LONG-WAVELENGTH NEUTRON TRANSMISSION

inhomogeneous distortion around the interstitial can
be shown to reduce the effective cross section of the
interstitial (a similar distortion would increase the
cross section of the vacancy). Theoretical estimates of
this correction are at present unreliable but are probably
not greater than 20 percent.

In principle, the occurrence of pairs is detectable by
examining the wavelength dependence of the attenua-
tion. These preliminary experiments are not sufficiently
accurate past 9 A to establish the existence of a wave-
length dependence. The fact that no wavelength de-
pendence which would be outside experimental error is
observable indicates that only a small fraction of the
displaced atoms may be present in the form of pairs.
More refined experiments will be necessary to establish
this point definitely.

The technique described here is applicable, of course,
to other materials. The most important limitation is
that the absorption cross section has to be small. It
appears that with some refinements the number of
displaced atoms may be determined in, say, aluminum
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(64=0.215 barn). Experimentation with such a metal
calls for low-temperature irradiation and measurement
because the defects are known to anneal out well
below room temperature. Consequently, the necessary
techniques are considerably more involved. Sensitivity
may be gained, however, by measuring the total trans-
mitted beam rather than using the spectrometer tech-
nique since very little change in lattice parameter
is expected. The last cutoff for aluminum appears at
A=2d 111y=4.66 A which, because of the nature of the
pile neutron spectrum, also offers a substantial increase
in intensity. However, this may be compensated for
almost completely by the necessity of using a beam of
smaller cross section and an external filter because
present low-temperature irradiation facilities limit spec-
imen sizes.
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The entropy of lattice defects are here considered in somewhat greater detail than previously. Calculations
are out to estimate the intrinsic entropies associated with such lattice defects as interstitialcies and vacancies,
and with the activated complexes of vacancy and ring diffusion. The present application is to fcc metals
and a very simplified force model representing only the closed-shell, ion-core repulsions of copper has been
used. The problem consists in evaluating the change of lattice vibrations with the introduction of each defect.
The method is in a first approximation to consider vibrations localized around the defect as separate from
elastic vibrations at appreciable distance from the defect. Only in the region far from the defect is the entropy
contribution always positive. The surface condition of zero pressure introduces a term which reduces the
effect of the ““localized” vibrations. In general the intrinsic entropy is less positive for those configurations
where there is crowding of the atoms than for those configurations where the atoms have greater free

volume.

IN any calculation of the number of defects which
may be expected in a crystal at thermal equilibrium
at fixed temperature and pressure one proceeds by
minimizing the Gibbs free energy of the system.
By the general arguments of statistical mechanics one
shows that the fraction of the lattice sites which may
be associated with a particular lattice defect is given
by exp(—AG/RT), where AG is the change in the Gibbs
potential of the crystal with the addition of one mole
of defects. The wide use of this expression is a natural
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consequence of the very great importance of the role of
defects in the most of the active fields of present solid
state physics, such as optical properties, radiation
damage, plastic properties and electrical properties.
For those phenomena which depend not simply on the
existence of the defects but upon their stepwise motion
(diffusion, ionic conductivity, and some aspects of
internal friction), the expression! for the rate change
includes a similar factor, exp(—AG*/RT), where AG*
is the change in the Gibbs potential with the addition
of one mole of defects leaving out of consideration the
degree of freedom associated with the direction of
motion. Hereafter the asterisk will be omitted here

! Glasstone, Laidler, and Eyring, The Theory of Rate Processes
(McGraw-Hill Book Company, Inc., New York, 1941),
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and the general features of both situations will be
discussed in terms of a simple AG.
From the standard thermodynamic relation one
shows
AG=AH—-TAS, 1)

where AH is the change in enthalpy and AS is the
change in entropy (exclusive of mixing entropy)
resulting from the addition of a mole of defects. Since
AH and AS appear in general quite temperature-in-
dependent,? it is customary to speak of a temperature-
independent factor exp(AS/R) and a temperature-
dependent factor exp(—AH/RT), where the nomen-
clature applies equally to finding the equilibrium number
of defects or to the treatment of rate processes involving
defects. Accordingly the evaluation of the AS in the
temperature-independent factor can be approached
from another fundamental thermodynamic formula
to give

AS=— (3AG/dT),. (2)

This problem has been treated several times in one
form or another in the literature?® not always from
consistent viewpoints. Individual aspects have received
particular emphasis in special applications. On some
points there has been duplication and confusion. For
example the role of the thermal expansion in particular
needs some clarification with respect to Eq. (2). One
might at first think that AG would show a temperature
dependence because of the change of volume-dependent
atomic forces with the thermal expansion. Some care
must be exercised here, however. For theoretical
models which set up one term in the Helmholtz free
energy, which represents the energy of the crystal at
0°K and is dependent on volume only, the said term
can make no contribution to the entropy of the system
since

AS=— (8AA/oT)y, 3)

where 4 is the Helmholtz potential. This point has been
recently put forward by Vineyard and Dienes* but it
is perhaps well to stress it here also.

The basic approach to this problem should be along
the lines of statistical mechanics. The crystal and its
defects can be fundamentally treated as a collection of
reasonably harmonic oscillators whose vibrational
contribution to 4 is given by

Ay=—kT} ;In{1—exp(—hv;/kT)}™, 4)
where the »; are the frequencies of the crystal. Applying

2 For a very complete experimental verification of the tempera-

ture independence of AS and AH in the diffusion of antimony in

silvgr,) see Sonder, Slifkin, and Tomizuka, Phys. Rev. 93, 970
(1954).

3N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (University Press, Oxford, 1948); J. Frenkel, Kinetic
Theory of Liquids (Clarendon Press, Oxford, 1946), Chap. 1;
G. J. Dienes, Phys. Rev. 89, 185 (1953); Y. Haven and J. H. van
Santen, Phillips Research Repts. 7, 474 (1952); Huntington,
Shirn, and Wajda, Phys. Rev. 91, 246(A) (1953).

¢ G. H. Vineyard and G. J. Dienes, Phys. Rev. 93, 265 (1954).
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Eq. (3), one obtains

AS=—kZ {In[1—exp(—/»:/RT) ]
— (hvi/RT)exp (hv;/RT) =117},  (5)

or for RT>>hv;, which means 7" well above the Debye
temperature,

AS=—kY_[In(hv;/kT)+terms of order unity]. (6)

If the original frequencies for the lattice are »; and the
final frequencies with defect are vz, then the complete
change in entropy is

AS=EY; In(vao/viy). @)

The problem of determining the specific entropy of a
particular lattice defect (or activated complex) reduces
to evaluating the change in the elastic spectrum that
results from the introduction of the defect.

One procedure for accomplishing this would be to
investigate the perturbations on the actual frequencies
of the elastic waves of the crystal that the defect causes.
A solution along these lines is being pursued by various
investigators® and its successful completion will supply
the only completely reliable treatment. The mathe-
matical difficulties are, however, formidable. Our
approach has been approximate but affords a program
which should give some insight into the physical
considerations that are involved. It proceeds from a
consideration of localized vibrations as in the Einstein
model. In this way one considers three regions: the
atoms in the immediate neighborhood of the defect,
the region over which the defect sets up an elastic
stress field and finally the surface conditions and their
influence.

For the immediate neighborhood of the defect an
Einstein model is invoked whereby each atom near the
defect is considered to vibrate individually as though
in the field of its neighbors all held fixed. It is readily
apparent that where the defect pushes atoms closer
together than the equilibrium distance the frequencies
rise and the AS is negative. Conversely, where the
defect causes local expansion as in the case of a vacancy,
one can expect the frequencies to drop and the AS to
go positive. Again this statistical result finds its ready
analog in the thermodynamic relation,

(8S/8V)r=(8P/dT)y>0. (8)

The neglect of coupling between the vibrations inherent
in the Einstein model is a serious limitation. Various
devices have been used to compensate for its effect
for the different defects and will be discussed later.
In the region somewhat more removed from the defect,
there is a radial strain falling off as »~2. The strain field
from this “center of pressure”® is pure shear with no
dilatation. Since the strain is practically temperature-

5 For example, K. F. Stripp and J. G. Kirkwood, J. Chem.
Phys. 22, 1579 (1954).

$A. E. H. Love, Mathematical Theory of Elasticity (Dover
Publications, New York, 1944), fourth edition, Chap. XI,
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independent, the stored elastic energy will have a
temperature variation determined principally by the
temperature variation of the elastic constants of the
medium. Because the latter usually decrease with
temperature, the contribution to the defect entropy
from this region will be positive. This type of argument
has been effectively used by Zener” and others in the
past, sometimes with the implication that because of it
all defect entropies should be positive. It would appear,
however, that its validity is limited to those regions
where the strains are elastic and the dilatation vanishes.
Finally, the boundary conditions at the surface of the
specimen have their influence on the defect entropy.
In general the condition that the pressure vanishes
requires that a constant dilatation be added to the
strain pattern of the center of pressure with the sign
of the dilatation the same as that of the local pressure,
i.e., for an interstitial defect the dilatation is positive,
conversely for a vacancy it is negative. The effect of a
positive dilatation is to lower the lattice frequencies
and again a contraction will raise them. In every case
the effect of the surface boundary condition is to
compensate in part for the entropy change associated
with the immediate region of the defect.

FORCE MODEL AND ATOMIC VIBRATIONS

Application to the consideration of specific defects
requires a force model which will give a reasonable
characterization of atomic forces with a minimum of
mathematical complexity. We have chosen to consider
that, in the case of the metals at least, the cohesive
forces are primarily volume-dependent and of long-
range nature, relatively unaffected by the presence of
defects. The repulsive forces are central in nature and
arise from the repulsion of the closed ion shells. These
vary rapidly with interatomic distance and for many
materials make the dominant contribution to the elastic
constants. As is quite usual, we shall represent the
ion-core interaction by an exponential potential of
the Born-Mayer® type,

U(r)=A exp[—p(r—ry)/ro], ©)

where A gives the magnitude of the interaction per
ion pair at the equilibrium interatomic distance 7o and
p is the dimensionless constant whose magnitude is a
measure of the rapidity with which the ion core inter-
action changes with distance. In this work we have
taken p to be 13.6, a value which has been shown® to
give a reasonable approximation of the elastic behavior
of copper. Since we shall be here mainly concerned with
ratios of frequencies, it will not be necessary to chose a
value for 4.

7C. Zener, J. Appl. Phys. 22, 372 (1951); Imperfections in
Nearly Perfect Crystals (John Wiley and Sons, Inc., New York,
1952), pp. 289-314.

8 F. Seitz, Theory of Solids (McGraw-Hill Book Company, Inc.,
New York, 1940), Chap. II.

9 C. Zener, Acta Cryst. 3, 346 (1950) ; H. B. Huntington, Phys.
Rev. 91, 1092 (1953).
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1. Einstein Model

Next, in calculating the elastic frequencies of the
atoms near the defect on the basis of the Einstein
model, one considers each atom to move in a potential
minimum established by its interactions with each of
its neighbors, presumed to be held fixed. The increase
in energy acquired by the jth atom as it moves from
its equilibrium position may be written

AV j=3 AV (1), (10)

where ¢ numbers the neighbors of the jth atom and
AV;; is the part of AV; which is contributed by the
ith atom,

AV =U'(r),+8,2U¢" () /2-+8,2U" (r) /27, (11)

where §,, and §, are the displacements of the jth atom,
respectively parallel and perpendicular to the line of
centers between 7 and j. For a collection of particles at
stable equilibrium, the potential at the jth particle is

AV ;=31>"JU" cos®+ (U'/7) sin®, 15 7, (12)

where §; is the displacement of the jth atom and 6; is
the angle that the displacement makes with the line of
centers between atoms ¢ and j. Our procedure is then
to evaluate AV ; along the principal axes for each atom
in units of 46%/rs* and compare the result with the
value for the perfect face-centered lattice,

AV =3[4U"+8U" [r]ro= (20— 4p) A (3/r0)%.  (13)

This technique has been applied to the following
defects: a single interstitial atom, first with the nearest
neighbors at their normal lattice positions and later
with these neighbors relaxed to new equilibrium
position; a single vacancy, both unrelaxed and relaxed;
a vacancy at the saddle point for migration, both
unrelaxed and relaxed; and a ring mechanism at the
saddle point. In a situation of high crowding, AV; is
large in the direction of compression because U” is
large and positive. This means increased frequency
and lowered entropy. At right angles to the direction
of compression, the frequencies are reduced by (U'/r)
which is negative but an order of magnitude 1/p
smaller than U"'. For very severe uniaxial compressions
it is possible for AV at right angles to compression axis
to become small and go negative—corresponding to
unstable equilibrium. Such a situation did occur for the
unrelaxed nearest neighbors of the interstitial, but
with relaxation stable equilibrium was restored and the
geometric mean of all the frequencies increased. In
general the U’/r term played a secondary role.

Because the frequencies vary as the square root of
AV, the form of Eq. (7) useful for computation was

AS=%kZ]‘ ln(AV1/AV,-). (78.)

The corresponding results are tabulated in the first
two rows of Table I for unrelaxed and relaxed condi-
tions respectively.
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TaBLE I. AS for various defects. (All values in units of %.)

Vacancy
saddle Ring
Defect Interstitial Vacancy point of four
Unrelaxed —_ 1.85 —0.65
Einsten —— — — — — — — — — — —
model
Relaxed —06.4 1.69 +0.87 —1.96
Coupling correction 0.2 0.09
Elastic term 49 0.13 0.26
Surface term 2.1 —0.44 —0.20
Total 0.8 1.47 0.93

For the interstitial configuration the frequencies of
the interstitial and its six neighbors are analyzed.
As a detailed example of the method values for AV
for the interstitial atom, which is independent of
direction, and for the neighbors for radial and tangential
motion are shown for both the unrelaxed and relaxed
cases in Table II. Because of the negative value of AV
for the tangential motion of the neighbors, no value
can be given for AS in the appropriate position in
Table I. This example points up the importance of
considering the relaxation, and in general it can be
said that its effect is considerable, especially when
crowding takes place. Here the relaxation consisted of a
radial outward motion of the neighbors of about
0.157¢, determined as the position of minimum potential
energy.

For the vacancy, the twelve nearest neighbors of
the vacancy were considered and the effect of the
vacancy on their radial and tangential frequencies
taken into account. The relaxation consisted of an
inward radial displacement of about 0.0157 and reduces
the “local” entropy from 1.85% to 1.69%. In considering
the saddle point for vacancy diffusion, one is interested
in the activated complex which occurs when one of the
atoms neighboring the vacancy moves halfway in to
fill it. The moving atom passes through the center of a
rectangle formed by four atoms at the corners at a
distance of (V3/2)ro before relaxation. Because of the
crowding the frequencies of these five atoms are
increased, even after a relaxation outward of the
corner atoms of about 0.06r,. The associated entropy
decrease is —1.10%. There are, however, fourteen other
atoms which are essentially in the environment of a
neighbor of a vacancy and they contribute 7/6 the
intrinsic entropy of a vacancy or 1.97k. For the total
entropy of the saddle point (always of course omitting
from consideration the degree of freedom associated
with the direction of diffusion), an increase of entropy
of 0.87k results.

In the analysis of ring diffusion,® the radial fre-
quencies of four partners in the ring and also their
motion perpendicular to the plane of the ring were
taken into account, also the motion of the eight atoms
directly above and below the ring.

10 C, Zener, Acta Cryst. 3, 346 (1950).
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2. Effect of Coupling

Our procedure has been criticized because we have
disregarded the normal modes of the lattice to treat the
vibrations of the atoms as uncoupled. To gain some
idea of the seriousness of this shortcoming, a normal
mode solution was carried out for a seven-particle
problem which simulated the configuration of an
interstitial atom surrounded by six nearest neighbors.
Four force constants were introduced to account for
forces of the four following varities: (a) those between
interstitial and neighbors, (b) those between neighbors,
(c) those restraining the neighbors from radial motions
away from equilibrium position, and (d) those restrain-
ing neighbors from tangential displacements. The labor
involved was somewhat less than might at first be
imagined. All but three of the frequencies were de-
generate. The analysis required the solution of one
cubic equation. The remaining frequencies were ra-
tional functions of the force constants. The product
of all 21 frequencies was compared with the analogous
product as obtained from the same set of constants
using the usual approximation where coupling effects
are neglected. Because of the relaxation the distances
between neighbors were considerably extended and the
coupling forces between them very weak. The prin-
cipal effect came from the coupling of the motions of
the interstitial and individual neighbors. Three sets
of triply degenerate frequencies are involved, and their
solution depends on a secular determinant of the form

atc —a 0
—a 2¢ —a ,
0 —a a+c

where @ and ¢ refer to the force constants mentioned
earlier in this paragraph. The product of the roots is
given by the value of the determinant. For the Einstein
model (no coupling) the corresponding product is
just the product of the diagonal elements. The ratio of
the two is ¢/(e+c¢), which is in our case 0.59. The
corresponding entropy increase is — (3%k/2) In0.59, or
+0.81%.

One must now compare this value with the increase
in entropy for a complex of six atoms, stationed at the
face centers of a cube to represent the normal lattice
and subject to the force constants, &, ¢, and d. The
normal frequencies for this aggregate are easily ob-
tained. A comparison of the frequency product with
and without coupling gives an increase of 0.38% in
entropy. (In effect, coupling adds only nondiagonal

TasiE II. V’s for the interstitial configuration
in units of 482/7¢%

V-neighbor- V-neighbor-
V-interstitial radial tangential
Unrelaxed 7900 5290 —204
Relaxed 1050 1279 339
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terms to the potential matrix. It always decreases the
frequency product since it increases the frequency
spread without changing the sum of the squares of the
frequencies.): To the 0.38% entropy change must be
added the entropy change of the average lattice atom
with coupling, to take into account the seventh atom
which was formerly the interstitial. It is shown in the
Appendix that, on going from the Einstein to the Debye
model, the average entropy per degree of freedom
increases by 0.078%. Adding three times this quantity
to 0.38%, one obtains 0.62%k which is 0.19% less than the
entropy increase with coupling for the complex with
interstitial. It appears that the effect of coupling is
small for the intrinsic entropy of an interstitial. In the
third line of Table I, 0.2k is entered as an estimate of
the magnitude of the correction involved.

A similar treatment for a vacancy and its twelve
neighbors was not attempted because of the formidable
complications associated with the large number of
degrees of freedom. However, the two-dimensional
analog, namely an hexagonal ring of atoms with and
without a central atom, was investigated and the results
proved illuminating. The radial and tangential dis-
placements of the hexagon atoms were chosen as
coordinates. Symmetry considerations indicate that
the normal modes for this system, like that of six
similar particles on a string, are characterized by rep-
resentations of the form exp(isn/6), where » numbers
the particles in rotation and s, running from 1 to 6,
numbers the mode. For each value of s there are
two modes depending on the phase relation between
the radial and tangential motions. Modes with s equal
to 1 and 5 are coupled together in two pairs of de-
generate frequencies, and similarly for s equal to 2
and 4. The introduction of a central atom adds two
more degrees of freedom. The coordinates of this atom
represent a quantity with vector symmetry which
couples only with the modes with s equal to 1 and 5.
The solution of the resulting cubic equation gives
three doubly degenerate modes. Evaluation of the
frequency products gives for the hexagon with vacancy
an entropy increase of 0.46% with coupling, and for the
filled hexagon (less the entropy change for one normal
atom with coupling) 0.37%, or a net change of 0.09% for
the vacancy in the hexagon with coupling. It should be
pointed out that only one force constant is involved
here and that the result is independent of its magnitude.
Again the effect of coupling is nearly negligible on the
defect entropy. As an indication of its size, 0.09% is
entered for the vacancy on the third line of Table I.

In their calculation on the effect of vacancies on
lattice entropy, Stripp and Kirkwood® give a first
order contribution for the isolated vacancy without
relaxation of 1.5k and a second-order contribution of
0.225k. For comparison with their value of 1.73%, the
Einstein model with central forces gives

AS=—zk/2In(1—3/2)=1.68k
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for 2=12. Adding on the estimated correction of 0.09%,
one obtains 1.77%k which is certainly fortuitously close.
The discrepancy between 1.68% and the value of 1.85%
listed in Table I arises because our model tacitly
assumes, in addition to central forces, a volume-
dependent, cohesive force tqvmaintain stability.

e e
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3. Elastic Energy Contribution

To calculate the contribution to the defect entropy
arising from regions somewhat removed from the
defect, one can resort to the thermodynamic method
of Zener” and apply Eq. (2) using the stored energy for
AG. This is permissible in this region because elastic
theory is valid here and the elastic solution for a center
of pressure gives no dilatation. The general form for
the displacement from such a center is®

&i=wi(A+B/7),

where the coefficient A gives a uniform dilatation and
the B term gives the strain pattern from the center of
pressure in an infinite medium. From the displacements
one can obtain the strain and the stresses. The resulting
expression for the elastic energy density follows:

Energy density=2[ (3\2u) A%+ (2B)%u/7%],

(14)

(15)

where N and p are the Lamé elastic constants. The
condition at the surface determines 4. For zero pressure
at great radius R, one obtains

A=4Bu/O\+2u) R, (16)

which shows that the 4 term in Eq. (15) is negligible
compared with the B term. The total elastic energy
outside a sphere of radius 7; is then approximately

AG=8muB?/r?, an
and the contribution to AS is
ASeras= (—87B*/7:?) (du/dT). (18)

This expression has been evaluated for copper, taking
for du/dT—0.38X10° dynes/cm?-deg as an average
between —0.45 and —0.28X10* dynes/cm?-deg, respec-
tively the derivatives with respect to temperature of
the elastic constants cs and %(ci1—ci2) for copper.t
The constant B is determined from our assumed
relaxation of defect neighbors and for the interstitial
is taken to have the value 0.0254% for the vacancy
—0.00534%, where d is the lattice constant, 3.614. The
radius 7; is chosen so that 4m7.3/3 is the volume con-
taining the same number of atoms as were considered
in the normal mode treatment, seven for the interstitial
case and twelve for the vacancy. The resulting value
for B?/ri* was 15.0X107*@ for the interstitial and
3.9X107% for the vacancy. The values for ASes

1 These experimental values for the variation of the elastic
constants of copper with temperature were supplied by Dr. C. S.
Smith by private communication.
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are given in the fourth row of Table I as 4.9% for the
interstitialcy and 0.13% for the vacancy.
Configurations not possessing spherical symmetry
cannot be treated as simply. Because of the importance
of the vacancy saddle point in the theory of diffusion
we have made an effort to handle this case by intro-
ducing a third term in the elastic potential,® so that

X=3A47"—B/r+C(3 cos’0—1)/2%, (19)

- The gradient of x gives the displacement vector but
now, in addition to the terms appearing in Eq. (14),
there is an additional term in the radial component
varying with angle and a nonradial component which
arise from the term in the second spherical harmonic.
The constants are chosen to give a radial displacement
of —0.0157, for r=1.57, 0=0 and of 0.06r for r=0.87r,,
0=m/2. (The direction of the 6 axis coincides with the
direction of the diffusion jump.) One obtains

B=—0.0024r#, 3C=0.072r¢. (20)

The contribution to the energy density to be added
to Eq. (15) is

2(3C/7r%)%(45 cos'9— 10 cos?6+13)pu. (21)
The additional contribution to Eq. (17) is
AG(C)=16.7(3C)%u/r, (22)

where 7y is the spherical radius needed to enclose 19
atoms, and to Eq. (18) add

AS(C)=—16.7(3C)%/r\(du/dT). (23)

The evaluation of Egs. (18) and (23) for the appropriate
choices of B, C, and r; gives respectively 0.002% and
0.262k, or a total of 0.26k for the entropy change of
the vacancy saddle point arising from the stored elastic
energy outside 7;.

4. Surface Effect

As has already been pointed out in the preceding
section the elastic solution for a center of pressure
contains a term corresponding to a uniform dilatation
which is introduced to fit the boundary conditions at
the surface of zero pressure. Though this term makes
a negligible contribution to the elastic energy of the
deformation it makes a considerable contribution to
the defect entropy because the elastic constants, and
hence the vibration frequencies, are decreasing functions
of volume. For the long wave vibrations the change
in the frequencies, »;, are

AV{/W:%(AM,'/MF!- AV/V), (24.-)

where M,; are the appropriate elastic moduli. For
copper the effect of pressure on the elastic constants
has been measured by Lazarus'? and found to be linear
out to 10* bars. At this maximum pressure the fractional
changes in the elastic constants were 0.028 for cyy,

2 David Lazarus, Phys. Rev. 76, 553 (1949).
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0.03¢ for c¢iz, and 0.01 for ¢4 with a corresponding
fractional change of volume of —0.007. Taking 0.023
as an average fractional change of elastic modulus at
10* bars, one obtains

Avy/v:=1[(0.023/0.007)—1]JAV/V.  (24a)

With Egs. (7) and (16) and under the rough assumption
that all frequencies are similarly affected by the
dilatation 34, the entropy change is

ASsuri=—+3.4(3N) Ak, (25)

where N is the total number of atoms in the lattice,
16R#/3d%. Evaluation of -Seus gives 2.05k for the
interstitial and —0.44% for the vacancy. For the
vacancy saddle point configuration only the B-term
affects 4 (16) and AS=—0.20k, where we have
assumed surface equilibrium for the saddle-point
configuration.!

The surface contribution to the entropy could also
be calculated** directly from the macroscopic relation,

(3S/9V)r=(0P/0T),= KB, (26)

where K is the bulk modulus and 8 is the thermal
coefficient of expansion. Evaluated on this basis, the
surface terms would be larger by about 70 percent
than the values which have been obtained here with
the microscopic model, used throughout for consistency.

DISCUSSION

In the last line of Table I are given the totals for
AS in three important configurations. One must warn
against the literal acceptance of these figures at their
face value. The calculations in back of the numbers
is uncertain (1) because a greatly oversimplified model
has been used to represent the atomic forces and (2)
because in the calculations themselves some arbitrary
approximations were necessarily introduced at such
points as the separation of frequencies into “local”
and “‘elastic” modes, the treatment of the effect of
coupling, the fitting of the elastic solution, and others.
From a critical standpoint the procedure here is not
to be considered as a handbook example on the quanti-
tative calculation of defect entropies, but rather as a
qualitative display of the way various considerations
might enter into a more precise evaluation. From this
standpoint several interesting conclusions can be
drawn:

(1) The evaluation of defect entropies from a
fundamental standpoint devolves into an analysis
of the change of the elastic spectrum of the crystal
with the introduction of the defect.

(2) Defects which bring about a local crowding of
the lattice appear to have a lower specific entropy than

18 Because of the short time the diffusing atom spends at the
saddle point configuration it is perhaps quite unrealistic to
consider any change in “surface term’’ during the jump.

14 We are indebted to Dr. J. D. Eshelby for pointing out this
alternate procedure.



ENTROPIES OF LATTICE DEFECTS

defects which cause expansion. Here the effect of the
“local” term is predominant, though it is partially
compensated for by the effect of the dilatation intro-
duced to satisfy the condition at the surface. The
ASurs has always the opposite sign from the “local”
term and compensates for about % of it.

(3) Though it appears that most of the defects may
have positive entropies, the role of the temperature
dependence of the elastic constants in causing this
effect appears to have been overemphasized in some
quarters. Our calculations show that the size of this
term as applied only to the elastic region is often rather
small. Since it varies as the square of the displacement
it becomes most important in situations involving
large distortions, as for an interstitialcy.

(4) The errors involved in using an Einstein model
for calculating frequency changes appear to be small
as indicated by efforts to take coupling into account
to the first order.

(5) The comparisons of these estimates with experi-
mental findings on defect entropies, particularly as
they come out of diffusion studies, is not altogether
satisfactory. For a vacancy mechanism the tempera-
ture-independent factor in the diffusion constant should
depend exponentially on the entropy of the vacancy
saddle-point configuration. In general, experiments
show the entropy to be positive but somewhat larger
than the 0.9% obtained here. Also, the reason for the
fairly consistent correlation between the sizes of
activation entropy and activation energy, as experi-
mentally observed, is not easily apparent in terms of
the present model. This correlation has been displayed
in various forms by different investigators, beginning
with the well-known Langmuir-Dushman formula and
including the semiempirical relation proposed by
Dienes'® and the recent theory of Zener.” The experi-
ments indicate that the largest positive entropies are
found for those materials with the largest activation
energies. Of the terms in Table I that make up AS
for the vacancy saddlepoint, the relatively small
“elastic” term for the region surrounding the defect
should support such a correlation between activation
entropy and activation energy. What the effect of the

15 G. J. Dienes, J. Appl. Phys. 21, 1189 (1950).
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term depending on the changes in the “local vibrations”
should be is not so easy to see. We have stressed the
importance of the change in microscopic density for
this quantity. Translated loosely into macroscopic
thermodynamic terms, the effect of such density
changes can be estimated from Eq. (26). The changes
in “local vibrations” therefore should apparently
depend in part on the relation (26) and in part on the
temperature variation of elastic constants. In each
contribution the magnitude of the crystal forces and
the effect of thermal expansion play their roles so that
the aforementioned correlation between activation
energy and entropy may be also understandable in
terms of this theory (as well as in terms of a theory
which considers only the temperature variation of
elastic constants).

APPENDIX

The change in entropy per degree of freedom in
going from the Einstein to the Debye vibration model
can be estimated by assuming for the Debye model
that the density of oscillators per frequency range dv
is given by K»?, where K is normalized so that

f Kvidv=Kvm®/3=n, (A1)
0

where # is the total number of oscillators. On the other
hand, the Einstein spectrum is a delta function centered
at some frequency vz, so that the sum of the frequencies
squared is unchanged,

npgte K f vidy=3nvs2/5. (A2)
0

It follows that vg/vn is 0.77. To find the entropy
increase one evaluates the average of the logarithm
of the frequency ratio,

S=— (kK /n) f o re)tdy=0.078k.  (A3)

The analogous quantity for a two-dimensional distri-
bution is 0.153%. In one dimension there is a logarithmic
singularity.



