.

Unless an exact solution is possible, it is simplest to
work in the representation in which K~ is diagonal. In
this representation, we expand in terms of the

I (y,j),m),
which also happen to be our initial states. According to
the foregoing derivation, our effective Hamiltonian is

X'= (Xi—(oJ.)+ (ppHp/Ii) LgiJi.+ .+gsJs,], (13)

with
Xi——Xp+(p, pH, /A)fgiJi, + . . +gsJs,] (2.)

The first term, Ki—coJ„of X' is completely diagonal
in our chosen representation, while the remaining term
is completely off-diagonal.

Under ordinary experimental conditions the ampli-
tude of the oscillating Geld is much smaller than that
of the constant Geld, so it is reasonable to treat the o6-
diagonal terms of X' (proportional to the rotating field
amplitude Hp) as small perturbations. Thus, except
when two or more levels are degenerate or nearly
degenerate, the states

I (p, j),m& are good approxima-
tions to the eigenstates of 3." and no transitions are
to be expected.

We should now note that the diagonal elements

((y,j),m I

X'
I (yj ),m&= Wi(pj, m) mApi (29)—

are linear functions of the angular frequency co. The
frequency may thus be chosen so as to produce de-
generacy. Those frequencies at which degeneracy occurs
will (for Hp((H, ) be the resonant frequencies. Our con-
dition for degeneracy between the levels

I (&,j),m& and

I (y', j'),m'& is thus

((y,j),m I

X'
I (p, j),m& = ((p', j'),m'

I
X'

I
(p', j'),m'& (30)

2. APPLICATION TO NORMAL ZEEMAN EFFECT

A. Solution for Transition Probabilities

A normal Zeeman effect occurs when we may take K»
and K to be given by'

Xi= Xp+ (gli pH, /5) J.,
X= Xi+(gyp/h)(HQ +H„J„)f.

In this case, we have

(33)

and

1(V,j),m&= I~,j,m&,

Be&
I p j m& = (+p+ mgp pH ) I p j,m &,

(34)

X = Xp+I (giipH /5) tp]J + (giipHp/5) J' (35)

I et us introduce the following notation:

a= giipH, /h, , b= giipHp/I's ,

cosy = (a—pp)/L(a —pp)'+b']'*,

sing= b/L(a —&p)'+b']'*,

8=
I (a—pp)'+b']br,

(36)

where r is the time the system is in the oscillating Geld.
Then

X'= Xp+ (a pi) J,+bJ.—
= Xp+L(a —o~)'+b'] LcosyJ, +sinpJ, ] (37)

= X,+L(a—) +b']IJ, ,

where the s'-axis is as shown in Fig. 1. The eigenvalues
of J, are iih (ir= j——j+, 1, , j). Then the eigen-
values and eigenvectors of R' will be

),„„=Ep (y,j)+f(a pp) s+b']*'pb, ,
—

I)tr;.&= Iv, j,J"=~b&,
(38)

'We should note there that, even though Eq. (31) includes
all resonances due to a rotating field, Eq. (32) does not include
all possible resonances, due to an oscillating field. An example of a
resonance which is not predicted by (32) is that due to the two-
quantum transition u~i~b where m =mb, m;=m +1. In this
case, the states

~ o) and ~i) are connected by one rotating cotn-
ponent, while the states ~i) and

~
b) are connected by the opposite

component. As a result there should be a resonance at the fre-
quency ha&=

~
(W —Wp)/2 . This resonance will have a large peak

intensity when 8; -', (8'~+Wb).
This may be true for several possible reasons: (1) All the g&'s

may be equal. (2) Some of the Jz's may be identically equal to
zero for the states under consideration and the remaining gl, 's
may be equal. (3) The magnetic field may be too weak to decouple
certain of the angular momenta from each other with the result
that Eq. (33) turns out to be a good approximation. Except in the
first case, we should then take g=g(p, j).

the actual oscillating Geld, the frequencies are given by~

Im —m'IIi~= IWi(v jm) —Wih" j'm')
I (32)

Resonances will be observed at the frequencies given
by Eq. (32) only if the amplitude of the oscillating field
is large enough to produce transitions in the available
time.
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We then have

Pro. 1. Relation between the
s- and s'-axes.

(p) j) J,=mtslp, j) J, =pl) = x)'»(O, y,o)„)

(y, j, J,.=ttkly, j, J,=mk) = $&t&(0 —y 0)

(4o)

where the states
I y, j,tt) are quantized along the

s'-direction rather than the s-direction. The states
Ip,j») may be obtained from the states lp, j,m) by a
rotation of the coordinate system through an angle p.
This rotation is eGected by the irreducible representa-
tion of the rotation group corresponding to angular
momentum j.In what follows, we shall use the notation
of signer' for these operators.

The eigenfunctions of X' are given by

I&,&,f„=,a)=g Xt (O, y,O)„„l&,&, j,=m~). (39)

The transition probabilities may now be found imme-
diately:

&Ll~ j ) 3=42. "I&"'(O,yo).-l'

X I
&"'(O,y,o). I'»n'o(t —t ')8 (41)

B. Proof of Equivalence with the Result of
Bloch and Rabi

In the paper of Bloch and Rabi, " the probability of a
transition from

I p, j,m) to
I y, j,m ) is given by I

T
where (see Appendix of this pa, per)

T„=T„„=n &&' (R) „,
(c os( 8/2) +i cosy sin(8/2)

nti& (R)=!
i siny sin(8/2)

i siny sin(8/2)

cos(8/2) —i cosq sin(8/2) &

(42)

The same probability is given in the present theory by I(&,j,m I
(t=r)) I', where

I
(t=o))= Ip, j,m). Using Kq.

(20), we get Lsee Eq. (113))

(P jm'I(t=r))=Re(P jm'lexPI —(s/&) j terhlPj») «PL (i/&)(E+tt&L(tt —to)'+~'j')r3(y j»ly jm)

where

=exp( —(i/k)/Eo+m'I'tto]r)Q„S&'&(O, y,o)„e '"eS&"(0, —y, 0) „
=exp( —(i/k)I Eo+m'Ate]r)P X) "(O,y,o) S"'(0, —y, —8)

=exp( —(ilts) LEo+mVuo] r) 5)"' (&)

n&l&(S) = nt'&(0, —q, —8) X&&"(O, q,o)

(cos(q/2)e 'o" —sin(y/2)e'") ( cos(y/2) sin(y/2) )
&sin(y/2)e "t' cos(y/2)e"t' I' E —sin(y/2) cos(y/2) &

sin'(q/2) e""+cos'(q /2)e "" —sin(q/2) cos(y/2) (e"t' e "t'))—
& —sin(y/2) cos(y/2) (e"'t' —e "t') cos'(y/2)e""+sin'(y/2)e '"

(cos (8/2) i cos y s—in (8/2) i sin y s—in (8/2)
~ ~t' sinq sin(8/2) co—s(8/2)+i cosq sin(8/2) j

=LX)&:l(R)]—'=n' (R ').

(43)

Equation (42) was used to obtain the last line.
Then S=R ' and

l(~, j, ml (I= )) I'=
I
&"'(R-')- I'=

I
T- I', (45)

which proves that our result is the same as that of
Sloch and Rabi.

' E. Wigner, Grnppentheorie nnd ihre Anteendttng anf die
QNaete~zmechaeik der Atmospektree (Edwards Brothers, Inc. , Ann
Arbor, 1944), . Chap. 15. See especially Eq. (27), p. 180 which
corresponds to Eq. (113) here.

Wt (p,j,m) =Eo+ (gttoH, /I't )mI't

=Eo+mka.

"F.Bloch and I. I. Rabi (reference 3).

(46)

3. APPLICATION TO ANOMALOUS ZEEMAN SPLITTING
AND TO TRANSITIONS FOR WHICH (y',j') e(y,j)
In the special case which we considered in Sec. 2,

Wt(p, j,m) was given by
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(Wi —rahu Pin

W;+-,'A(u j

Then in the
I (p, j),nz& representation the diagonal ele-

ments of K' are

&(p,j), ml 3c'
I (y, j), nz&= wl(p j 1s) %15(p

(47)
=~p(»j)+~&l a(»j)

Lg=g(y, j); see reference 8$. At the frequency~= u(y, j),
all diagonal elements corresponding to (&,j) will be
equal. This frequency is the resonant frequency in the
case of a linear Zeeman eGect.

%e will deal in this section with the case which is,
in a sense, the opposite of the above. %e will make the
assumption that if co is chosen so that

&(~,i), ~l ~'1(»j), ~)
-&(~',j'), m'I x'I (~',j'), m'&, (48)

then at that frequency the difference between these
two diagonal elements and any others is large compared
to the off-diagonal elements of 3C'. In other words, we
assume that in terms of the diagonal elements of X' a
given level is degenerate with no more than one other
level at a given frequency.

A. Simyli6ed Treatment

Before entering into the actual calculations for this
case, we will attempt to show by a somewhat simplified
discussion of the problem at hand why the particular
method of attack used in the following sections was
chosen. Certain expressions will be written down here
without justification. The justification will appear in
the following sections.

Consider the simplest case to which the method can
be applied, that in which the interactions of two levels
m= ~—'„are considered. 3C' will then take the form

Wi(0,0)

FIG. 2. Diagonal matrix elements as a function of frequency
for a typical ordering of the energies 8'1(j,m). In this 6gure
W(j,m) is used as an abbreviation for

((j),ml &'1(j),m)= W&(j,m) —mbira.

where the resonant frequency, cop, is given by Scop= TV~
—W;. The corresponding eigenfunctions will have
components

be Gap
—

CO
-2

Ibnl v2 L(ap —a)'+4b'Inl')'

1 CO{) GO

W2 I (cop —~)'+4b'Inl sl"-

so that, according to Eq. (25), the probability of a
transition from one of the initial states

I s& or
I
—s) is

J'Ll p&~1=4I &s I+&I'I &s I

—) I'»n'L(1/»)(~+ —~-)rj
where b is proportional to the rf amplitude and e, which
in this case is most conveniently taken as ~, will in
further examples be taken proportional to the matrix
element of (grJr, +gpJs, +. +gsJs, ).

Since the secular equation for X' is quadratic, we
may solve it exactly, obtaining the eigenvalues

~,=K(W;—s&~)+(W &+'p&~)3

(ca3p pp) +4b lnl

&&sin'{-', L(coo—cu)'+4b'I I'j'r}

(52)

~-,'L(W;—W;—& )'+4b'&'I I'3-:
(5o)

=-,'(W;+W;)+-,'AL(ppp —co)'+4b'Inl']i

Now let us look at a more complicated case. If we
allow only one value of p but let j take the two values
1 and 0, X' wi11 be of the form

Wr(1, 1)—A(o

bkn(1, 0; 1,1)
0

.be(0,0; 1,1)

bhn(1, 1; 1,0)
Wr(1,0)

bh, n(1, —1;1,0)
0

0
bkn(1, 0; 1, —1)
Wr(1, —1)+A(a
Mn(0, 0; 1, —1)

bhn(1, 1;0,0)
0

be(1, —1;0,0)
Wg (0,0)

(53)

in the
I (p,j),m) representation. In Fig. 2, we have of Aor, for a typical set of values of Wr(1, 1), Wr(1,0),

plotted the diagonal matrix elements of &' as a function Wr(1, —1), and Wr(0,0). It is seen that there are five
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crossing points with frequencies given by

A(o, = Wg(0, 0)—Wg(1, —1),
Puut, = Wg (1,1)—Wy (1,0),

2A(v, = Wg(1, 1)—Wg(1, —1),
A(vg= Wg(1,0)—Wg(1, —1),
A(o, = Wg (1,1)—Wg (0,0).

(54)
with

Xo o Wg(0, 0),

Wg(1, —1)+A(v,

I&o, o&-l (i=o), o&,

l~~, -~&-l (i= 1), —1),

(55)

(56)

W~(1,1)—Ace is about equal to W~(1,0). We may there-
fore expect BC' to have two isolated roots

It will be noted that the f'requencies ~,, ~~, ~~, and ~,
are the frequencies we should expect for the "allowed"
transitions of this system. The frequency co, corresponds
to the "double-jump" transition between the levels

(1,1) and (1, —1), so called because the energy
W, (1,1)—W, (1, —1) is supplied by two equienergetic
quanta of energy Am, .

Let us now look at what happens in the frequency
range cv co~. In this range, the diagonal elements

W~(0,0) and W~(1, —1)+Aar are isolated from each
other and from the other two diagonal elements, but

and two almost degenerate roots

Wg(1, 1)—A(u~Wg (1,0),
with

(5&)

A ~j (1),1&+B~l (1),0). (58)

We would then expect to get a good approximation
to X~ and IX+) by writing a two-by-two matrix in
terms of

I (1),1) 'and
I (1),0), and including the effects

of the other levels only as a perturbation on these. This
argument suggests that a good approximation should
be given by replacing the Hamiltonian by

with

t'Wg(1, 1)+AW(1,1)—As) bAn(1, 1; 1,0)+AV )x'=
I

bAn(1, 0; 1,1)+XV W (1,0)+AW(1,0))

IbAn(1, 1; O,O) I IbAn(1, 1; O,O) I

AW(1, 1)=
fWg(1, 1)—Ace)—Wg(0, 0) A(co,—&vg)

IbAn(1, O;1, —1) I2

AW(1,0) =
Wg(1,0)—fW&(1, —1)+Ace]

lbA (1, o;1, —1)l

A (erg (ob)—
fbAn(1 1' 0 0))fbAn(0 0' 1 1)] fbAn(1 1; 1, 0)]

{fWg(1, 1)—Ace) —W&(0,0)}{fW&(1,1)—Aar) —fWg(1, —1)+Ace)}

fbAn(1, 1; 0,0)]fbAn(0, 0; 1, —1)]fbAn(1, —1; 1, 0)).

A((o, —(ug) 2A((v, a)b)—

(6o)

We may carry out the diagonalization of (59) as we We may consider the case of n ~, in the same way.
did that of (49), obtaining for the dominant terms of In, this case, the diagonal elements W~(1,1)—A&o and

nfl(1), 1) ) and nfl(1),0&~) Wi(1, —1)+Ace will be almost equal and there will be
two eigenstates which are approximated by linear com-
binations of l(1),1) and I(1), —1&. For this case we
write, as in Eqs. (59) through (62) above,

where

-Wg(1, 1)
+AW(1, 1)—A~

BC'=

Aa)*= Acog+AW(1, 1)—AW (1,0),

b*=2I bn(1, 1; 1,0)+ (1/A)avl.
(62)

and

sin'{-', f ((v*—(u)'+b~')lr}, (61)
(co*—(u)'+ b*'

(63)
Wg(1, —1)

+AW(1, —1)+A(v.

In the case shown in Fig. 2, we would expect this line ~fl (1)~1& ) &f1 (1)~ 1&~)

to be shifted toward lower frequencies since DW(1, 1)
and DW(1,0) are both positive, with AW(1, 1) having a sin2{ (2/2) f (~+ z)2+b+~]lr]} (64)
larger energy denominator than DW(1,0). ( 0 )2+Pe
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5(.[ )=Wl ),
we obtain

&o[5('Ia&&al &+&~[5('Ib&&bl &

(68)

+P„&a[sejm&(e[ )=W&a[ ), (69a)

&bl 5('I~&&ol )+&b[5('lb)&bl &

+&-&b[5('l~&&~l &=w(b[»

with
[br (1,1; 1,0) I I

ba (1,1;0,0) [

aW(1,1)= +
)b(GOb COg) l'b((u, —(o.)

[b)sn(1, —1; 1, 0) I'
EW(1, —1)=-

)'t((o, —og)
(65)

[ban(1, —1;0,0) ls

b, (~,—o.)
[bkn(1, 1; 1,0))[bhn(1, 0; 1, —1)]

AV=
5 (Mb (dq)

[bhn(1, 1;0,0))[b)'bn(0, 0; 1, —1)]
A(a).—a) )

and
2I)&v~=2)'bee, +hW (1,1)—t)W(1, —1),

2V=2 [(1/a) ~V[.

In order to justify the approach taken here, we shall
derive in the next section a perturbation method which
is based upon an expansion in terms of two nearly
degenerate levels.

B. Perturbation Theory"

Consider a situation in which two unperturbed levels

I a) and [b) are almost degenerate, but their unper-
turbed energies are quite diferent from those of any
other level. The two perturbed states corresponding to
[a) and [b) will then be approximated by a linear com-
bination of [a& and [b) We ther.efore write

I )= I ~&(a I )+ lb&&bj&+Z. l ~&(~l &, (67)

where the index e runs over states other than [a& and
[b). (The coefffcients &e[ ) will then be small. ) By
substituting (67) into the Schrodinger equation

If we are dealing with a 6nite number of levels we may
solve exactly for the coefficients A„(W) and 8 (W).
If we are dealing with an infinite number of levels, or
if the finite number is too large to make an exact solu-
tion convenient, we may expand A„and 8„in terms of
the off-diagonal part of 3C'. In any case, we may sub-
stitute Eq. (70) into Eq. (69a, h), thereby obtaining

p(a[5C[a&+ V..(W)
!

Vb, (W)

where

V.b(W)
!

(bl BC[b)+VM, (W))

I, (»)
«bl )&

(a[ X[N)A„(W)
V .(W) = V. (W) =Q- W—(~[x[~&

&~l

gael

I)B„(W)
V b(W) Vb (W) (&[ ~ I b&+P (72)- W-&N[5c[~}

(bl ac[~&B„(W)
Vbb(W) = Vbb(W) =Q

w (~I x—[~&

Equation (71) provides us with an iterative method
for determining the perturbed energies. When we insert
an approximate value of 8' into the left hand side of
(71) the problem reduces to that of diagonalizing a
two-by-two matrix. This yields us two eigenvalues, 8'~.
Now, if we put oee of these into the left hand side of
(71) we obtain two roots again, one of which corresponds
to the eigenvalue for which we are looking. By selecting
the proper root and continuing this process one may
obtain as good an approximation as one desires.

The expressions for W~, (a[&&, and (b [& & (with the
proper root selected) are

wg= l{[&o[5('[rb&+&b
I

5('I b&)

+[V. (W )+V (W )))
~-', {[5W(W,))'+4[ V+(W,) I'}' (73)

taking the form

(~l &=LW—(N[5CI~&) '

&&{A-(W)& I &+&-(W)(bl &). (70)

&~[5('-I~&&ol &+&~[ 5('-Ib&&bl &

+Z- &~l 5('I~'&&~'I &=W&~l & (69c)

In principle, Eq. (69c) determines the coeKcients
(e[ ) in terms of (a[ ), (b[ ), and W, the solution
"For related perturbation methods see J. H. Van Vleck, Phys.

Rev. 33, 467 (1929); O. M. Jordahl, Phys. Rev. 45, 87 (1934);
M. H. L. Pryce, Proc Phys. Soc. (.London) A63, 25 (1950);
O. M. Jordahl attributes his method to Kramers, Proc. Amsterdam
Acad. Sci. 35, 1272 (1932).

V.b(W+)
&a[a)=

[V~(W,)[ vr

5W(Wg)
X &~

{[bW(W,)) +4[ V.,(W,) [
):

bW(Wg)
&b[a&=~

W2 .. {[bW(W ))'+4[V (W )[')1

, (74)
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where

~w(w+) = [&~ I
&

I ~&+ v-(w+)]]

()W(wp) is given by

()W (Wp) = (tS —mb) Ib ((d b
—(p) +[V (G)p)

—Vbb (p)p) ]
(82)—[&f'IXlf&+Vbb(W+)], (75) where&ad, bisdefinedby

and A~ is a normalization' constant, which is deter-
mined by the equation

(m. m—b) hp)~= W(((b) —W).(f)). (83)

I &~l~&I'+
I &f I

~&l'+2-l(~l~&l'=1. (76)

Once Eq. (73) has been used to obtain an accurate
value of W~, we may use Eqs. (74) and (70), to get the
corresponding eigenstates,

I
&&.

C. Transition Probabilities Near a Resonance

The results of the preceding section should enable us,
in any particular case, to calculate the transition
probability to the desired accuracy. We shall now carry
this calculation through to a first approximation for the
states

I
(b&=

I b. j ) ~ & and
I f» =

I (yb jb) mb&.

Put K' in place of 3C in the equations of Sec. 3. B
and let 5'0 be defined by

We must bear in mind that 8'0 is a function of cu.

Nevertheless, it is clear from the form of Eq. (82) that
there is a frequency (p* p), b such that ()W(wp(p)*)) =0.
The frequency co~ is then the corrected resonant fre-
quency and, if we make the approximation that changes
in V„, Vbb, and V,b in the vicinity of the resonance may
be ignored, the line shape will be given by

P[I~& ]-P[I»
fzv+f I)v I 4f(1/@)v.b(wp(~*))

f

(m —ebb) (p)* p)) +Of (—1/0) v b(wp((p )) I

X sin'-,'{(nb, —.mb)'((p* —pp)'

+4I (1/Ib) V.b(wp(~')) I')'r (84)

bab

If we use Wp as a zeroth approximation to W~, Eqs. P[l(b)~] P[lb&~]
(73) and (74) now give (P,b*—) )'+b.bP

Xsin'{~
I ))b.—nab

I [(p.b*—p)'+ b.bP]*').), (85)w, =w, ~-', {pw(w,)]'+4I v.,(w,) I'}-:, (78)

Wp ———,'{[&(bl x'I(b&+&f I ac'lb&] In analogy with Torrey's Eq. (4),' we may, omitting
the factor IS+ I'IX I' 1, put this in the form+ V..Wp +Vbb Wp ). 77

V~(wp) )V~
&ol~)=

I
v.b(w.) I

~2

hw(W())
rC &~

{[l'tw(wp)]'+4l V b(W()) I')'

1
2

()W (Wp)
&bla&=+

{[()W(Wp)]'+4
I
V,b(Wp) I'}*'

(79)

and
),b*= (p*/2m

b b
=2

I
V.b I / ( I

'm. —(ebb
I h)

(86)

(87)

It may be shown that in the neighborhood of a
resonance

I $~ I'I E I'=1+0(b') and terms other than
(80) in the transition probability are of the order of f)'.

It may also be shown that both these corrections are
independent of frequency except for fourth-order terms.
Thus Eq. (84) should give a good approximation in all
cases in which the widths of "allowed" transitions are
small compared to their separations.

Then the term in the transition probability which is
large near the resonance u~b is given to this approxi-
mation by

4I &~ I+ & I'I &~ I

—
&

I' »n'(1/») (W+ —W-) ~

4I v.b(wp) I'—
I &+ I 'I &- I'

[()W(wp)]'+4
I
V,b(Wp) I

'

)&sin'(1/2k) {pw(wp)]'+4l Vgb(wp) I ) *T. (80)

D. Ajpyroximate Values of b„b and. v b*

In Sec. 3. 8 we merely remarked that Eq. (69c)
could be solved for the coefficients &e I ) but we did
not carry out that solution. In this section we shall
obtain the solution to the lowest order in b (the measure
of the rf amplitude) and use that solution to get ap-
proximate values for the constants b,b and v b* of Eq.
(85).

Before carrying this out it is convenient to specify
the states

I e&, I)b'), etc. , by

Since

(al sc'la&=w, (~.,j.,~.)—~J'~—=w, (a) —mt~,
(81)

&f'I ~'I f &= W~(» jb ~b) —~b&~ —=W~(f) —~b&~.

fe&=
I (y,j),nz),

In' &=
I
(p', j'),m'),

l@(b)&—
I

(~(b) j(b)) ~(b)&

(88)
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in analogy with the notation for Ici& and Ib). We will We thus note that
then define such expressions as co, co, and Wi(e), as
we did similar expressions in Eqs. (31) and (33).

Now note that

O(b') if m=m,
A„(W) =

O(b") if
I
m —m, I

=k/0,

so that

K'= (Xi—coJ.)+ (&tip p/h) with similar relations for B„(w).
X LgiJi +gp Jp +. . .+gb J'b ] (13) We shall approximate A „(W) and B„(W) by their

lowest order terms:

where

(ej X je&=W, (e)-mh~,

(ej X,'Ie'&=bhn(e; e') for e'We,
(90)

(e I
X'

I e& =Wi(yj, m) m—hco =W—i(e) m—hco,

(ej X'je'&=(ej (ppHp/h)

Xj g,Ji,+ . +g Jbb] I e) for e'Ne,

where (el (ap&p/h)LgiJi, + ' ' '+gbJb Ie') is zero unless ~ (W) =
m= m'~1. Then by suitable definitions of b and n (e; e')
we have

.bhn(e; ci) for jm.—m. j
=1

]m' —~n. ] =1

Lbh (e;e')]Lba (e';n)j

w —(e'I ae'I e')

for m=m, (95a)

bhn(e; e')
bh A (W)

m'=m. ~(b —i& w —(e'I Bc'je'&

for m=m, ak, k) j.

'bhn(e; b) for Im —mbj =1
n(e; e') =0, unless m=m'~1. (91)

Ke shall adopt the convention that b is proportional to
the rf amplitude and independent of the states involved,
while n(e; e') depends only on the states.

Equation (69c) now becomes

jW (ej 3—.'Ie&g&ej )=bhn(e;~)&aj )

+bhn(e; b)(bj )+ P bhn(e; e')(e'I ), (92)

8 (W)=I

Lbhn(e; e') jLbhn(e', b)j
bh

W —(e'I se'Ie')

for 7s=ssy
(95h)

bhn(e; e')
bh (W).

m'=m4~y. —i& W—(e'I &'Ie')

for m=es~&k, k)1
where the summation is over states other than

I
cb& and The lowest order terms in V (W), Vbb(W), and V', b(W)

Ib). Then, due to the form of Eq. (70), we obtain are then (see Eq. (72)):

bhn(e; e')
A (W)=bhn(e; ci)+ Q A„(w),.* =-~i w —&e'I ~'je')

(93)
bhn(e; e')

8 (W)=bhn(e; b)+ Q B„.(W).
m'=m~i W —(e'I X'I e')

bhn(ci; b)+O(b') for
I
m. —mb I

=1

I
n(e', ci) I

'
V„(W)=b'h' Q +O(b4), (96a)i-'--

i
=' W—&e'I ~'I e')

jn(e'; b) I'
Vbb(W) =b'h' P +O(b4), (96h)

i~ -~
t
=i W (e'I scj—e'&

V,b(W) = ~ b"h"
m'=m. +i

m mn&2

m(7-»=m ~(k —1) for m~ ——m2&k, k) 1

now obtain

co*=co.bW (1/hk) ( V..(Wp (co*))—Vbb(Wp(co*) )}

Then 8W(W) becomes

bw(w) = &a I
x'I a&—

&b I
sc'I b)+ v..(w) —v„(w)

n(cb e')n(e' e") n(e'" '&; b)
+O (bb+2)

Lw —(e'I &'Ie'&HEW —&e"Iw'Ie"&3 Lw —&e' "I&'Ie'"-'»]
'

(96c)

=LWi(ci) —m.hco7 —LWi(b) —mbficoj
(97)

+V,.(W) —Vbb(W)

=co,b+0 (b')

=co,bW (1/hk) ( V..(Wp(co.b))
(98)

= (m. mb) h (co,b —co)+ V..(W—) Vbb(W). —

Since co* is defined as the root of |Iw(wp(co*)) =0, we
where

—Vbb(wp(co. b))) +O(b'),

&k= mg —m„k)0. (99)



HA ROL 0 SALQ1EN

This leads to

Wo(u&*) =-',
i (a i

X'i a)+(bi K'i b))
+2 C.l -(W~(~*))+ l'»(Wo(~*) )]

= —,'{tWg(a) —m.k(o*)
+i Wg(b) —mph')*))+0(b')

(100)
=-', {i W&(a) —m, kM. g)

+LW~ (b) —mph~, q]) +0(b')=Wg(a) m, f—uu. g+0(b')

= Wg(b) —mt, ha&.b+0(b').

(g*=(o~g ~ (b'/k)

Then we have

Wp(o)*) —(e'i X'in')

Finally, we obtain

in(n'; b) i'
+0(b')

= LWg(a) —m.k(v. g)—LWg(n') —mVi(o*)+0(b')

= (m. m—')k(cv.„(u—.g)+0(b')

= (mg —m') k(cot,„—a&.b)+0(b').

m' =ma 1 an' ap m =ma+~ Grab GdanI m' =mb —1

Coign'

~a& m' =mb+1 +ah Mgn'

(102)

'Mio. (a; b)+0(b') for k= 1

V.t,(WO (&a*))=.b~A
m' =ma&1

m ma&2

m(k»=m ~|,'4 —1)

n(a n')n(n'n") n(n&" " b)
-+0(b'+'). (103)

(+) (~ ~
—»- ) (+)2(~.~ —4~--) . (~)(k—1)(~.~—~~. '- )

for k)l
The above results immediately yield

v,g*——v„gw(1/k) (b/2m)'
o, n';a

-+
Pg~' V~& m =ma+1

cE'6 iC I~(e'; b) I'

Prig
—V~~~ m' =mb —1 Pg~~ —Pzg

in(n'; b) i'
+O(b4), (104)

m' =mb+1 p~g —pg„i

r2(b/27r)n(a;b)+0(b2) for k= 1
x

(2/k ) (b/2~)"
m =ma+1

m =ma &2

m&k-» =m. ~(P -g)

n(a; n')n(n', e") . n(n&' '&; b)
+0(b'+" for k) 1 (10$)

P p Pp I P y~ pg rl ~ ~ 'p
y
—p (k—1)

where
v.g =—((u.g/2~), etc.

The result of averaging Eq. (25) over the velocity dis-
(106) tribution is then

We have thus obtained values of the constants b, b pf i (~=0))~)
and v,q* which, when substituted into Eq. (84), will
give us the approximate line shape. It should be noted
that these results are in essential agreement with those
of Sec. 3. A.

X ~ l&(~=0) I»I'l((~=0) Il')I'
4. INTEGRATION OVER THE VELOCITY

MSTRIBUTION

All the results obtained up to this point refer to an
atom or molecule which is in the Geld for a given length
of time, v. In a molecular beams experiment this time
is the transit time of a particle through the rf Geld and
is therefore dependent on the particle velocity.

For a beam of particles which have escaped through
a hole in an oven, the velocity distribution is given by

Xsin'L(1/2h) (X—X')I/v]dv (108)

=8 2 l&(&=0) I»I'l((&=0) Il')I'

x' exp( —x') sin'L(1/2k) (X—X')
Jo

Xl.(m/2k T)*/x)dx,

dn ~ 9 exp( mv'/2kT)—dn (10'/) where I. is the distance the particle travels in the rf
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field. If we define the integral E(p) by

we have

K(P) = x' exp( —x') sin'(P/2x)dx,
J()

(109)

P[l(1=0)&~1=8 P l&(1=0) IZ&lsl&(1=0) I) ')I'
X&) '

XE[(1/5) ()t—)t') (m/2kT) 'L]. (110)

We thus see that whenever our initial assumptions
about homogeneity are valid the average over the
velocity distribution is given by the function E(P). We
have used the methods suggested by Torrey' to cal-
culate this integral for the full range of p, and the
results will be published in a subsequent paper.

5. CONCLUSIONS

We have shown that when both the constant and the
oscillating (rotating) magnetic fields are homogeneous,
the solution may be reduced to the solution of an eigen-
value problem. This problem has been solved both for
the case of a normal Zeeman eGect and for the case in
which transitions from a given state are isolated from
each other.

For a normal Zeeman effect, the result is in agree-
ment with previously known solutions of the problem.
Our result [Eq. (41)]has the advantage that it is in a

form in which the integral over the velocity distribution
may immediately be obtained in terms of a single (soon
to be tabulated) function.

In the second case, an approximate solution has
been found for the line shape of a resonance due to a
multiple-quantum transition. This result, given in Eq.
(85), is in the same form as the "Rabi flopping formula"
for allowed transition, except for a factor ~m m—

b~ in
the argument of the sin'. Another way of putting this
is to say that the transit time, v, in the Rabi formula
is replaced by ~m, m—

b~ r We .must therefore replace
the criterion

DvTp~ j

for the natural width of the line, by

(112)

where ~0 is the transit time for the most probable
velocity in the oven. The consequent narrowing of
"double-Qop" and "triple-Rop" lines has been observed
by Kusch. "

The detailed comparison of the theory with experi-
ment has been deferred to a future paper.

The author wishes to thank Professor P. Kusch for
suggesting the problem and for his constant cooperation
in the course of the work. He is also indebted to
Professor H. M. Foley and Professor N. M. Kroll for
many helpful discussions.

APPENDIX. RELATIONSHIP OF THE WIGNER COEFFICIENTS TO THE T OF BLOCH AND RABI

Wigner's formula for the coe%cients X)&&'& (n,p,p)u u is (Kq. 27, reference 9)

so that X)&" is given by
X(e»'~ cos»+u u' sx(p/2) sin»+u' u(p/2)ei»' (113)

( e~~' cos(p/2)e'r~' e' "sin(p/2)e 'r~'
p

~(x) (cr p p) =
~

& —e ' "sin(P/2)e'v" e '~" cos(P/2)e '~")

I.et us denote the components of this matrix by the letters A, B, C, and D. That is,

(114)

pA By
n'i&(R) =

i D)
(115)

where the coefficients must satisfy the conditions

We may then see by direct comparison that

(116)

(g i+u xgx+u upxD~ u' x)— — —[(i+A) '(j I )!(j+I') (j I ')—!]'—
X)"&(R)„„=

(j+~—x)!(x+~'—~) t(j —~' —x)!
(117)

'~ P. Kusch, Phys. Rev. 95, 1022 (1954). Multiple quantum transitions have also been reported in a magnetic resonance experiment
by Brossel, Cagnac, and Kastler D. phys. radium 15, 6 (1954)g and in electric quadrupole resonance by V. Hughes and L. Grabner
LPhys. Rev. 79, 829 (1950)g.
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Bloch and Rabi (Eq. 30, reference 3) give

Tmm'

Min [(j+~) I (j —~) I (j +~~) I (j —~~) l]k
(g rn+m'+p J3j m' p—gj —m pa—p—)

( o ) (m+m'+p)! (j—m' —p)!(j—m —p)!p!&-M ( —(m+m) )

(118)

where A, 8, C, and D are the corresponding coefFicients for j= —,. If we change the summation index to p =j—m —p
we get

Min ~+ [(j+~) l(j-~)!(j+~ ) 1(j-~ ) I]k
(gt+m' xg—y+m m'g—xDj m —x)—

o
I

(j+m' —x)!(y+m —m')!y!(j —m —p)!

where (Bloch and Rabi, reference 3, page 243)

CO COO

cos-,'Xt —i sin-,'Xt
gII

s sin-,-'l.t
Bq

n(:&(z)=
~

&C D) gH
sin~~gt

CO Mo

cos-,'At+i sin-,'A. t

(120)

If we make the substitutions

gH= ggpoHO/5= b, ~0=- a, X =—[(cv—~0)'+ (gH)']*= [(u—~)'+b']*

for the constants in terms of those in Sec. 2, we obtain

(121)

(cos(0/2)+i cosy sin(0/2)
~(k) (g) —

~ i sing sin(0/2)

Since B=C, the T ~ are symmetric and

i sin p sin(0/2)

cos(0/2) —i cosy sin(0/2) )
(122)

, = T, = ~(i)(g) (123)


