
ABSORPTION IN SINGLE —CRYSTAL Ge AND Si ii55

cient region it is possible to get an excellent superposi-
tion of the curves for the two temperatures by a single
horizontal plus vertical shift. The matching process,
which again appears unique, consists of a horizontal
shift of 0.10 ev and a vertical shift factor of 1.7 (i.e.,
multiplying 77'K data by 1.7). This gave a superposi-
tion of curves from 5X10' to 0.5 cm ' (lower limit
of data). The horizontal shift gives a temperature coefli-
cient of band gap of —4.5X10 ' ev/'K. The vertical
shift is again of the order of magnitude predicted by
theory.
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Note added en proof Since.—the preparation of this manuscript,
MacFarlane and Roberts [Phys. Rev. 97, 1714 (1955); 98, 1865

(1955)j have presented data for germanium and silicon in the
low-absorption coefficient range (i.e., a less than 100 cm ').
Their data diBer in detail from those presented here. The latter
are, however, in very good agreement in the overlapping range
with data previously presented. ' '

MacFarlane and Roberts analyze their data in terms of the
indirect transition model of Hall, et al. ,

' taking the phonon con-

tribution explicitly into account. This they do by plotting the
square root of the absorption coefIicient as a function of photon

energy and decomposing the resultant curve into two straight line

sections. The section at low energies is ascribed to a process in

which a phonon is absorbed, the section at higher energies to one
in which a phonon is emitted. From their data they estimate that
the phonon required is characterized by a temperature of 260'K
for Ge and 600'K for Si.

Our data do not show as obvious a resolution into two such

linear sections when plotted after the manner of MacFarlane and

Roberts. An analysis of our data in terms of vertical and hori-

zontal shifts with temperature, as described in the body of our

paper, would suggest phonons characterized by temperatures of
~300'K for Ge and 500'K for Si. However, as Brooks has

pointed out to us, there is a temperature dependence in the term

(&oo—&c&»») ' (see reference 7 for de6nitions) which appears
in the theoretical expression for the absorption coefGcient. This
dependence is comparable to the temperature dependence ex-

plicitly expressed by the phonon population. Consequently, any
analysis based solely on a phonon population effect is probably
not too meaningful.
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The transmission coefIicient for the mirror-image barrier at a metal surface is applied to the case of
photoelectric emission. The distribution over which the coefFicient is averaged is that given by Fowler for
energies normal to the emitter surface, and is altered by the Schottky barrier lowering. The average differs
from unity by an amount the major part of which is a periodic function of the accelerating field, giving a
periodic deviation from the photoelectric Schottky eGect which diRers from the thermionic deviation only
in amplitude. A reGnement in the computation of the unaveraged periodic transmission coefFicient brings
the theory for thermionic deviations into agreement with that of Miller and Good. The improved form of
the thermionic deviation is applied to experimental data to evaluate the complex reflection coefFicient p
characterizing the potential form in the immediate vicinity oi the surface. The values oi ~ts~ so obtained
for the highly refractory metals are of the order of 0.4, as compared with 0.2 predicted on the basis of the
box model.

I. INTRODUCTION

~'LECTRONS emitted through a metallic surface
& into an accelerating field undergo reQection at the.surface itself and at the maximum of the mirror-image

barrier. The interference resulting from this double
reQection manifests itself in periodic deviations from
the Schottky effect. ' In a previous publication, ' there
was formulated a transmission coefficient characteristic
of the metallic barrier shape and suitable for the
discussion of any emission process involving electrons

*This research was sponsored by the U. S. Atomic Energy
Commission.

1 E. Guth and C. J. Mullin, Phys. Rev. 59, 575 (1941); 59,
86'7 (1941).

~ Juenker, Colladay, and Coomes, Phvs. Rev. 90, 772 (1953).

of low average escape energies. A particular application
was made to the case of thermionic emission. In the
present work, the parallel case of photoelectric emission
will be considered. In the early stages of this work, it
was found that the periodic part of the transmission
coeS.cient could be expressed in better form. ' The only
effect of this refinement is to increase the theoretical
amplitude of the periodic Schottky deviation; the basic
conclusions found previously' remain unchanged. The
revised transmission coefficient will be described here,
and its eGects on the interpretation of thermionic data
will be discussed before applying it to the formulation
of the photoelectric theory.

'The author is indebted to Dr. Conyers Herring for pointing
out the suitable process in a private communication.
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FIG. 1. Descriptive diagram of electronic potential energy vs
distance from the metal surface. An electron escaping with excess
energy e passes from a nonreAecting region A, through a rejecting
region S at the surface, into the mirror-image region B. Within
8 is a region B~, including the barrier maximum at x0, which is
capable of reflecting electrons having low energy e. In region B~,
between x((') and xi —(), the mirror-image potential may be
approximated as a parabola V~, shown as a dashed curve. For
the box model, described by the dashed curve in region S, Vg
and Vz are joined in a 6eld discontinuity at x1.

II. REVISED TRANSMISSION COEFFICIENT

For a system of two plane parallel reRectors, the
electron transmission coeKcient for normal incidence
may be written in terms of complex wave-reRection
coefficients characteristic of the reRectors. ' Letting
these be p and X, and assuming f)if'((1, the trans-
mission coefficient has the form

D=1—
f ()(+p)/(1+)jp*) f' De+Dr+De, (1a)

where

Djj ——1—f)( f' (1b)

Di ———fja f'L(1—
fP f')' —2 f)(f'(1—fX f') cos2jr7, (1c)

D =2fs
f f)(f(1—f)(f') cos~, (1d)

region, and in region A, in the metal s interior, one can
assume a plane wave function to describe the electron.
Separating A and 8 lies the reQecting region 5 brought
about by the surface field.

The complex wave-reaction coeKcients for the
regions 5 and B~ have been evaluated' and represented
by the symbols p and X, respectively. For electrons
incident. on the barrier from region A one can arbitrarily
assign to p and P the following forms, which will prove
convenient in subsequent manipulations:

fp f
=cosh,

argy = ir+P —&,

(3a)

(3b)

(4)

arg)(= arg)j. p+ l
pr+jij' —2A —2

KB=
f e+ VB(xp) VB(x)7

= Le+ (xp —x)'/(2xpPx) 7&

= L4Pe+&'(1 P'slxp) '7'—/L&P7' (5a)

where I(.~ is the wave number of an electron moving in
the potential given in (2). The quantities j)), (jj, and 6
depend on the barrier shape in region S. In (4), the
quantity Xp is the reRection coeKcient to be attributed
to the region B~ considered as an isolated reRector.
Thus argXp represents the phase change suffered by an
electron wave reRected in 8~. The integral term in

(4b) corresponds to the phase accumulation of such a
wave proceeding from x2 to its reRection in B~ and
returning, and the quantity (w+j))' —2l) may be inter-
preted as the phase change incurred in two opposite
transits of region. S. Then the quantity o in (le)
describes the interference to the left of region S between
a wave reRected in 5 and one reRected in B~.

The evaluation of )(p proceeds as follows: from (2),

jr = argX —argon+ pr. (1e) where

Such a doubly reRecting system is presented by the
metallic surface barrier, shown in Fig. I. In the region
8, beyond some distance x2 outside the surface, an
electron Inoves in a potential composed of the eGects
of its mirror image and the applied field, as given by

VB= —(2x) ' —x(2xp') —', (2)

where distances are in units of the first Bohr radius
(ap ——Ij"/me' =0.529 A) and VB is in units of the hydrogen
ionization potential (8'B——rBe'/2A'= 13.58 ev). The
field-dependence of V~ is embodied in the position xp

of the barrier maximum, given by xp=3.587)&10'E &

for the field E in v-cm '. In the vicinity of xp, an
electron having a low escape energy e has some proba-
bility of being reRected, in the case of positive e, or
transmitted, for negative c. This region is designated
Bar in Fig. 1, and is bounded at x(f) and x(—f).
Between x& and x(|) lies a comparatively nonreflecting

and
gp X

P = (xp'/2) &.

If one assumes the existence of a position x(t) where

s=(, such that
f 4Pe

f
((f ((xp /P

then one can consider the potential in region B~ to be.
parabolic, with the corresponding wave function' (for
a pure outgoing wave as x—+~)

0B "s '*L(2x)'/I'(l —ipe)7

&&expL —prP e/4 —i (s'/4+Pe lns —pr/8) 7
+s & expL —3irPe/4+i(s'/4+Pe lns —3m/8) 7,

while a WEB wave function satisfies (5a) for xp(x( (|.):
(. ~, (

QB=b&KB 'expl i "dx I+bpKB '*e"pl —i jj" KBdx I

r
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where C= (yB+2 ln2) = 1.96, yE being Euler's con-
stant. Using (3b), (4b), and (6) in (1e), one has

o = (C+lnl. 2)P.+P/2+~/2 —a
p

&(L')

+4' —4+2
x2

~Bdx. (7a)

Now, throughout the integration interval of the last
term of (7a), the condition s'&~12))I4peI holds, so that
~& may be expanded about &=0. Neglecting all but the
first two terms, it becomes

KB=KP+ 6/(2KO) 1

where ~o= 0(x) =xB(&=0). Then, for x2&&xo,

p
&(g)

2 ~Bdx=y —(8*2)l—p/2

The joining of QB to fB at x(l ) gives'

Xp ——b2/bg

= (1+e' o') *
expi (C+inl')Pe

*(g)

+i2/2+2 ~ ~Bdx 7r/2— , (6)

P,=P.'=2xgag W (10a)

A, =cot 'Iag'/4~PI~cot '(W, '/4), (10b)

where a~
——~B(x~) W, ' and ~~' ——(daB/dx)*~~ —W, '.

Thus, using (3a) and (9c), and replacing x2 by x~,

I p I,= cosA, W, '*(16+W,) *', (11a)

8,=6,+ (8xg)'*

=cot '(W,&/4)+(W, &/4) '. (11b)

value of g, in (9d), takes on values between 4.0 and 2.5
for fields ranging from 10 to 2000 kv-cm '. It is pre-
ferable to the earlier form since its derivation is consist-
ent with the other approximational methods employed
in the evaluation of X.

For the sake of comparison, one can evaluate
I p I

and 6 for the special case of the box model. For this
example, the potential in region S takes on the partic-
ular shape shown by the dashed curve in Fig. 1. The
mirror-image form is assumed valid beyond the point
x~ where it crosses the average interior potential
V~= —W, . For this case, the components of p„ in (3),
can be evaluated by joining at x& a plane wave in
region 3 to a WEB wave in region B. This procedure
gives

where

—(4+in'' —lny —ln12)Pc, (7b) III. THERMIONIC SCHOTTKY DEVIATION

y =4(2xp) '/3 =357.1E: (8)

o o ——(y+m/2) —b,

b =a+ (8*,)-'*+ (y —@'),

g =C—4+ln12+ lny.

(9b)

(9c)

(9d)

The phase angle 8, which is taken as characteristic
of region S, has been changed only in formulation from
the value given in reference 2. The explicit dependence
on the position x2 has been included to point out that
the surface reflecting region under investigation must
take in all of the unknown territory between the limits
of applicability of the constant interior potential and
mirror-image law. However, the major contribution to
the reflection cannot be made very far outside the
surface, since it is found experimentally that 8 is not a
function of applied field. The origin of the components
of 5 is given in (3) and (4).

The value of g given in (9d) differs substantially
from that given in Eq. (12c) of reference 2. The latter
was found by numerical solution of the phase integral

XP +xp

KBdx=
J

Korfx+f(Q'),
Z2 $2

as a result of which g was considered a constant of the
order of 5.3 over the effective range of o, . The present.

for Geld E in v-cm '. Replacing (7b) in (7a) and using

p&l, one 1

0 =Op&gA~ (9a)

which is the form arrived at in previous work. Now,
however,

The foregoing development changes the thermionic
results of reference 2 only in the average of the trans-
mission coeKcient D2. D2, as stated in (1d), can be
constructed from the parts given in (3), (4), (6), and
(9), and is given in expanded form in Eq. (18), to
follow. It must be averaged over the Maxwellian
distribution

where
+ (~) g o 2mBa— (12)

n= Ip. I, (13a)
8= (2~PkT) ', (13b)

and where E& is a constant of proportionality inde-
pendent of n. The averaging integration is straight-
forward, and results' in a convergent summation of
terms periodic in 0 p. The summation is readily evaluated
for given values of y=357.1E ', providing numerical
values for f&(y) and f2(y) in the relation

(D2)"= I~I &f~(y) cosL«+f2(y)3
Such a procedure has been carried out for values of y
in the range 3m. &y&12vr and it is found that f&(y)
varies from 0.6 by less than 0.1 radian over the whole
range of y. The argument of the cosine is therefore
essentially unchanged from its former value. ' f~(y)
can be represented satisfactorily by the form

f (y)=51y '
so that the Anal average of D2 is

(D,)A„5.1y "Ip I
8 cos(o'0+0.6). (14)

The sizable contribution of electron tunneling near the
barrier maximum is included in this expression,
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Substitution of numerical values in 8, as given in
(13b), and multiplication by logtpe transposes (14) to
the periodic deviation F2 from the thermionic Schottky
eGect:

FQ—log (I/Ip) —
m E&~log (1+(Ds)p„)

4.9X 10'
~ p ~

T 'y "cos(y+2. 1—3), (15a)

(Fst~g=4.6X10'[p[T 'y ". (15b)

Since the periodicity in experimental deviation data
has been found to agree accurately with that of (15a),
such data have been analyzed to obtain values for 8
and

~
p~. Equation (15a) differs from the earlier value

of F~ given in reference 2 only in amplitude. Therefore
the present revised form yields the same result with
respect to the phase 6: experimental values for 8 for
the highly refractory metals are smaller by a quarter
period than the values calculated from (11b), indicating
the existence of a potential shape in the region 5 of
Fig. i different from the Geld discontinuity presented
by the box model. Experimental values for

~
p, ~, on the

other hand, are increased in magnitude by the revision
of F,. Hence, the values of ~li~ cited in Table II of
reference 2 must be replaced by values found from
(15a) above, namely,

where Io is the zero-field current and m the Schottky
slope, and where T is the Kelvin temperature. 6 is
described generally in (9c) and for the special case of
the box model in (11b).The small nonperiodic deviation
Fi has been neglected in (15a). By way of comparison,
the result found by Miller and Good4 contains a cosine
argument nearly identical with that of (15a), and an
amplitude which can be stated approximately as

where
N„(e)=E„in[1+exp(x' —e/kT) j,

x'= k(v —i p')/(kT)
= [k( — ) —I' (&o)7/(kT)
= [k(v—vp)+up 'g/(kT),

(17)

e is the electron energy relative to the barrier maximum
as shown in Fig. i, E„is a constant of proportionality
approximately independent of ~, and hvo is the zero-
Geld threshold.

The transmission coefficient given in (1) can be
expressed as a function of Geld and energy by inserting
the values of X and p, from (3), (4), (6), and (9). It can
then be expanded as follows, with n= ~Pe~:

Dp ——-'(1+1)a P (—1)"e—"'-
n=1

(18a)

IV. PHOTOELECTRIC SCHOTTKY DEVIATION

The transmission coe%cient D will be applied to the
case of surface photoelectric emission in the following
development. The assumptions of Fowler' will be used:
(a) that the number of electrons in a metal "available"
for photoelectric emission is equivalent to the number
whose energy component normal to the surface, aug-
mented by the illumination energy hv, is sufhcient to
surmount the surface'barrier; and (b) that the proba-
bility that one of these "available" electrons will be
excited by illumination near the threshold is inde-
pendent of energy.

For photoelectric emission, therefore, the equivalent
of the Maxwellian distribution in the thermionic case is
a Fermi distribution which has been integrated over
the two directions parallel to the surface. This can be
written

~ p ~,= 2.06X10 PA„Ty„,

TABLE I. Amplitude analysis for thermionic data on tungsten,
tantalum, and molybdenum. Here, y indicates the extrema
analyzed, italics designating maxima. p~, is corn uted from
Eq. (16); the largest and smallest values found for

~ p, are given.
The corresponding theoretical value

~
p ~, is calculated for the box

model by converting the value of 5", shown in the table to
Rydberg units and substituting in Eq. (11a).

ym

Tungsten
Seifert,
Phippsa

21.9, Z5.3
0,39—0.46
10.3 ev

0.22

Tantalum
Munick, LaBerge,

Coomesb

Z4.0, 27.9, 31.1
0.35-0.45

9.3 ev
0.21

Molybdenum
Brock, Houde,

Coomese

Z5.6, 28.7
0.30—0.42
10.2 ev

0.22

a R. L. E. Seifert and T. E. Phipps, Phys. Rev. 56, 652 (2939),
b Munick, LaBerge, and Coomes, Phys. Rev. 80, 887 (1950).
& Brock, Houde, and Coomes, Phys. Rev. 89, 851 (1953).

' S. C. Miller and R. H. Good, Phys. Rev. 92, 1367 (1953).

where Q and y are the amplitude and Geld position
of the mth extremum of the experimental P2 deviation.
The values obtained for tungsten, tantalum, and
molybdenum are given in Table I.

—P (—1)"+'(v~1)e ~'~~ (18b)
n=l

D(P)=2t t'2( —1)"+' -"'--2( + ),
n=l

r(~+-;)
Ds=2ll I E (—1)"

r (-;)r (~+1)

(18c)

Xe " cos(op+go), (18d)

where Di ——Di(m)+Dr(p), a„=2pr[n —(&~—ss)j, and
where the plus-or-minus signs indicate the sign of e.
op and g have been given in (9). For the extreme field
8=500 kv-cm ', 2z.a exceeds unity for ~e~ greater
than about 0.008 ev. Therefore, for purposes of aver-
aging (18) over the distribution (17),

~
e

~
may be

considered small compared with kT, even at room
temperature. It is also simpler to work with k(i —i p) of
such a magnitude that y' is large compared with
exp( —x'). At room temperature this is normally

P R. H. Fowler, Phys. Rev. 38, 45 (1931).
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satisfied with frequencies such that h(i —i p) )0.05 ev.
For this case, the logarithmic term in (17) may be
expanded, retaining

E,(n) —E„(a2prBn —x'), (19)
where the plus and minus again refer to the sign of e.

The average transmission coeKcient is defined by

TANTALUM

hvo *4.05 ev

.OS ev

, f3 ev

.37 ev

0.5

.68 ev

.84 ev

-0.5
lOs

FIG. 2. The periodic deviation 4» from the photoelectric
Schottky effect. 4» is plotted in percent as a function of
y=357.1E ', as given in Kq. (26b). The curves in (a) are for
tungsten, and those in (b) and (c) are for tantalum; all are for
room temperature, with illumination wavelengths corresponding
to the more useful lines of the mercury spectrum. Note the
doubled ordinate scale in (c).

D+.(n)X+(n)dn+ D (n)X (n)dn
Jp dp

&D)A.=- (20)

cV~(n)dn
0

where the subscripts indicate the quantities in (18) and
(19) evaluated for the corresponding energy ranges, the
second term in the numerator being the tunnelling
contribution. The denominator of (20) must be found

from a two-part integration, using the original form
of the distribution given in (17).To a sufFicient approxi-
mation it is

p 00 ~x'kT

1V~(n)dn=P
Jp Jp

E„P(47rB) ',

X,(e)de+P X„(.)de
"x'I&

where
(21)

P= s~'+x", (22)

a,nd B is given in (13b). The averages of (18) can be
found by applying (19), (20), and (21). Neglecting
terms smaller than B'/P and IiiI', the results are

(Do&"= +(~B)'( P) ' (23a)

(Di(m))„, —
I q I'(1—2g'BP'), -(23b)

(Dl(P))A —C1I p I g BP cos( 20'p —8 ), (23c)

(D2)Ay—C2
I p I g BP cos (o.o+es). (23d)

The quantities C~, C2, 0~, and 82 have been evaluated
for values of y=357.1E ' in the practical field range,
in the manner which has been described for the therm-
ionic case. They have been found to fit the following
relationships:

Ci~ 6.16y o', et~tan 'I 14y "(y'QT) —'j
C2 10.12y ' "

) 82~0.6.

The photoelectric emission in an accelerating field
should follow the relationship:

I= IpI P(D)"3/LPo(D(0))A. 3, (24)

where (D)A„ is the sum of the averaged coefficients in
(23), and where Ip, Pp, and (D(0))A„are the zero-field
quantities. From (22) and (23), the latter two are

Po= sir'+Lb(i —is)/(&&)g', (D(0))av=1 —IpI',

Discarding terms in Iii I', one may write (24) in terms
of the first-order photoelectric Schottky current I~.'

(I—I )/I =(D) .—(D(o)) ~

=B(~'B+6x'I~{')/(3P)
+CiIpI'x'BP 'cos(2op —gi)

+Co I p I x BP ' cos (o.p+go)
=C'i+4's'+C's, (25)

where Ii=IpP/Pp. The monatonic Ci, and Cs', which
is periodic in 2o.p, have amplitudes less than 10'Po of
that of C~, even for high fields and illumination near
the threshold. The quantity Ip/Po depends on the
quantum eKciency of the surface and the intensity of
illumination, and contains the factor (kT)'. Hence,
ideally, I& is given by the proportionality'

Ii ~ -'(~&2')'+ Lh(i —i o)+48 3y
—'7'.

However, due principally to the patch eGect, Ij prob-
ably will be an empirical curve-fit in practice, and Ci
will be inseparable from experimental data.

In terms of the field parameter y, as given in (8), and
kT and hv in electron volts, and with the values of
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Cg, Cg, and 02 included, C g' and C2 are

126Il I'y—"{h(v—v,)+48.3y
—'}

C 2'=
{—( kT) + Ch( v —vp)+48. 3y ~y}

XcosC2y+m —8&(y, v) —28j, (26a)

208IlrIy "{h(v—vp)+48. 3y '}
C2

{;(~h2') yCh(v —vp)+48. 3y-'] }
)& cosCy+2. 1—8j. (26b)

42 comprises almost the entire deviation from the
photoelectric Schottky eGect; it is the counterpart of
the periodic deviation F& in the thermionic case Csee

Eq. (15a)$. It is represented graphically in Fig. 2 for
tungsten and tantalum, using the box model values

I+I, for IliI Csee Table I and Eq. (11a)) and the
threshold values' 4.05 ev for tantalum and 4.49 ev for
tungsten.

V. CONCLUSIONS

A. Revised Thermionic Theory

The use of the revised transmission coe%cient intro-
duces no change in the conclusions reached in previous
work, ' other than the following additional remarks:

There is a striking similarity between the value of
the thermionic Schottky deviation as determined in
the present work with the revised transmission coefFi-

cient, and that found by Miller and Good. ' The latter
theory was formulated by means of a refined WK.B
approximational method but, as in the present case, a
parabolic potential form was assigned to the barrier
maximum. Therefore, although the experimental values
for

I p I given in Table I may be real, suspicion has not
been completely removed from the parabolic approxi-
mation as being the cause of their apparently excessive
magnitudes.

With regard to these values of
I p I „it is to be noted

that essentially external factors such as patch eBect or
surface irregularities would tend to give rise to mutually
destructive Schottky deviations, resulting in low ap-
parent values of

I p I, rather than the high magnitudes
actually observed. The presence of a third reflecting
layer, such as one might suppose to exist in the case of
a uniformly contaminated surface, wouM likewise lead
to low measurements of I+I under ordinary circum-
stances.

It has been the practice throughout the present
computations to neglect terms in

I p I
' or higher order

as they occur. This approximation is justified for

I
p,

I
~0.2, and appears to be generally satisfactory

even for values of Ip, I
near 0.4, since the terms in

question usually occur in combination with other small

quantities. However, in computing the final theoretical
form of the periodic deviation in both the thermionic

C. Herring and M. H. Ni&hols, Revs. Modern Phys. 2I, 185
(1949), Table IV.

and photoelectric cases, the approximation

L(D(o))"+(Dp)"3/(&(o))"
= C1—I~ I'+(Dp)A. j/C1 —lu I'3=1+(D.)"

has been used, in keeping with the prior practice. In
this instance, I@I' is not necessarily negligible in
comparison with unity, but the retention of higher
order terms lowers the values of IpI, in Table I by
only 15%.

The agreement in phase and period of the periodic
deviation F2 found here and in reference 2, with that of
Miller and Good, is reassuring. There was some doubt
whether the ordinary WXB wave function could be
validly applied at the barrier corner x& of the box
model. Were such doubt well founded, it would. seem
that the improvement in method employed by Miller
and Good should result in a phase shift in F2, such a
shift is not found.

B. Photoelectric Theory

A comparison of (26b) with (15a) shows the phase and
period of the thermionic and photoelectric deviations
to be identical. The amplitudes are also essentially the
same in form; due to the different energy distributions
involved, the thermionic form has a T '-dependence
while the photoelectric amplitude can be thought of as
depending on (hv —hvp) ', neglecting the temperature
"tail" of the Fermi distribution.

It has been noted here and previously' that the
evaluation of I@I from experimental thermionic data
is subject to some ambiguity, due not only to theoretical
deficiencies, but also to the inQuence of patch effects
on the data themselves. Even greater ambiguity will

occur in the photoelectric case since to these same
difhculties is added that of defining a value for h(v —vp),

especially for a patchy emitter. This condition could
be improved by a working knowledge of the first-order
behavior of photoelectric emission in the Schottky
field region.

Since
I p I

should be independent of emission mecha-

nism, one can expect experimental deviation amplitudes
about twice those graphed in Fig. 2, as in the thermionic
case, barring the aforementioned difhculty in defining

h(v —vp). There is no apparent reason to expect phase
or period diferent from those found for thermionic
deviations, i.e., experimental curves shifted to the left
of the theoretical curves of Fig. 2 by about a quarter
period. Experimental data on photoelectric deviations~

are not yet available in the quantity which makes
possible analysis of the counterpart thermionic results.
In principle, however, the photoelectric method has
obvious advantages: a broader range of subject ma-

terials, and the possibility of examining discrete portions
of a surface.
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