GRAIN BOUNDARIES IN Au-DOPED Ge

As might be expected, the temperature dependence
of the mobility of the carriers in the grain-boundary
space-charge sheath is such as to indicate that the
principle scattering mechanism is impurity or defect
scattering However, the marked difference between the
mobilities (Fig. 9) of samples with different orientation
of the grain boundary is not understood.
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Shockley has derived the expression E.= (1.51)C;/u for the critical electric field strength E. at which the
current-voltage relation in a semiconductor departs from Ohm’s law. Here C; is the velocity of longitudinal
phonons and u the conductivity mobility of the carrier. Experimental values of E, for Ge and Si are from two
to four times larger than those predicted by this formula. We therefore have extended the theory to take
account ellipsoidal energy surfaces in the Brillouin Zone and scattering by shear modes of vibration. The
effect of the more general effective mass tensor is to raise the theoretical value of E. by a factor of about 2 for
n-type Ge and 1.3 for #-type Si, whereas shear mode scattering lowers E, by a factor that is between 1 and the
value of the ratio of the velocity of transverse modes to that of longitudinal modes. Moreover, E. should vary
with the direction of the current. The present study still fails to close the gap between theory and experiment :
the remaining discrepancy is possibly the result of neglecting intervalley scattering.

INTRODUCTION AND SUMMARY

HE deviation from Ohm’s law in semiconductors
such as Ge and Si in strong electric fields has been
studied both theoretically’~” and experimentally®® by
many investigators. This problem has been called the
“hot-electron” problem by Shockley because the aver-
age kinetic energy of the electrons in strong fields be-
comes larger than the usual thermal energy, so that the
““electron temperature” becomes larger than the lattice
temperature. There are, however, quantitative dis-
crepancies between theory and experiment in some
respects, such as in the value of the critical field E,
where the deviation from Ohm’s law occurs. The ex-
perimental values in Ge and Si are about twice to four
times larger than those obtained from the formula

Es=1.51C/p. 1)

The superscript s on E, indicates that this value is ob-
tained from the scalar effective mass theories, C; is the
longitudinal velocity of the phonons, and u is the weak-
field conductivity mobility of electrons.

Previous calculations have assumed spherical energy
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surfaces in the Brillouin zone. It is now believed that for
n-type Ge and Si one must use spheroidal surfaces in
discussing the electrical properties. Further, as has been
pointed out by Adams and by Herring,'* shear waves
are as important as pure compressional waves in the
lattice scattering of electrons in these crystals. There-
fore we have attempted to solve the hot-electron
problem with the spheroidal model, including the effect
of shear waves. A number of drastic approximations are
made in solving the Bloch equation, and we finally get
the expression for the critical field in the following form:

E,=ASE, 2)

where the factor 4 is an anisotropy factor and the other
factor S results from the effect of the shear waves. When
we neglect the effect of the latter, .S equals 1, and when
the mass component ratio r=m,/m, is equal to 1, 4
becomes independent of the direction of the current
vector and is also 1. The larger the departure of » from 1,
the larger is the value of 4. The factor S is a complicated
function of the mass ratio 7, the ratios of the charac-
teristic coefficients of the deformation potentials of shear
waves and of pure compressional waves, and the ratio
C=C,/C; of the transverse and longitudinal velocities
of the acoustical modes of lattice vibration. However,
the value of S is almost always between C and 1. This
fact may be qualitatively understood, because both
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F16. 1. S versus 6 for r=0.04, 1 and 9.

transverse and longitudinal modes of vibration con-
tribute to shear-wave scattering, so that the effective
average velocity for lattice scattering is between C; and
C:. We already found scalar conductivity for cubic
crystals in weak electric fields without magnetic fields
even in the spheroidal approximation,’? because of the
cubically symmetric distribution of spheroids. In the
hot-electron problem, on the contrary, anisotropic
effects do not vanish with the same spheroidal model.
Thus the factor 4 depends not only upon the model but
also upon the direction of the current vector. In addi-
tion, when the current is not parallel to the symmetry
axes of the cubic crystal such as the (100), (110), and
(111) axes, there appears a small induced transverse
field. Although the angle e between the current and field
vectors is very small, about a few degrees, its maximum
value is about one hundred times larger than the
mosaic angle in the case of Ge. There have been no
experimental observations of the transverse voltage and
the directional dependence of the critical field arising
from the anisotropy of the spheroids. However, we
believe that this effect should be detectable.

We have neglected intervalley scattering and scat-
tering due to impurities and to optical modes of vibra-
tion and made many approximations and simplifications
in this calculation. Therefore it is not surprising that our
formulas do not give quantitative agreement with the
experimental results. However, we do not expect that
the qualitative features of our results could be changed
in a more rigorous theory. The factor 4 makes the gap
between theory and experiment narrower than before,
but the factor .S makes it broader. If we could include
the effect of intervalley scattering, we would get another
modulation factor 7 in the Eq. (2). This factor is
probably greater than unity because the higher-energy
electrons should lose energy through the intervalley
scattering.

OUTLINE OF CALCULATION AND RESULT

Now we briefly outline the calculation and the results
upon which the above discussion is based.

Including the effect of the shear waves, the deforma-
tion potential U for a spheroid becomes, as pointed out

2 M. Shibuya, Phys. Rev. 95, 1385 (1954).
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by Herring,!t
U=E{(140)en1+ et €33} 3)

where €13, €22, and ess are the diagonal components of the
strain tensor along the principal axes of the spheroid.
The subscript 1 is for the rotational axis, and 2 and 3 are
for the other principal axes. Esdey; is the shear wave
component of the deformation potential. Owing to this
component, we must modify the scattering matrix
element for the longitudinal wave by a factor

16 cos¥, “)

and also introduce a new matrix element for the
transverse wave which can be obtained by multiplying

®)
into the usual longitudinal matrix element of pure
dilation interaction. Of course we must not forget to
replace the longitudinal velocity C; by the transverse
velocity C; in the expression of the latter matrix
element. Here 6 is the angle between the wave vector of
the phonon and the rotational axis of the spheroid.

Using these matrix elements, we solve the Bloch
equation by the same procedure as that used by
Yamashita and Watanabe” or Davidow.* Three follow-
ing assumptions (a), (b), and (c) are used:

(a') f(K7F;m) = fU (W7F3m>+G(W5F> m) : VkI/V: (6)

FoWhv) = fo(W)=hvd fo/ AW
+3 ()’ d fo/aW?,

6 cosf sinf

(b) ™

GWxhr)=G(W),

(©) kT, ®

where kv is the phonon energy. In Eq. (6) we assume
that fo and G are functions of the wave vector K only
through energy. Unfortunately this assumption leads to
different expressions for the collision term along the
three principal axes of the spheroid. Instead of doing a
more elaborate calculation taking into account this
anisotropy in the scattering, we shall simply use the
average of these three collision terms. Also in the
calculation of the drift term we use the approximation

w. )

Finally we get an expression for the current density in
a strong field of electrons whose energy surfaces is a
spheroid characterized by the mass tensor 9.
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HOT ELECTRON PROBLEM IN SEMICONDUCTORS

Here p is the weak field conductivity mobility defined by

2(2m)eh*MC 2 (Trace‘m“) 1)
M= )
3EA(RT)H/A 3 (142864 ¢8?)
and p is defined by
3t/ n )2(1+266+652)( 3 )2
P= 16 \C; 1+2a6+ad?/ \TraceNt?
3
X( F.arl.F. (12)
TracedT

Here A is the determinant of the mass tensor and the
three constants a, b, and ¢ are functions of 7 and C given
by

a=1/(2r+1), (13)
=1(2(\/r—i—3)J 27% Inr (3r—1)] (14)
A3/t (=1 (—12)
1-0C) 2
—C S
=Gt [(\/7’-!-1)4
L(21'2-{—51'—1) 6r21nr]' (15)
(r—1%*  (r—1)*

In order to discuss the hot-electron problem in actual
crystals such as Ge and Si, we must consider the several
spheroids in the Brillouin zone and sum up each current
density (10) of these spheroids. Three special cases are
considered : Case (4): 6 (or 3) spheroids along the cubic
axes, Case (B): 12 spheroids along the face-diagonal
axes, Case (C): 8 (or 4) spheroids along the body-
diagonal axes.
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F16. 2. A and € versus 0 in Case (C) with »=0.06. Here e=0—y;
6 and y are the polar angles with respect to the Z-axis of current
and field vectors respectively. For full curves these vectors are
lying in the X =Y plane and for broken curves they are lying in
the X =0 plane.
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The total current density Jr is given in each case by

Neum 3 1=
r= ( )— > pitn-F, (16)
25/47(3/4) \ TraceNt 1/ n =1

where IV is the total carrier density and # is the number
of spheroids. Here p; is a function of the electric field
vector and of the direction of the rotational axis of the
ith spheroid. Two factors 4 and S already introduced in
Eq. (2) are derived from Eq. (16):

1+2a6+ad®)?
=lh——} W)
14266+ c6?
3 2r--1\ }
A=Ay ( ) . (18)
(r+2)\ 3r

Here A1 is dependent not only upon 7 but also upon both
the spheroid arrangement and the direction of the
current vector. In Table I, expressions for 4/4; are
listed for the cases in which the current vector is
directed along three symmetry axes of the cubic crystal.
In Fig. 1, three S curves are plotted as a function of & for
r=0.04, 1 and 9, where we use 0.431 as the value of C.
The anisotropy factor A and the deviation angle e
between the current and field vectors are the measures
of the anisotropy in the hot-electron problem. They are
plotted as functions of the direction of the current
vector in Figs. 2 and 3, for n-type Ge and Si, respect-
ively. In Fig. 2 we use the arrangement (C) with r=0.2.
Two special cases are considered in these figures: For
broken curves we let the current vector lie in the X =0
plane; the field vector then makes an angle e with the
current vector and lies in the same plane. For full
curves both current and field vectors lie in the X=Y1
plane.
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