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Density Effect in Ionization Energy Loss of Charged Particles

JACOB NEUPELD AND R. H. RITCHIE
Oak Ridge National Laboratory, Oak Ridge, Tennessee

A more rigorous justification is given for the statement made by Aage Bohr that for an incident particle
of relativistic velocity, the electrostatic eRect of the surrounding electrons is negligible and the main factor
in the screening is due to the electromagnetic interactions which limit the impact parameter to a value
c/0, where Q= (4s.rrer/I)& and n is the electron density in the medium.

I. INTRODUCTION

HE density eGect, originally suggested by Swann, '
accounts for the reduction in the ionization

energy loss of charged particles due to the polarization
of the medium, and a quantitative theory of this eBect
has been given by Fermi. ' The work of Fermi has been
further extended and refined and a great many investi-
gations have been devoted to this subject. ' The density
effect has also been studied by Bohr, 4 who emphasized
certain intuitional and microscopic aspects whereas
previous investigations were based mostly on rigorous
solution of Maxwell's equations in a macroscopic med-
ium. Bohr was particularly interested in the adiabatic
limit of the impact parameter beyond which no appre-
ciable energy transfer occurs, and showed by means of
ingenious microscopic considerations how the electro-
magnetic field of the perturbed electrons is effective in
setting this adiabatic limit.

The arguments presented by Bohr are based to a
large extent on rather cursory calculations. It seemed,
therefore, desirable to undertake more exact calculations
to show whether and to what extent the Bohr theory
is valid. The results obtained in this investigation
show a satisfactory agreement with the results obtained
by Bohr.

II. ARGUMENTS OF BOHR

Bohr's considerations are based on the existence of a
maximum impact parameter defining the adiabatic
limit beyond which the eGect of the moving particle is
negligible. For relativistic velocities of the particle,
i.e., for V—&c, for a medium of low density, the adiabatic
limit d& increases indefinitely with V, i.e.,

dr ——Vy/cot,

where y=i/(1 —P')&. We assume that the medium is
composed of atoms characterized by a binding fre-
quency ar &.

In case of a dense medium the situation changes
entirely. According to Bohr, electromagnetic forces
enter into the eGect caused by the electrons in the

' W. F. G. Swann, J. Franklin Inst. 226, 598 (1938).
2 K. Fermi, Phys. Rev. 57, 485 (1940).
3 For a review of the literature, see, for instance, F. Sauter, in

Eosmische Strahlung, edited by W. Heisenberg (Springer Verlag,
Berlin, 1953), pp. 456—481.

4 Aage Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
24, No. 19 (1949).

medium that are perturbed by the moving particle.
As shown by Bohr, these forces limit the impact
parameter, which for increasing V tends to a value

ds ——C/Q, (2)

g,m (e'rsp'/c') rj (3)

where ij is the acceleration of the electron due to the
field of the particle. The field

E&=mrf/e, (4)

and is directed against E„t".Therefore, as observed
by Bohr, we obtain from (3) and (4) that

m((gy
for p«c/Q.

From this observation Bohr concluded that p=c/Q
represents the adiabatic limit beyond which the
interaction of the incident particle with the surrounding
medium is negligible. '

The above argument presented by Bohr is rather
cursory. No consideration has been given to the impact
parameter p) c/Q. In order to support Bohr's result, it
would be necessary to show that for p) c/Q the field
produced by the retarded action of the perturbed
electrons is equal and opposite to the field due to the
direct action of the incident particle and, therefore,
the medium remains unperturbed. This has not been
done by Bohr.

It should be noted that the expression (3) is not
rigorous and cannot be applied for p) c/Q. This can be
shown by taking'

Zrs 'Y/p

(where Zie is the charge of the incident particle) and
substituting the expression (6) in (3) we obtain that
for any substantially large impact parameter p the
field E„t, is constant, i.e.,

E,.t,"~Zre'ny/c'
5 See reference 4, p. 23.
s See reference 4, p. 8, Formula (3.1).

where Q= (47ree'/m) 1 and rs is the electron density in
the medium.

The expression (2) has been derived by considering an
electron at a distance p from the particle track. Bohr'
calculated that the field due to the retarded action of
all electrons in the medium perturbed by the particles
and acting on the electron at a distance p is:
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which obviously is not in agreement with the physical
reality.

III. EXACT CALCULATIONS

As pointed out by Bohr, the screening effect of the
medium on the incident charged particle depends on
the velocity of the particle. For a low velocity, one has
to consider only the electrostatic forces between the
electrons of the medium and these forces are only of
secondary importance in the stopping power. For a
relativistic velocity, the electrostatic effects are
negligible and the stopping power is determined mainly
by electromagnetic interactions between the electrons
in the medium.

In order to determine separately the electrostatic
and electromagnetic effects, we shall examine the
longitudinal and transverse components of the field.
Since the longitudinal component is irrotational, it
will be associated with electrostatic eftects and since
the transverse component is divergence-free, it will be
associated with electromagnetic interactions. It should
be noted in that connection that the retarded field of
the perturbed electrons which has been calculated
by Bohr is not identical to the transverse component
of the electromagnetic field.

To calculate in a precise manner the effect of the
transverse and longitudinal fields in the dielectric
medium we begin with Maxwell's equations:

8-vXE=- —H; v H=0;
c Bt

~ BK 47l-

v && H =- + Z&eV8 (r V—t), —
cBt c

ev E=4~zieb(r —VI),

in which we assume the medium to be infinite homo-
geneous, nonmagnetic, and characterized by a dielectric
constant e(~).

We now analyze E, H, and the incident charge into
Fourier components,

E(r,I)

H(r, I) «=)"dk expfik(r —Vt)] H

.8(r—VI). .(2~)
—'.

so that Maxwell's equations become

ik)&E=icoH/c, k H=O,

ik)( H =

icos�

(—cv) E/c+ ZieV/2~'c,

haik E=Zie/2m'

(10)

iZiek
Ei—

2~'k'e (a )

iZie(u V—(k V)k/k'
~t

2s'c' (k' —a'e (~)/c')
(12)

Going back into configuration space, we first divide the
vector k into components ~/U and», parallel and
perpendicular, respectively, to the particle track,

0'= «'+(u'/U' dk=»d«dp'd(u/V.

We find

Solving for E and dividing it into two components, K~

and E&, parallel and perpendicular, respectively, to the
propagation vector we find

and

iZie t
—" ~" t.

"d(ok expfikp cos(p —p')+i(u(s Vt)/V j—
E((s,p, p) =— ' dp' «d»

2m'V ~p & p (»'+aP/ V') e (a))

iZie r
' ~" t

"&ada&{expfikp cos(p —p')+iso(s VI)/U—]}fVk' —a&kj
E, (s,p, q)= i

dp' «d»
'

2~'c'V~ 0 (»2+ (g~/V~) {/P+~2f1 —P~e(~) j/V2}

(14)

(15)

where (s,p, p) are the coordinates of the field point in a
cylindrical system of coordinates whose axis is coin-

cident with the particle track. The location of the
incident particle at time t is given by s—Vt =0.

An electron in the medium located at a distance p

from the particle track is in the process of undergoing
collision with the particle and simultaneously is acted
upon by other electrons in the medium. We determine
the net fields acting on an electron at p and at s= Vt and,
then, by carrying out the integrals given in Eqs. (14)
and (15), we find that only the components of the longi-

tudinal and transverse fields which are perpendicular to

the track are not zero at the field point in question. We
designate these by E~(p) and E,(p), respectively. Also let

E(p) = «(p)+ «(p).

The symbols Et and E& shall be provided with super-
scripts p and m designating field generated by the
"particle" and the "medium", respectively. By the
straightforward application of Maxwell's equations to
our dispersive medium, we obtain the following results
that are valid for relativistic velocities and for a
dielectric constant obtained from harmonic oscillator
model.
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The electric 6eld due to the particle alone is

d ~iq

dp (p)

d fil'
Ei (p)= —Zie—

I

dp Ep)

d (1)E(.)= —vZ —~-
I

dp &p&

(18)

(19)

The authors wish to express their gratitude to
Dr. Aage Bohr for an interesting conversation on the
above subject and comments.

APPENDIX

For the sake of completeness, we shall give the
expressions for longitudinal and transverse components
of the electric field at all positions relative to the
incident relativistic charged particle. The assumptions
are, as stated before, (1) that the dielectric constant
may be adequately represented by the usual expression

The electric field due to the action of the medium is

Zye
E -(p) =-—C (p)—

dp p

Z]8
Ei (p) =— —~(p)

dP- P

d 1—exp( —Qp/U)
+yZie —— (20)

dp p

(21)

d 1—exp( —Qp/V)E"(p) =YZie—

where C(p) is the scalar potential in the medium.
C (p) represents the Coulomb potential of the particle
for points close to the particle. The value of C (p) for
points distant from the particle is given in the Appendix,
Kqs. (A-3) to (A-6).

We obtain from (22) that for small values of p the
electric field exerted by the medium is

( O' Q'p Q'p'
+ — +

2U' 3U' 8V'
(23)

We shall retain the first term in this expansion and
compare it with the electric field due to the particle
alone as given by (19). The field due to the medium
acts in the direction opposite to the 6eld of the particle.
We obtain, however, that for p((V/Q,

Em((Ey (24)

Consequently, for small impact parameters the shielding
effect of the medium is negligible and the inequality
(24) derived on rigorous grounds is in agreement with
Bohr's inequality.

Consider now the region of large impact parameters
corresponding to p))V/Q. Referring to (19) and (22),
it is seen that for this region we have

(25)

and, consequently, the shielding eGect is complete —i.e.,
it cancels entirely any effect due to the charged incident
particle. The inequality (25) expresses the effect of the
total electric field. However, it is apparent from (20)
and (22) that for V—+c (or for y increasing indefinitely),
E& —+E and, consequently, we may conclude that
the shielding is caused primarily by the electromagnetic
interaction of the electrons in the medium.

e(eo) = 1+
4xSe'

SS ~ e,2—Zg,v —co,~

E„= C(r)——
Bp

yZie exp'�(p2+p2s2) '/V]

(p2+ ~2[2) i

+ (Erp) cerenkov (A-1)

Ei,—— ~(r),
Bp

(A-2)

where the scalar potential 4 (r) has the following forms:
(a) For field points close to the incident particle,

C(r) =sr%, where r= (s'+p')l. (A-3)

(b) If the field point is far from the particle and if
none of the ro, are zero (the dielectric is an insulator),

Z]8
C(r) =

1+Q2+;(f,/~o;2) r
(A-4)

(c) If the field point is far from the particle and if one
of the M;, say co&, is identically zero, then

ZiegiV d (1)
C'(r) = ——

fiQ' ds Er)
(A-5)

(d) If the field point is far from the particle, roi ——0
and g~

——0

ZieV' d' (1)
C'(r) =

fiQ' ds2 &r)
(A-6)

where T is the number of atoms per cm' in the medium,

f,, &o;, and g; are the oscillator strength, resonant
frequency, and damping constant belonging to the ith
atomic transition, and (2) that the particle is in the
relativistic region, i.e., that y=1/(1 —P2)~))1. The
fields given here, in fact, comprise the erst two terms
of expansions in inverse powers of y, e.g. ,

«= VEr"'+Er"'+oh' ')

Using the formulation given in Eqs. (14) and (15),
one 6nds for the components of the fields in the p
direction (perpendicular to the particle track):
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The s components (parallel with the particle track)
are

8 Zie expl —Q (p'+y's') '*/ V)
E,.=—+C (r)—

Bs 7 (ps+ ~sss)

Q' s t'" expl —Q(p'+x') l/V]—Zie—— ds
V' Isl" vi. i

(p'+&')'*

+ (Ete) cerenkov (A-7)
8

Et, ——e(——r).
as

(A-g)

The additional term in the expression for Ef, corre-
sponds to the existence of the Cerenkov wake behind
the particle (v&0). Assuming for simplicity that only
one of the resonances at co=co1 is important in the
expression for dielectric constant, we find that

2Z18C01

(Et) cerenkov = v( '/Q' —') '
Q (Qs+ co tv)

if tots/Q &—p, (A-9)
and

(E&)ceres„ov:0 if tots/Q) p (A 10)

These expressions are approximately valid as long as
the field point is located sufficiently far from the surface
of the cone s= —Qp/cot. The apparent singularity on
this cone does not exist but arises from the approxima-
tion to the more exact expression for (E,)c,„,„q, . It is
to be noted that the angle of opening of the cone in the
expression for E& is

t9= tan-'(~, /Q). (A-11)

The third term in (A-7) for E„, i.e.,
Q' s (

" expl —Q(p'+x') ~/V)
(E„)s ——Zie— dx (A-12)

(p'+*')'

is of some interest and does not appear to have been
noted before. This portion of the field is independent
of the resonant frequency co1, but goes to zero for very
low medium density. Exactly the same term arises in
the transverse field expressions for a particle passing
through a plasma. ~ This term is antisymmetric in the
s coordinate and possesses a discontinuity at s=0. It
arises from the I.orentz-contracted field of the line
polarization charge which exists behind the incident
particle.

v J. Neufeld and R. H. Ritchie, Phys. Rev. 98, 1632 (1955).
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Dipolar Sums in the Primitive Cubic Lattices
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Dipole-wave sums, important in many magnetic and electric problems involving dipole-dipole inter-
actions, are defined, and numerical values are given at sets of independent points in k-space equivalent to a
512-fold sampling of the first Brillouin zone of each of the three primitive cubic lattices. Strong size, shape,
and position dependence of these sums is shown to occur in a pathological region about the origin in k-space.
The dipole-wave sums are shown to be related to dipole-6eld factors at points within the unit cell. The
dipolar anisotropy energy in the antiferromagnet MnO is discussed as an illustration of the use of dipole-
wave sums.

I. INTRODUCTION

E introduce the lattice sums

S„(k)=p 'gt'lrtl "exp(ik rt); (1a)

S„"(k)=p 'Pt'rt'rt'Irtl "exp(ik rt). (1b)

Here i, j=x, y, s; the primed sum is to be taken over
all lattice vectors r~ except r~ ——0; and p is the number
of lattice points per unit volume.

Specifically, we shall be interested in Ss(k) and
Ss"(k), which we shall call dipole wave sttrpts-. Our in-
terest in these sums arises from their importance in

many magnetic problems involving dipole-dipole inter-
actions. In particular, we have made extensive use of
dipole-wave sums in the quantum-mechanical problem
of dipolar ferromagnetism. ' Furthermore, these sums
find use in the calculation of dipole-field factors (see
Secs. VI, VII, and VIII) and of exciton energies. ' They
are important in the considerations of lattice stability
of polar crystals that arise, for example, in connection
with ferroelectrics and antiferroelectrics.

' M. H. Cohen and F. Ke6er, Phys. Rev. 94, 1412 (1954), and
following paper LPhys. Rev. 99, 1135 (1955)j.' W. R. Heller and A. Marcus, Phys. Rev. 84, 809 (1951),


