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The s components (parallel with the particle track)
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The additional term in the expression for Ef, corre-
sponds to the existence of the Cerenkov wake behind
the particle (v&0). Assuming for simplicity that only
one of the resonances at co=co1 is important in the
expression for dielectric constant, we find that

2Z18C01

(Et) cerenkov = v( '/Q' —') '
Q (Qs+ co tv)

if tots/Q &—p, (A-9)
and

(E&)ceres„ov:0 if tots/Q) p (A 10)

These expressions are approximately valid as long as
the field point is located sufficiently far from the surface
of the cone s= —Qp/cot. The apparent singularity on
this cone does not exist but arises from the approxima-
tion to the more exact expression for (E,)c,„,„q, . It is
to be noted that the angle of opening of the cone in the
expression for E& is

t9= tan-'(~, /Q). (A-11)

The third term in (A-7) for E„, i.e.,
Q' s (

" expl —Q(p'+x') ~/V)
(E„)s ——Zie— dx (A-12)

(p'+*')'

is of some interest and does not appear to have been
noted before. This portion of the field is independent
of the resonant frequency co1, but goes to zero for very
low medium density. Exactly the same term arises in
the transverse field expressions for a particle passing
through a plasma. ~ This term is antisymmetric in the
s coordinate and possesses a discontinuity at s=0. It
arises from the I.orentz-contracted field of the line
polarization charge which exists behind the incident
particle.

v J. Neufeld and R. H. Ritchie, Phys. Rev. 98, 1632 (1955).
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Dipole-wave sums, important in many magnetic and electric problems involving dipole-dipole inter-
actions, are defined, and numerical values are given at sets of independent points in k-space equivalent to a
512-fold sampling of the first Brillouin zone of each of the three primitive cubic lattices. Strong size, shape,
and position dependence of these sums is shown to occur in a pathological region about the origin in k-space.
The dipole-wave sums are shown to be related to dipole-6eld factors at points within the unit cell. The
dipolar anisotropy energy in the antiferromagnet MnO is discussed as an illustration of the use of dipole-
wave sums.

I. INTRODUCTION

E introduce the lattice sums

S„(k)=p 'gt'lrtl "exp(ik rt); (1a)

S„"(k)=p 'Pt'rt'rt'Irtl "exp(ik rt). (1b)

Here i, j=x, y, s; the primed sum is to be taken over
all lattice vectors r~ except r~ ——0; and p is the number
of lattice points per unit volume.

Specifically, we shall be interested in Ss(k) and
Ss"(k), which we shall call dipole wave sttrpts-. Our in-
terest in these sums arises from their importance in

many magnetic problems involving dipole-dipole inter-
actions. In particular, we have made extensive use of
dipole-wave sums in the quantum-mechanical problem
of dipolar ferromagnetism. ' Furthermore, these sums
find use in the calculation of dipole-field factors (see
Secs. VI, VII, and VIII) and of exciton energies. ' They
are important in the considerations of lattice stability
of polar crystals that arise, for example, in connection
with ferroelectrics and antiferroelectrics.

' M. H. Cohen and F. Ke6er, Phys. Rev. 94, 1412 (1954), and
following paper LPhys. Rev. 99, 1135 (1955)j.' W. R. Heller and A. Marcus, Phys. Rev. 84, 809 (1951),



D I POLAR SUMS I N CUB I C LATTI CES ii29

TABLE I. The choice of the unit of distance a for each lattice is made clear by the specification
of the primitive lattice vectors in the table.

Direct lattice type ri/a
Direct lattice vectors

rg/a r3/a
Reciprocal lattice vectors

b1a 12a bga pa3

Simple cubic (sc)
Face-centered cubic (icc)
Body-centered cubic (bcc)

1,0,0
0,1,1
i,i, i

0,1,0
1,0,1

1 1 1

0,0,1

1,1,0
1 1 1

1,0,0
1 1 1
27272

1 1

0,1,0
1 1 1
27272
1 1
2,0,2

0,0,1
1 1 1
27272
1 1

II. METHOD OF OBTAINING DIPOLE-VIVE SUMS

A. Calculation of S (k)

Our notation conforms, in the main, to that intro-
duced by Born and his students. ' ' Some slight changes
have been made, however, to suit our special purposes.

The most generally useful method of evaluating
slowly convergent lattice sums is due to Ewald. ' This
method uses generalized theta functions and their
transformation formula, and is most elegantly ex-
pounded by Born and Bradburn. 5 In particular, these
authors show that for an infinite lattice Lsee their
Eq. (4.7)j:

s (k) =p 'L(«)'"/I'(s77) jLs~+s~ —(2/I) j (2)

with

Sg=gt'[exp(ik r() q;„ i(rrPm)g,

ski pr &P (q;——;„L
—
(2' bi —k)'/47rr).

In this expression S~ is summed over the direct lattice,
r~, Sii is summed over the reciprocal lattice, bi. The
sum S„(k) is independent of the choice of Ewald's
parameter 7., the idea being to choose this parameter for
equally rapid convergence in the sums over the direct
and the reciprocal lattices. The q functions (introduced
by Misra') are defined by

q7 (x)=)t P"e & dj8.
1

(3a)

These functions satisfy the recurrence formula

q (*)=q o(x)+(m/x)q i(x);

and, in particular,

q o(x) = e-*/x,

q i(x)= —Ei(—x),

q; (x)= (s./x) iL1—C (x')j.

(3b)

s R. D. Misra, Proc. Cambridge Phil. Soc. 36, 173 (1940).
4M. Born and M. Bradburn, Proc. Cambridge Phil. Soc. 39,

104 (1943).
s M. Bradburn, Proc. Cambridge Phil. Soc. 39, 113 (1943).' P. P. Ewald, Ann. Physilt 64, 253 (1921).

Here Ei(—x) is the exponential integral, and C (x) is
Gauss' error function.

Table I shows a set of lattice vectors and other
parameters for the three primitive cubic lattices, ex-
pressed in terms of convenient units of distance.

B. Calculation of Ss"(k)

We note that

S„'&'(k)= S„(k).
Bk' Bk&

(4)

The result is

S,'(k)=p-'| ( )"'/r(S/2)jtSe+S +3"S j
with

Sc=gi'[ri'ri' exp(ik r~) q;(rrP7r) j,
(p/47r'r ~')ZiL(27rb&' k') (2rrb&' k')

X yo( (27rbi —k)s/err) j,
Sa = (p/2wrs~s)piqo i{(2m bi —k)s/err).

III. SELECTING A SAMPLE OF k-SPACE

The dipole-wave sums will be of use in numerical
integrations (summations) over k-space; hence the
values of k for which sums are calculated must be
chosen with care.

Since the sums are taken over all direct lattice points,
their values will repeat in the various Brillouin zones
(BZ) of k-space. Thus, we need consider only the first
zone. Furthermore, within this zone there will be
considerable repetition of values due to cubic symmetry.

The choice of the k sampling is detailed below for
the three cubic lattices.

A. Simple Cubic

If we define integers q"'(i= x, y, s) by the relation

8k'= (27r/a) q' (sc) (6)

we go from boundary to boundary of the erst BZ on
allowing q' to vary from —4 to +4. Our sampling of
k-space thus consists of the 512 number triple s
(q*,q&, q*), properly weighted at surfaces, edges, and
corners of the BZ as discussed in Sec. IV. We need not
evaluate 512 different sums, however, because of the
following types of relationships imposed by cubic
symmetry:

Using Ss(k) as given by Eq. (2), we readily obtain
Ss'&(k) from Eq. (4). In taking derivatives we observe
that

8—
q -(x)= —q-+i(x)

8$



M. H. COHEN AND F. KEFF E R

(1) Reflections, such as

S2(l,m, e) =S2(—l,m, e),
S,*~(l,m, 22) = —S,*~(—l,m, 22),

S,**g,m, ~) =S,**(-1,m, ~).

(2) Permutations, such as

S2(l,m, 22) =S2(m, l,22),

Sg*&(l,m, 22) =S2& (m, l,22).
(8)

Thus we need evaluate sums for only the 35 points
given by

(sc) (9)4&q*&q&&q'&0.

B. Face-Centered Cubic

Here we de6ne integers q' by the relation

16k'= (22r/a) q*, (fcc) (10)

with q' varying from —8 to +8.
Again the symmetry relationships of Eqs. (7) and

(8) reduce the number of points we need consider.
The 6rst BZ is now to be pictured in the reciprocal

bcc lattice. If we stretch this reciprocal lattice by the
scale factor 2x, the 6rst BZ is then a signer-Seitz unit
cell of a bcc. In order to stay inside this zone we must
further restrict ourselves to points such that q*+q&
+q*&12.This may also be seen from consideration of
inversion symmetry and the fact that in our bcc the
point (8+3, 8+m, 8++) is equivalent to (l,m, 2i).

Furthermore, since the reciprocal lattice is a bcc we
must sample it with a bcc-like array of points; this
restricts us to q, q&, q' all odd or all even.

Thus we need evaluate sums for only the 30 points
given by

8&q &q»q'&0
q*+p+ q' & 12,

q, q~, q' all odd or all even.

(fcc) (11)

8&q &q&&q'&0

q*+q" &8,
q~+qi'+q' even.

(bcc) (13)

IV. NUMERICAL INTEGRATION IN k-SPACE

The equivalence of the boundary points (8,2,2) and

(6,6,0) further reduces us to 29 points.

C. Body-Centered Cubic

This is somewhat similar to the fcc. We define
integers q' by

16k*= (22r/a)q'. (bcc) (12)

The first BZ is now a Wigner-Seitz unit cell of an fcc
lattice. We fill this with an fcc-like array of points,
and need evaluate sums for only the 29 points given by

occur. ' The summation is carried out over the Ã values
of k' inside the first BZ which satisfy appropriate
boundary conditions. Since f(k') is known only at
certain points k, the actual average, f, must be replaced
by an approximate average, (f), obtained by numerical
integration.

The k's chosen in III reproduce the reciprocal lattice
(times 22r) on a scale 8 times smaller. Each k may,
therefore, be thought to lie at the center of a cell
geometrically similar to, but 512 times smaller than,
the first BZ. We then replace the average value of f in
a small cell by the value of f at the center in performing
the numerical integration. Cells at faces, edges, and
corners of the first BZ do not lie entirely within it and
must be assigned fractional weights, 8'k. Thus,

(f)= (512) ' Z.f(k)II" (15)

The summation in (15) should, of course, be performed
first over those k's for which f(k) is the same, in par-
ticular for k's connected by 22r times a reciprocal
lattice vector.

A list of face, edge, and corner points and their
weights is given in Table II. All points related by a
permutation or reAection have the same weight.

V. BEHAVIOR NEAR k=0

It turns out that the sums S2(k) and S2'&'(k) for both
finite and infinite lattices are rapidly varying functions
of k in the vicinity of the point k=0. We study the
small k behavior in this section because of its import-
ance in specific applications, e.g., in ferromagnetic
resonance, and in obtaining representative values for
numerical integrations.

A. Infinite Lattice

To avoid divergences we form the combination

D* (k) =3S "(k)—S (k)b". (16)

We note that D'i(0) is the conventional dipole-field
factor for lattice points. Direct evaluation yields

D"(0)= 0

On the other hand, an expression for D'i(k) valid in
the limit of small k may be obtained by manipulation
of Eqs. (2) and (5),

Dij(k) 42r2p ir 5/2(sc+sD+ (22—rr) —I ( sA) P

limSg (k) =P 'pi; ( rP2r);r
k—+P

limSc(k) =-', 8*~ Pi'rPq;(2rrPr);
k—+0

limSii(k) = ', p8'&'r "' pi'bP—p—o(2rbPr)
k~0

—(p/42r2r'12) k'k& qp(k2/42rr).
'

In applications of our work, sums like

Z'/(k') =A f (14)
Putting these together, using the recurrence formula

(3b) for the p's, and using Poisson's summation for-
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mula, ~ one obtains FBI.E II. Weights of face, edge, and corner points.

limD "& (k) =p (47r/3) L6"—3 (k'k'/k') jk~o
(18) fcc

Wq
bcc

B. Patho1ogica1 Behavior Near k=0 in
Finite Lattices

In finite lattices the D"&(k) are not as directly useful
at very small k as are other dipolar sums more directly
related to the geometry of the sample. For example,
for a long thin cylinder the plane-wave factor in the
sum can be replaced by a cylindrical wave. Neverthe-
less, certain difhculties in the behavior of dipole-wave
sums near small k occur for all types of waves. To
illustrate these difficulties we now calculate D'&'(k) for
a finite lattice of given shape, chosen spherical for con-
venience. The finite sum is related to the infinite sum by

Pv=P —P v. (20)

The sum P„v may be converted into an integral for
small k and large volume V. Hence for a sphere of
radius R, taking the origin of the sum in the center of
the sphere,

4s t' 3k'k'~
D"(k)=—

/

ti"
3E k)

3f f~ —f
exp(ik r)d'r. (21)

The integral is easily evaluated and leads to

4~)D'(l)= —
(

a'—
3 I

3k'k&') 3ji(kR)-

k' ) kR
(22)

which goes to zero as k ~ 0. Thus, as it must, the dis-
continuity disappears for the finite lattice. It becomes
instead a rapid variation of D"'&'(k) near k=O, a fact

' In our particular case this is the theta-function transformation

ri Z( exp( ~rPT) =p Z( exp( —~bP/~). —
See reference 5 or 6.

See T. Holstein and H. Primako6, Phys. Rev. 58, 1098 (1940).

Equation (18) is structure-independent and in fact could
have been obtained by replacing the sum by an in-
tegral and surrounding the origin by a sphere of
exclusion. ' Comparing Eq. (17) and Eq. (18) we see
that D'&'(k) is only piecewise continuous at k=O and
that the average of D"(k) in the neighborhood of k=0
is equal to D'&(0).

Now the original definition of D"(k),
D'&'(k) =p

' Pi'(3ri'ri' —
rP8 "&')ri exp(ik ri), (19)

is in fact the explicit Fourier series for D'&'(k) which is
periodic in k. We might therefore expect that a study
of the convergence of Eq. (19) near k=0 would throw
some light on its piecewise continuity. Accordingly we
turn to a discussion of D'&(k) in finite lattices.

4qyq,
44q,
444

444
642
800
820
660
822
840

440
442
530
532
620
710
622
444
800

which must be recognized in physical applications of
t e D'i(k).

One sees from Eq. (22) that the finite sum differs
from the infinite sum only for k's such that kR(10.
Since the separation Ak between k's in the numerical
integration is such that Aku i, where a= lattice
constant, this diBerence between the finite and the
infinite sums is appreciable only over an extremely
small region of the cell about k=0. We shall call this
region the pathological region

I'urther, the value for the finite lattice, D"(0)= 0 for
a sphere, represents very poorly the region about k=0
in the numerical integration, a consequence of the
rapid variation of D"(k) near k=0. A more representa-
tive value would be obtained by using Eq. (18) alone
or together with the next terms in an expansion in
powers of k of D'&(k) for an infinite lattice and averag-
ing over a sphere approximating the k=0 cell. An
accurate value is not important since there are Si2
cells in the numerical integration, with inaccuracy
only at k=O.

The difference between the infinite and finite sums,
G'&(k), is proportional to ji(kR)/kR. Let e be a small
positive number. Then if Eq. (19) is uniformly con-
vergent for all k, it is possible to find a value of R such
that for all radii greater than R,

~
G"(k)

~
& e for all k.

But if we include the point k=0 in the region of varia-
bility of k, then for k«1/R,

~
G"(k)

j
1 for radii ))R.

Thus the Fourier series (19) for D"(k) in an infinite
lattice is not uniformly convergent near k=0. Hence
D'&'(k) cannot be a uniformly continuous function of k.
Since the Fourier series exists, the function must be
piecewise continuous, a conclusion in accord with the
results of the previous section.

Let us repeat for emphasis that the above considera-
tions hold in detail only when the origin of the sum is
at the center of the sphere. A similar treatment of the
case when the origin of the sum lies at an arbitrary
point within the sphere yields the result that the dipole-
wave sums show a strong positioN dependence when
kZ& iO.

The dipole-wave sums rapidly become independent of
origin as kE. increases beyond i0. In the special case of
P =0 the dipole-wave sums are completely independent
of origin (except for origins in the layer immediately
next the surface).
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TABLE III. Structure-dependent terms.

fcc

4.004
1.237—4.288—1.710

bcc

4.124
0.849—3.487—1.591

Although all considerations have been made ex-
plicitly for a sphere, similar results have been obtained
for an infinite cylinder and for an infinite Oat plate.
We expect, therefore, that such behavior occurs for all
shapes.

To sum up, we find that D'&'(k) is not a uniformly
convergent series and has an associated discontinuity
at k=0 in the function it represents for an infinite
lattice. A strong size, shape, and position dependence
of the finite sum occurs for a very small region near
k=0. Finally, the infinit sum, appropriately weighted,
may always be used in numerical integration over all
k-space, even for finite lattices.

C. Infinite Lattice, Structure Dependent Terms

In Sec. IV k-space was divided into 522 cells for
purposes of numerical integration, and the value of the
dipole-wave sum at the center of each cell was used to
approximate its average value over the cell. In Sec. V.B
it was shown that finite-lattice behavior extends over a

negligible region of the cell surrounding the origin, and
it becomes necessary to consider the infinite lattice
behavior in the central cell in more detail in order to
find representative values for numerical integration.
To do this we carry the expansion of the infinite sums
further than in Sec. VA by including terms of order k'.
The terms of order k' to be added to Eq. (18) are

k'k~ k~k"
$2+2 & +Pbaj++ijmn (IS')k'

where

~=.-'(&+-.' Pi'po(~bP/r)Lly (4~bP/. ))};
P= (n.rl/3p)gi'rP p; (n-rrP)

+(~/3 )Q 'po( bP/ )L1+( bP/ )$;
yi/ma (2ir2&5/2/p)P&&r ~rpr ~r 'R~&(7rrr 2)

-(4/ )T '~o( b'/. )b'b b-b, -

X fbi 4+ (7r'/2r')+ (m/rb, 2)j.
We have evaluated n, P, and the independent non-

zero values of y™for the fcc and bcc. These are given
in Table III.

VI. TABULATIONS AND CHECKS

The calculated values of $~(k) and $5'&'(k) for our
samplings of k-space are given in Tables IV, V, and VI.
The representative integers q' are defined in Eqs. (6),
(10), and (12).

TAsr.z IV. Simple cube.

100
110
iii
200
210
211
220
221
222
300
310
311
320
321
323
330
331
332
333
400
410
411
420
421
422
430
431
432
433
440
441
442
443
444

S3

12.465
8.391
6.111
4.678
3.514
2.597
1.315
0.772—0.405
1.247
0.745
0.303—0.363—0.688—1.434—1.354—1.587—2.135—2.664
0.222—0.134—0.461—0.959—1.218—1.827—1.737—1.937—2.413—2.878—2.046—2.224—2.649—3.067—3.239

1.298
2.067
2.037—1.452—0.962—0.671—0.363—0.276—0.135—2.750—2,428—2.170—1.799—1.649—1.328—1.318—1.237—1.055—0.888—3.155—2.879—2.642—2.282—2.123—1.766—1.767—1.669—1.443—1.232—1.574—1.498—1.319—1.148—1,080

5.584
2.067
2.037
3.065
1.771
1.634—0.363—0.276—0.135
1.998
1.317
1.236—0.114—0.093—0.053—1.318—1.237—1.055—0.888
1,689
1.150
1.091—0.057—0.048—0.030—1.150—1.091—0.953—0.823—1.574—1.498—1.319—1.148—1.080

5.584
4.257
2.037
3.065
2.706
1.634
2.042
1 325—0.135
1.998
1.857
1.236
1.551
1.055—0.053
1.283
0.888—0.025—0.888
1.689
1.595
1.091
1.380
0.954—0.030
1.181
0.823—0.016—0.823
1.102
0.771—0.011—0.771—1.080

0—1.838—1.151
0—1.178—0.920—1,153—0.960—0.602
0—0.528—0.446—0.613—0,530—0.361—0.363—0.320—0.227—0.149
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0—1.151
0
0—0.920
0—0.514—0.602
0
0—0.446
0—0.289—0.361
0—0.172—0.226—0.149
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0—1.151
0
0—0.485
0—0.514—0.602
0
0—0.220
0—0.274—0.351
0—0.172—0.226—0.149
0
0—0.153
0—0.201—0.268
0—0.133—0.179—0.121
0
0
0
0
0
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TABLE V. Face-centered cube.

iii
200
220
222
311
331
333
400
420
422
440
442
444
511
531
533
551
600
620
622
640
642
660
711
731
800
820
840

$3

1.1.093
9.398
5.513
3.447
3.851
1.355
0.157
2.029
1.101
0.462—0.512—0.662—0.810—0.060—0.755—0.940—1.432—0.978—1.192—1.284—1.581—1.375—1.815—1.661—1.744—1.824—1.871—1.918

3.698
0.527
1,244
1.149—0.384
0.087
0.052—1.463—0.979—0,697—0.394—0.330—0.270—1,595—0.981—0,592—0.395—1.979—1.605—1.282—0.846—0.595—0.227—1.850—1.224—2.052—1.698—0.902

Seve

3.698
4.435
1.244
1.149
2.118
0.087
0.052
1.746
0.818
0.579—0.394—0.330—0.270
0.767
0.052—0.174—0.395
0.501
0.226—0.001—0.162—0.186—0.227
0.095—0.095
0.114—0.0002—0.114

Sezz

3.698
4.435
3.025
1.149
2.118
1.182
0.052
1.746
1.262
0.579
0.276—0.003—0.270
0.767
0.174—0.174—0.642
0.501
0.188—0.001—0.572—0.595—1.359
0.095—0.425
0.114—0.172—0.902

—1.368
0—1.958—1.300—1.043—1.662
10233
0—1.357—1.147—1.422—1.311—1.205—0.562—1.161—1.040—0.980
0—0.661—0.619—0,815—0.804—0.516—0.181—0.405
0
0
0

Sezz

—1.368
0
0—1.300—1.043—0.619—1.233
0
0—1.147
0—0.876—1.205—0.562—0.459—1.040—0.402
0
0—0.619
0—0.578
0—0.181—0.167
0
0
0

—1.368
0
0—1.300—0.373—0.619
1.233
0
0—0.712
0—0.876—1.205—0.182—0.414—0.996—0.402
0
0—0.540
0—0.804
0—0.146—0.370
0
0
0

We believe the accuracy of these tables to be within
rounding-off error of the figures as given. Several
interesting checks have been made, the most important
of which is provided by the relation

S3(k)=Sg'*(k)+S,»(k)+S5*'(k). (23)

The left and right sides of this relation were calculated

independently and checked against each other only
after all the numbers were tabulated. In this way the
number of significant 6gures was established. To within
rounding-o6 error of the numbers as given, no viola-
tions of Eq. (23) were found.

It is important to know how representative is our
sampling of k-space. To study this we have formed

TABLE VI. Body-centered cube.

iio
200
211
220
222
310
321
330
332
400
411
420
422
431
433
440
442
444
510
521
530
532
600
611
620
622
710
800

S3

10.760
6.768
4.598
3.163
1.350
2.090
0.736—0.078—0.674—0.111—0.230—0.480—0.913—0.969—1.439—1.023—1.325—1.619—1.344—1.424—1.276—1.461—2.090—2.001—1.848—1.755—2.369—2.572

2.925—0.231
0.356
0.481
0.451—1.045—0.605—0.510—0.409—1.577—1.321—1.141—0.883—0.834—0.616—0.787—0.659—0.540—1.383—1.043—0.808—0.645—1.221—1.029—0.844—0.585—0.858—0.857

2.925
3.500
2.121
0.481
0.451
1.390
0.325—0,510—0.409
0.844
0.545—0.028—0.015—0.545—0.411—0.787—0.659—0.540—0.073—0.418—0.808—0.645—0.435—0.487—0.844—0,585—0.858—0.857

Sezz

4.190
3.500
2.121
2.201
0.451
1.745
1.016
0.941
0.145
0.844
0.545
0.690—0.015
0.412—0.411
0.551—0.006—0.540
0.112
0.038
0.341—0.170—0.434—0.487—0.159—0.585—0.654—0.857

Se*&

—2.048
0—1.295—1.935—1.126—1.137—1.541—1.819—1.222
0—0.755—1.411—0.950—1.548—0.612—1.770—1.218
0—0.609—1.010—1.456—0.995
0—0.375—0.782—0,523—0.210
0

Sezz

0
0—1.295
0—1.126
0—0.697
0—0.594
0—0.755
0—0.950—0.286—0.612
0
0
0
0—0.408
0—0.367
0—0.375
0—0.523
0
0

z

0
0—0.622
0—1.126
0—0.386
0—0.594
0—0.076
0—0.134—0.066—0.060
0
0
0
0

+0.113
0

+0.367
0

+0.137
0

+0.523
0
0
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Array

Zl
Z2
Z3
Z4
Z5
Z6
Zv
ZS

LT field
factor

0—9.687
4.844
4.844
5.351—2.676—2.676
0

sc Dipole-wave sum

Dz*(0 0 0)
D**(0,0,4) =D»(4, 0,0)

D"(4,0,0)
D» (0,4,0)=D"(4,0,0)

D«(4, 4,0)
D"(0 4 4)= D**(44 0)
Dzz(4 0 4) Dz (4'4 0)

D»(4,4,4)

Value from
Table IV

0a
—9.687

4.845b
4.845
5 352c

—2.676—2.676
0

TABLE VII. Lattice-point Geld factors of Luttinger
and Tisza sc arrays.

Here r is an appropriately selected lattice vector, and v

is the ratio of the separation between two points of the
reciprocal lattice and the corresponding points in the
sampling of k-space. For our choice of points, v=8.
Eq. (25) may be inverted to express dipole-wave sums
in terms of dipole-fieM factors.

Thus the values of dipole-wave sums tabulated in
this paper can be used to obtain dipole-field factors at
512 points inside the unit cell of each of the three
primitive cubic lattices.

' For a sphere.
b Since D"(4,0,0) =D»(4,0,0) and 5'D" (4,0,0) =0, D»(4,0,0) =—2D«(4,0,0). Therefore, the LT value is probably correct. Our error could

have occurred in multiplying the rounding-o8 in Sz' by 3.
& Similarly, D"(4,4,0) = —2D*&(4,4,0). Therefore our value is probably

correct.

sums over the A values of it' inside the first Bz of the
type

& ' Z~ P's"(&')7= p
' Zi'L«'ri'Iril '3' (24)

The right-hand side converges so rapidly it may be
directly summed. The left-hand side, then, may be
approximated from our tables. The agreement with the
direct sums for six such approximate sums was found to
hold to three significant figures —results of truly sur-
prising accuracy. Further details on such sampling
checks will be presented in a following paper. '

An interesting feature of the dipole-wave sums is
that, for example, the sc value of 3Ss**(0,0,4)—Ss (0,0,4)
=D*'(0,0,4) is the s-component of the dipole-field
factor at a lattice point of the Luttinger-Tiszas (LT)
dipolar array Z2. This array, which has alternate xy
planes of dipoles pointing in the +z and —z directions,
is one of the 8 basic arrays considered by LT. The
lattice-point field factors for the other 7 arrays may
also be obtained from appropriate dipole-wave sums.
Table VII compares our values with those given by LT.
Similar checks may be made for a few of the fcc and bcc
arrays, but the results will not be given here. The
agreement is excellent. In Sec. VII we show how it is
possible to obtain from the dipole-wave sums the
dipole-field factors at positions other than lattice points.

VIII. DIPOLAR ANISOTROPY IN
ANTIFERROMAGNETIC MnO

Recently Kaplan" has calculated the dipolar anisot-
ropy energy in the antiferromagnet MnO by use of
dipole-Geld factors at various sites within an fcc lattice.
We show here how this energy may be obtained in a
very simple way by use of the dipole-wave sums.

Consider the fcc sum D"(4,4,4) The . exponential
factor of this sum is just &1 at the various lattice
points of an fcc, and in particular reproduces an anti-
ferromagnetic array such that all values +1 fall on
alternate (111) planes, and the values —1 on the in-
between planes. Just such an array is observed in MnO
by neutron diGraction experiments. "The dipolar energy
in such an array of S spins is given by

E= zlV (gPs)'D—zz (4,4,4) . (27)

Here Dzz(4, 4,4) is the dipole-wave sum with respect
to the spin direction. If this latter has direction cosines
n, p, y with respect to the cube axes, we have in terms
of our tabulated dipole-wave sums:

1+(gp~) 2 (n2D zz+psD v v+ +2D z z

+2nPD*v+2nyD*'+2PyD"*) (28)

D"(4 4 4) = —3.615(1—8'&')

where all the D" have the argument (4,4,4). From
Table V we find

VII. DIPOLE-FIELD FACTORS FOR SITES
'WITHIN THE UNIT CELL

Consider the sum

and thus

E=3.615(7(gps)'(np+ny+ py). (29)
D'& (r /v) =PsD"(k)'Wa exp(ik r ). (25)

One can show by inserting Eq. (19) into Eq. (25) and
inverting the order of summation that D""(r /v) is the
dipole-field factor at the point r /v within the unit
cell. That is,

pD'z(r„/v) =
3(ri' —r~'v ')(ri& r&v ') (ri—r v —')'5'&'—

z ( )
rz —r~'5

' J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946);
Phys. Rev. 72, 257(E) (1947).

Kaplan obtains the same result, his numerical constant
being (57.41/16) =3.588.
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